Electronic Supporting Information for Ethylene ... · S1 Contents Section 1. Materials and methods...

22
Electronic Supporting Information for Highly Active Self-immobilized FI-Zr Catalysts in a PCP Framework for Ethylene Polymerization He Li, Bo Xu, Jianghao He, Xiaoming Liu, Wei Gao and Ying Mu* State Key Laboratory for Supramolecular Structure and Materials, School of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, China Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Transcript of Electronic Supporting Information for Ethylene ... · S1 Contents Section 1. Materials and methods...

  • Electronic Supporting Information

    for

    Highly Active Self-immobilized FI-Zr Catalysts in a PCP Framework for

    Ethylene Polymerization

    He Li, Bo Xu, Jianghao He, Xiaoming Liu, Wei Gao and Ying Mu*

    State Key Laboratory for Supramolecular Structure and Materials, School of Chemistry, Jilin University,

    2699 Qianjin Avenue, Changchun 130012, China

    Electronic Supplementary Material (ESI) for ChemComm.This journal is © The Royal Society of Chemistry 2015

  • S1

    Contents

    Section 1. Materials and methods

    Section 2. Synthetic procedures

    Section 3. TGA profiles

    Section 4. Solid-state 13C NMR spectra

    Section 5. FT-IR spectra of the ligands (L1H3 and L2H3) and the catalysts (1a-c and 2a-b)

    Section 6. Elemental and ICP-OES analyses

    Section 7. Powder X-ray diffraction patterns

    Section 8. SEM images of the catalysts

    Section 9. Pore structure parameters of the samples

    Section 10. N2 sorption isotherms and pore size distribution

    Section 11. Ethylene polymerization results

    Section 12. Gel Permeation Chromatography (GPC) curves and the resolution results

    Section 13. DSC profiles of the polyethylene samples

    Section 14. 13C NMR spectra of the polyethylene samples

    Section 15. 1H and 13C NMR spectra of ligands and pre-ligands

    Section 16. FT-IR spectra of 1,3,5-Tris(3’-tert-butyl-4’-hydroxyphenyl)benzene and TBHFPB

    Section 17. ESI-MS spectra of ligands and pre-ligands

    Section 18. References of Electronic Supporting Information

  • S2

    Section 1. Materials and methods.

    All manipulations involving air and/or moisture-sensitive compounds were carried out under a nitrogen

    atmosphere (ultra-high purity) using either standard Schlenk techniques or glove box techniques.

    Solvents were dried and distilled using standard procedures. Reagents were purchased and used as

    received without further purification. ZrCl4(THF)2[S1], Ph3CB(C6F5)4[S2], 2-tert-butyl-4-

    acetylphenol[S3] and complex 3 bis[N-(3-tert-butylsalicylidene)-cyclohexylaminato]zirconium (IV)

    dichloride [S4] were prepared according to literature procedures. Polymerization grade ethylene was

    further purified by passage through columns of 5 A molecular sieves. 1H and 13C NMR spectra were

    recorded on a Varian Mercury-300 NMR spectrometer, where chemical shifts (δ in ppm) were

    determined with a residual proton of the solvent as standard. Solid-state 13C CP/MAS NMR

    measurements were recorded on a Bruker AVANCE III 400 WB spectrometer at a MAS rate of 5 KHz

    and a CP contact time of 2 ms. Infrared spectra were recorded from 400 to 4000 cm-1 on a Nicolet FT-

    IR 360 spectrometer by using KBr pellets. ESI-MS was carried out on a Thermo Fisher ITQ1100 ion

    trap gas chromatography-mass spectrometry. Elemental analyses were carried out on an Elementar

    model vario EL cube analyzer. Field emission scanning electron microscopy was performed on a

    SU8020 model HITACHI microscope. The Zirconium contents in polymer frameworks were

    determined by Perkin-Elmer ICP-OES Optima 3300DV spectroscopy. Powder X-ray diffraction data

    were recorded on a PANalytical BV Empyrean diffractometer by depositing powder on glass substrate,

    from 2θ = 4.0° to 40° with 0.02° increment at 25 oC. Thermogravimetric analysis (TGA) was performed

    on a TA Q500 thermogravimeter by measuring the weight loss while heating at a rate of 10 oC min−1

    from 25 to 800 oC under nitrogen. Nitrogen sorption isotherms were measured at 77 K with a JW-BK

    132F analyzer. Before measurement, the samples were degassed in vacuum at 150 oC for more than 10

    h. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas and

    pore volume, the Saito-Foley (SF) method was applied for the estimation of pore size distribution. The

    molecular weight and molecular weight distribution of the polymer samples were measured on a PL-

    GPC 220 at 140 oC with 1,2,4-trichlorobenzene as the solvent. The melting points of the polymer were

    measured by differential scanning calorimetry (DSC) on a NETZSCH DSC 204 at a heating/cooling rate

    of 10 oC min-1 from 35 to 180 oC and the data from the second heating scan were used.

    Section 2. Synthetic procedures.

    Synthesis of 1,3,5-Tris(3’-tert-butyl-4’-hydroxyphenyl)benzene

    2-tert-butyl-4-acetylphenol (2.3 g,12 mmol) was dissolved in 25 mL dry ethanol. Then SiCl4 (6.9

    mL, 60 mmol) was added to it at 0 oC. The mixture was stirred at 0 oC for 30 min and at room

    temperature overnight. The reaction mixture was quenched with water and extracted 3 times with

  • S3

    CH2Cl2. The combined organic layer was dried over MgSO4. After evaporation of the solvent, the

    residue was purified by silica gel column chromatography (CH2Cl2/petroleum 1:1) to give the title

    compound as a colorless solid 1.45 g, yield 70%. Melting point: 112.3~114.5 oC. 1H NMR (CDCl3, 300

    MHz, 298 K): δ 7.61(s, 3H, Ar-H), 7.58 (d, 3H, J =3.0 Hz, Ar-H), 7.39 (dd, 3H, J =8.1 Hz, Ar-H), 6.77

    (d, 3H, J =8.1 Hz, Ar-H), 4.84 (s, 3H, OH), 1.46 (s, 27H, t-Bu).13C NMR (CDCl3, 75MHz): δ 148.7,

    137.2, 131.2, 128.8, 121.2, 120.7, 118.9, 111.7, 29.5, 24.4. ESI-MS (m/z): 522.85 [M+]. IR (KBr pellet):

    3540, 2960, 1605, 1500, 1255, 1080, 815, 735 cm-1. Anal. Calcd for C36H42O3: C 82.7, H 8.10. Found:

    C 82.8, H 8.06.

    Synthesis of 1,3,5-Tris(3’-tert-butyl-4’-hydroxy-5’-formylphenyl)benzene (TBHFPB)

    To a stirred mixture of anhydrous magnesium dichloride (2.0 g, 21 mmol) and solid

    paraformaldehyde (0.96 g, 31 mmol) in dried THF was added 3 mL of triethylamine dropwise and the

    mixture was stirred at room temperature for 10 min. A solution of 1,3,5-Tris(3’-tert-butyl-4’-

    hydroxyphenyl)benzene (1.85 g, 3.5 mmol) in THF was added dropwise. Then the mixture was heated

    to reflux for 4h. After the reaction mixture was cooled to room temperature, 50 mL of ethyl acetate and

    50 mL of 1N HCl were added. The organic phase was separated and washed with 1 N HCl (2×100 mL)

    and water (3 × 100 mL), dried over MgSO4, and filtered. The solvent was removed by rotatory

    evaporation to leave the crude product which was purified by column chromatography on silica gel

    using petroleum ether/CH2Cl2(3: 1) mixture as the eluent to give the title compound 1.33 g, yield 62%.

    Melting point: 174.1~176.5 oC. 1H NMR (CDCl3, 300 MHz, 298 K): 1H NMR (CDCl3, 300 MHz):

    11.85(s, 3H, OH), 10.00(s, 3H, CHO), 7.82 (d, 3H, J =2.4 Hz, Ar-H), 7.68 (d, 3H, J =2.4 Hz, Ar-H),

    7.63 (s, 3H, Ar-H), 1.49 (s, 27H, t-Bu).13C NMR (CDCl3, 75MHz): δ 197.1, 160.9, 141.8, 139.1, 133.2,

    132.1, 130.3, 124.4, 120.7, 35.1, 29.2. ESI-MS (m/z): 606.85 [M+]. IR (KBr pellet): 2958, 1650, 1433,

    1393, 1318, 1162, 770, 720 cm-1. Anal. Calcd for C39H42O6: C 77.2, H 6.98. Found: C 77.0, H 7.02.

    Synthesis of L1H3Cyclohexylamine (0.43 g, 4.0 mmol) and 1,3,5-Tris(3’-tert-butyl-4’-hydroxy-5’-formyl

    phenyl)benzene (0.4 g, 0.66mmol) were dissolved in 20 mL THF ,then one drop of formic acid was

    added and the mixture was refluxed for 12 h, the solvent was evaporated under reduced pressure.

    Recrystallization of the residue in ethanol gave L1H3 as a yellow solid 0.45 g, 80% yield. Melting point:

    187.8~189.2 oC. 1H NMR (CDCl3, 300 MHz, 298 K): 1H NMR (CDCl3, 300 MHz): δ 14.44(s, 3H, OH),

    8.46(s, 3H, CH=N), 7.62(d, 3H, J =1.8 Hz, Ar-H), 7.60(s, 3H, Ar-H), 7.40(d, 3H, J =1.8 Hz, Ar-H),

    3.22-3.33 (m, 3H, cyclohexyl-CH) 1.51 (s, 27H, t-Bu), 1.29-1.92 (m, 30H, cyclohexyl-CH2). 13C NMR

    (CDCl3, 75MHz): δ 162.9, 160.6, 142.4, 137.9, 130.7, 128.4, 128.0, 123.7, 118.8, 67.6, 35.0, 34.3, 29.4,

  • S4

    25.5, 24.4. ESI-MS (m/z): 850.42 [M+]. IR (KBr pellet): 3450, 2930, 2865, 1640, 1450, 1385, 1180, 870

    cm-1. Anal. Calcd for C57H75N3O3: C 80.5, H 8.89, N 4.94. Found: C 80.3, H 8.85, N 4.97.

    Synthesis of L2H3The procedure described for the synthesis of L1H3 was used with phenylamine (0.95 g, 10 mmol)

    and 1,3,5-Tris(3’-tert-butyl-4’-hydroxy-5’-formylphenyl)benzene (0.6 g, 1.0 mmol) as starting

    materials. L2H3 was obtained as a yellow solid (0.68 g, 82% yield). Melting point: 289.2~291.5 oC. 1H

    NMR (CDCl3, 300 MHz, 298 K): δ 14.07(s, 3H, OH), 8.76(s, 3H, CH=N), 7.73 (d, 3H, J =2.4 Hz, Ar-

    H),7.68 (s, 3H, Ar-H), 7.59 (d, 3H, J =2.4 Hz, Ar-H), 7.29-7.47 (m, 15H, Ar-H), 1.55 (s, 27H, t-Bu).13C

    NMR (CDCl3, 75MHz): δ 163.2, 160.4, 148.2, 142.3, 138.3, 129.4, 129.2, 126.9, 124.0, 121.2, 119.3,

    35.2, 29.4. ESI-MS (m/z): 831.83 [M+]. IR (KBr pellet): 3440, 2965, 1618, 1585, 1435, 1165, 855, 752

    cm-1. Anal. Calcd for C57H57N3O3: C 82.3, H 6.90, N 5.05. Found: C 82.2, H 6.95, N 5.09.

    General procedure for synthesis of Cat 1a-c and Cat 2a-b

    In a typical procedure, NaH (40 mg, 1.7 mmol) was added to a THF (CH2Cl2 or dioxane) solution

    of 0.5 mmol of L1H3 (or L2H3) . The solution was vigorously stirring at room temperature for 12 h. Then

    ZrCl4(THF)2 (0.75 mmol) was added, and the reaction mixture was refluxed for 3 days. The precipitate

    was collected by filteration, washed and dried under vacuum for 12 h. The self-immobilized catalysts

    1a-c and 2a-b were obtained in 70~85% yields.

    Ethylene polymerization experiments

    A dry 250 mL steel autoclave with a magnetic stirrer was charged with 50 mL of toluene, and

    saturated with ethylene (1.0 bar). The autoclave was kept in a water bath at a corresponding

    temperature. The polymerization reaction was started by injection of a mixture of AlR3, Ph3CB(C6F5)4

    and a catalyst suspended in toluene (10 mL). The vessel was repressurized to the needed pressure with

    ethylene immediately, and the pressure was kept by continuously feeding of ethylene. After a certain

    period of time, the polymerization was quenched by injecting acidified methanol (HCl (3 M)/methanol

    1/1). The polymer was collected by filtration, washed with water and methanol, and dried at 60 oC in

    vacuo to a constant weight. Most of the PCP catalyst should be retained in the polymer due to its

    insolubility in water and common organic solvents.

  • S5

    Section 3. TGA profiles.

    200 400 600 80020

    40

    60

    80

    100

    Wei

    ght (

    %)

    T ( oC)

    Figure S1. TGA profiles of 1a (red) and 2a (black).

    Section 4. Solid-state 13C NMR spectra.

    250 200 150 100 50 0

    o

    n

    f-m

    d,ecba

    n,o

    lk,m

    jihe-g

    dcba

    Chemical shift (ppm)

    Figure S2. 13C CP/MAS NMR spectroscopy of 1a (red) and 2a (black).

    Section 5. FT-IR spectra of the ligands (L1H3 and L2H3) and the catalysts (1a-c and 2a-b).

  • S6

    4000 3500 3000 2500 2000 1500 1000 500

    Tran

    smitt

    ance

    Wavenumber (cm-1)

    2b

    2a

    L2H3

    1c

    1b

    1a

    L1H3

    Figure S3. FTIR spectra of the ligands (L1H3 and L2H3) and the catalysts (1a-c and 2a-b).

    Section 6. Elemental and ICP-OES analyses.

    Table S1. Results of elemental and ICP-OES analyses, and estimated formulae of the PCP catalysts.

    Sample C[wt %]

    H[wt %]

    N[wt %]

    Na[wt %]

    Zr[wt %]

    Estimated formula

    1a 55.55 6.05 3.29 4.9 10.6 C57H72N3O3(ZrCl2)1.5(NaCl)2.7(C4H8O)0.4

    1b 54.00 6.07 3.07 5.1 9.4 C57H72N3O3(ZrCl2)1.4(NaCl)3(C4H8O2)1.2

    1c 54.08 5.75 3.33 5.1 10.5 C57H72N3O3(ZrCl2)1.5(NaCl)2.8

    2a 56.57 4.72 3.28 4.8 10.0 C57H54N3O3(ZrCl2)1.4(NaCl)2.7(C4H8O)0.6

    2b 56.17 5.54 3.13 4.5 9.0 C57H54N3O3(ZrCl2)1.4(NaCl)2.7(C4H8O2)2

  • S7

    Section 7. Powder X-ray diffraction patterns.

    a) b) c)

    10 20 30 40

    Inte

    nsity

    2 (o)10 20 30 40

    Inte

    nsity

    2 (o)10 20 30 40

    Inte

    nsity

    2 (o)

    10 20 30 40

    Inte

    nsity

    2 (o)

    d)

    10 20 30 40

    Inte

    nsity

    2 (o)

    e) f)

    10 20 30 40

    (200)

    (111)

    Inte

    nsity

    2 (o)

    Figure S4. Powder X-ray diffraction profiles of (a) 1a, (b) 1b, (c) 1c, (d) 2a, (e) 2b, (f) NaCl powder. The peaks at 27.3 and 31.7o are from NaCl (111 and 200, respectively).

  • S8

    Section 8. SEM images of the catalysts.

    a) b)

    Figure S5. SEM images of the catalysts 1a (a) and 2a (b).

    Section 9. Pore structure parameters of the samples.

    Table S2. Pore structure parameters of the samples[a]

    Sample SBET[m2g-1] SLangmuir[m2g-1] Vmicro[cm3g-1] Vtotal[cm3g-1]

    1a 479 535 0.186 0.31

    1b 71 83 0.027 0.10

    1c 41 47 0.016 0.09

    2a 230 258 0.087 0.17

    2b 54 62 0.021 0.11

    1a-1[b] 455 514 0.178 0.29

    2a-1[b] 166 193 0.059 0.17

    [a] Vmicro= micropore volume calculated by Saito-Flory method and Vtotal= total pore volume at P/P0=0.99. [b] Samples 1a-1 and 2a-1 were obtained from the repeated experiments under the same

    conditions as for the preparation of 1a and 2a.

  • S9

    Section 10. N2 sorption isotherms and pore size distribution.

    0.0 0.2 0.4 0.6 0.8 1.0

    10

    20

    30

    40

    50

    60

    70 a)

    N 2 U

    ptake

    (cm3

    /g)

    Relative Pressure (P/P0)0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    0.00

    0.01

    0.02

    0.03

    0.04f)

    Pore

    volum

    n (cm

    3 /g)

    Pore size (nm)

    0.0 0.2 0.4 0.6 0.8 1.00

    10

    20

    30

    40

    50

    60 b)

    N 2 U

    ptake

    (cm3

    /g)

    Relative Pressure (P/P0)0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    0.000

    0.005

    0.010

    0.015

    0.020g)

    Pore

    volum

    n (cm

    3 /g)

    Pore size (nm)

    0.0 0.2 0.4 0.6 0.8 1.00

    10

    20

    30

    40

    50

    60

    70

    80c)

    N 2 U

    ptake

    (cm3

    /g)

    Relative Pressure (P/P0)0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    0.00

    0.01

    0.02

    0.03h)

    Po

    re vo

    lumn (

    cm3 /g

    )

    Pore size (nm)

    0.0 0.2 0.4 0.6 0.8 1.00

    50

    100

    150

    200d)

    N 2 U

    ptake

    (cm3

    /g)

    Relative pressure (P/P0)0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    0.00

    0.05

    0.10

    0.15

    i)

    Pore

    volum

    e (cm

    3 /g)

    Pore size (nm)

    0.0 0.2 0.4 0.6 0.8 1.00

    20

    40

    60

    80

    100

    120 e)

    N 2 U

    ptake

    (cm3

    /g)

    Relative pressure (P/P0)0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    0.03

    0.06

    0.09 j)

    Pore

    volum

    e (cm

    3 /g)

    Pore size (nm)

    Figure S6. (a-e) Nitrogen adsorption (●) and desorption (○) isotherm profiles of (a) 1b, (b) 1c, (c) 2b, (d) 1a-1, (e) 2a-1. (f-j) Pore size distribution of (f) 1b, (g) 1c, (h) 2b, (i) 1a-1, (j) 2a-1 by SF modeling on the N2 adsorption isotherms .

  • S10

    Section 11. Ethylene polymerization results.

    Table S3. Summary of ethylene polymerization catalyzed by 1a-c, 2a-b and the model catalyst 3.[a]

    Peak 1 Peak 2

    Entry Cat Cocat Al/ZrT

    (°C)

    Activity[b]

    Mw[c]

    (×104)

    (av.)

    Mw/Mn(av.) %

    Mw[c]

    (×104)Mw/Mn %

    Mw[c]

    (×104)Mw/Mn

    1 1a AlMe3 50 50 0.92 9.35 6.1 72 11.0 1.90 28 0.92 1.34

    2 1a AlEt3 50 50 1.21 11.9 6.4 70 14.1 1.94 30 1.12 1.293 1a AliBu3 50 50 1.38 15.1 12.2 75 20.0 2.78 25 0.65 1.764 1a AliBu3 25 50 0.72 17.2 10.1 79 21.1 2.56 21 0.78 1.845 1a AliBu3 75 50 1.32 11.9 10.2 78 17.0 1.89 22 1.19 1.906 1a AliBu3 50 0 0.30 37.5 14.0 86 53.7 2.26 14 3.88 1.637 1a AliBu3 50 25 0.69 17.6 11.6 72 22.5 2.37 28 0.92 2.278 1a AliBu3 50 75 1.28 11.6 10.7 78 14.9 3.01 22 0.46 1.52

    9[d] 1a AliBu3 50 50 1.17 16.4 14.9 82 20.2 3.36 18 0.31 1.8810 2a AlMe3 50 50 0.18 20.4 14.2 78 25.4 2.97 22 0.78 1.6511 2a AlEt3 50 50 0.21 40.4 13.7 77 51.8 3.89 23 1.31 1.8412 2a AliBu3 50 50 0.39 36.4 20.9 87 42.2 5.73 13 0.44 1.4613 2a AliBu3 50 25 0.05 45.6 16.5 71 54.5 4.05 29 1.64 1.1614 2a AliBu3 50 75 0.10 27.7 17.7 77 37.0 2.53 23 1.10 2.4315 1a MAO 500 50 0.14 10.0 6.26 70 12.3 2.61 30 0.61 1.5916 2a MAO 500 50 0.04 13.8 4.13 71 17.4 1.75 29 1.62 1.4717 1b AliBu3 50 50 1.20 7.27 6.64 70 8.93 2.00 30 0.50 1.4518 1c AliBu3 50 50 1.25 12.7 8.15 65 15.5 2.74 35 0.62 1.5719 2b AliBu3 50 50 0.23 15.8 9.13 70 19.2 2.73 30 0.67 1.7320 3 AliBu3 50 50 2.16 1.52 2.76

    21[d] 3 AliBu3 50 50 1.15 1.58 2.85

    [a] Polymerization conditions: precatalyst = 5 mol; solvent: 60 mL of toluene; Ph3CB(C6F5)4= 6 mol; ethylene pressure 5 bar; polymerization time, 30 min. [b] In units of kg·PE(mmol Zr)-1h-1. [c] Determined by GPC with polystyrene standards. [d] polymerization time, 60 min.

  • S11

    Section 12. Gel Permeation Chromatography (GPC) curves and the resolution results.

    2 3 4 5 6 7

    0.0

    0.2

    0.4

    0.6a)

    dw/d

    logM

    log M3 4 5 6 7

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6 b)

    dW /

    dLog

    M

    LogM

    Figure S7. Typical GPC curves of polymers obtained with (a) Cat 1a in entry 3 of Table S3 and (b) Cat 2a in entry 11 of Table S3. The black line is the GPC curve, and the green lines are the resolution curves.

    Section 13. DSC profiles of the polyethylene samples.

  • S12

    40 60 80 100 120 140

    -3

    -2

    -1

    0 a)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -4

    -3

    -2

    -1

    0 b)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -4

    -3

    -2

    -1

    0c)

    DSC/

    (mW

    /mg)

    Temp.(oC)

    40 60 80 100 120 140 160

    -3

    -2

    -1

    0 d)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -3

    -2

    -1

    0 e)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -4

    -3

    -2

    -1

    0f)

    DSC/

    (mW

    /mg)

    Temp.(oC)

    40 60 80 100 120 140

    -3

    -2

    -1

    0 g)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -3

    -2

    -1

    0 h)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -3

    -2

    -1

    0i)

    DSC/

    (mW

    /mg)

    Temp.(oC)

    40 60 80 100 120 140

    -3

    -2

    -1

    0 j)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -4

    -3

    -2

    -1

    0k)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -3

    -2

    -1

    0l)

    DSC/

    (mW

    /mg)

    Temp.(oC)

  • S13

    40 60 80 100 120 140

    -3

    -2

    -1

    0 m)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -2

    -1

    0 n)

    DSC/

    (mW

    /mg)

    Temp.(oC)

    40 60 80 100 120 140

    -2

    -1

    0 o)

    DSC/

    (mW

    /mg)

    Temp.(oC)

    40 60 80 100 120 140-1.0

    -0.5

    0.0

    0.5p)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -2

    -1

    0q)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -3

    -2

    -1

    0r)

    DSC/

    (mW

    /mg)

    Temp.(oC)

    40 60 80 100 120 140

    -3

    -2

    -1

    0 s)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -2

    -1

    0 t)

    DSC/

    (mW

    /mg)

    Temp.(oC)40 60 80 100 120 140

    -2

    -1

    0

    u)

    DSC/

    (mW

    /mg)

    Temp.(oC)

    Figure S8. DSC profiles of the polyethylene samples, figures a to u correspond to the polyethylene samples from entry 1 to entry 21 in Table S3.

  • S14

    Section 14. 13C NMR spectra of the polyethylene samples.

    05152535455565758595105115125135145ppm

    Figure S9. 13C NMR spectra of the polyethylene sample (entry 3 in Table S3).

    Section 15. 1H and 13C NMR spectra of ligands and pre-ligands.

    0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.5ppm

    10.52

    0.88

    1.00

    0.98

    1.04

    0.98

    1.46

    4.84

    6.76

    6.79

    7.37

    7.38

    7.40

    7.41

    7.58

    7.59

    7.61

    1H NMR spectra of 1,3,5-Tris(3’-tert-butyl-4’-hydroxyphenyl)benzene

  • S15

    -100102030405060708090100110120130140150160170ppm

    24.41

    29.52

    111.73

    111.73

    118.94

    120.66

    128.66

    128.75

    137.21

    137.21

    148.72

    148.72

    13C NMR spectra of 1,3,5-Tris(3’-tert-butyl-4’-hydroxyphenyl)benzene

    -1012345678910111213ppm

    9.37

    0.98

    1.04

    1.08

    1.02

    1.00

    1.49

    7.63

    7.68

    7.69

    7.82

    7.83

    10.00

    11.85

    1H NMR spectra of 1,3,5-Tris(3’-tert-butyl-4’-hydroxy-5’-formylphenyl)benzene (TBHFPB)

  • S16

    0102030405060708090100110120130140150160170180190200ppm

    29.21

    35.08

    120.74

    124.36

    130.27

    139.09

    141.84

    160.94

    197.12

    13C NMR spectra of 1,3,5-Tris(3’-tert-butyl-4’-hydroxy-5’-formylphenyl)benzene (TBHFPB)

    0123456789101112131415ppm

    22.68

    0.95

    1.05

    1.11

    1.05

    1.05

    1.00

    1.29

    1.51

    1.88

    1.92

    3.22

    3.24

    3.30

    3.33

    7.40

    7.41

    7.60

    7.62

    7.63

    8.46

    14.44

    1H NMR spectra of L1H3

  • S17

    0102030405060708090100110120130140150160170ppm

    24.43

    25.50

    29.37

    34.34

    34.99

    67.56

    118.84

    123.69

    128.01

    128.37

    130.73

    137.91

    142.38

    160.57

    162.89

    13C NMR spectra of L1H3

    01234567891011121314ppm

    8.17

    2.78

    2.05

    1.01

    0.96

    0.99

    1.00

    0.73

    1.55

    7.29

    7.35

    7.42

    7.47

    7.59

    7.60

    7.68

    7.73

    7.74

    8.76

    14.07

    1H NMR spectra of L2H3

  • S18

    0102030405060708090100110120130140150160170ppm

    29.42

    35.16

    119.26

    121.22

    123.96

    126.93

    129.16

    129.43

    129.65

    131.44

    138.31

    142.27

    148.22

    160.35

    163.21

    13C NMR spectra of L2H3

    Section 16. FT-IR spectra of 1,3,5-Tris(3’-tert-butyl-4’-hydroxyphenyl)benzene and TBHFPB.

    4000 3500 3000 2500 2000 1500 1000 500

    Tran

    smitt

    ance

    Wavenumber (cm-1)

    FT-IR spectra of 1,3,5-Tris(3’-tert-butyl-4’-hydroxyphenyl)benzene

  • S19

    4000 3500 3000 2500 2000 1500 1000 500

    Tran

    smitt

    ance

    Wavenumber (cm-1)

    FT-IR spectra of 1,3,5-Tris(3’-tert-butyl-4’-hydroxy-5’-formylphenyl)benzene (TBHFPB)

    Section 17. ESI-MS spectra of ligands and pre-ligands.

    2015090104 #317 RT: 4.26 AV: 1 SB: 2 3.64 , 4.47 NL: 1.48E6T: + c Full ms [50.00-1000.00]

    100 200 300 400 500 600 700 800 900 1000m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rel

    ativ

    e A

    bund

    ance

    522.85

    508.72

    57.05 478.53 684.62388.53299.89 818.7058.12 246.34 583.57 945.61147.83 889.42777.48

    ESI-MS spectra of 1,3,5-Tris(3’-tert-butyl-4’-hydroxyphenyl)benzene

  • S20

    2015090105 #316 RT: 4.29 AV: 1 NL: 6.65E5T: + c Full ms [50.00-1000.00]

    100 200 300 400 500 600 700 800 900 1000m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rel

    ativ

    e A

    bund

    ance

    606.85

    594.05

    57.04534.98404.76 478.82 622.41364.84299.8758.05 248.21177.46 815.51 996.01893.93740.40

    ESI-MS spectra of 1,3,5-Tris(3’-tert-butyl-4’-hydroxy-5’-formylphenyl)benzene (TBHFPB)

    2015090107 #531 RT: 7.59 AV: 1 NL: 3.30E5T: + c Full ms [50.00-1000.00]

    100 200 300 400 500 600 700 800 900 1000m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rel

    ativ

    e A

    bund

    ance

    850.42

    835.80753.40

    709.81258.65 589.1098.19 418.11 861.71545.06376.58180.12

    ESI-MS spectra of L1H3

  • S21

    2015090106 #480 RT: 6.51 AV: 1 SB: 1 4.77 NL: 1.98E4T: + c Full ms [50.00-1000.00]

    100 200 300 400 500 600 700 800 900 1000m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rel

    ativ

    e A

    bund

    ance

    384.22

    459.70

    831.83

    816.96

    536.95582.79 738.8893.47 287.79 670.86

    399.43322.12230.42 607.88154.35 844.73

    ESI-MS spectra of L2H3

    Section 18. References of Electronic Supporting Information.

    [S1] Manzer, L. E. Inorg. Synth. 1982, 21, 136.

    [S2] (a) A. G. Massey and A. J. Park, J. Organomet. Chem., 1964, 2, 245; (b) A. G. Massey and A. J.

    Park, J. Organomet. Chem., 1966, 5, 218;(c) J. C. W. Chien, W. M. Tsai and M. D. Rasch, J. Am. Chem.

    Soc., 1991, 113, 8570.

    [S3] H. M. Miao, G. L. Zhao, H. Shao and J. W. Wang, Acta Cryst., 2010, E66, o2037.

    [S4] H. Terao, S. Ishii, J. Saito, S. Matsuura, M. Mitani, N. Nagai, H. Tanaka, and T. Fujita,

    Macromolecules, 2006, 39, 8584.