Electronic standing waves on the surface of the...

17
Electronic standing waves on the surface of the topological insulator Bi 2 Te 3 Phys. Rev. B. 86, 085456 (2012) P. Rakyta, A. P ´ alyi, J. Cserti E ¨ otv ¨ os Lor ´ and University, Hungary Department of Physics of Complex Systems 1

Transcript of Electronic standing waves on the surface of the...

  • Electronic standing waves on the surface

    of the topological insulator Bi2Te3

    Phys. Rev. B. 86, 085456 (2012)

    P. Rakyta, A. Pályi, J. Cserti

    Eötvös Loránd University, Hungary

    Department of Physics of Complex Systems

    1

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Experimental background of electronic standing waves on a crystal surface

    ➠ a) Bi2Te3 cleavage step (line defect) on the surface of the crystal: to-

    pography scans by current STM technique with constant

    ➠ b) studying electronic standing waves by measuring the differential ∂I∂U

    ρ(x) conductivity. (ρ(x) is the local density of states)

    A. Varykhalov et al., Phys. Rev. Lett. 101, 157601 (2008).

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 2.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Three-dimensional topological insulator: Bi2Te3

    ➠ Effective Hamiltonian of the surface states: (L. Fu, Phys. Rev. Lett. 103, 266801 (2009).):

    ĤTI(k) =k2

    2m∗+ vk(kxσy − kyσx) +

    λ

    2(k3+ + k

    3−)σz

    ETI± (k) =k2

    2m∗±√

    v2kk2 + λ2k2x(k

    2x − 3k

    2y)

    2

    −0.1 0 0.1

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15

    kx [A−1]

    k y [A

    −1 ]

    −0.5

    0

    0.5

    ARPES data:

    A. Varykhalov et al., Phys. Rev. Lett. 101, 157601 (2008).

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 3.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Asymptotic theory of electronic standing waves

    ksc

    ksc,1

    ksc,2 y,k

    y= k

    x,kx= q

    line

    defe

    ct

    Ψ = Ψin + rΨr

    Ψin = χin(q)ei(qx+kiny)

    Ψr = χr(q)ei(qx+kry)

    ksc = kin − kr

    δρ ∼

    dqRe(

    r(k) χin(q)† χr(q) e

    ikscy)

    |v(B)⊥ (q)|

    ; v⊥(q) =∂E(k, q)

    ∂q

    E

    1

    |v(B)⊥ (q)|

    ≈δqα

    |v(B)⊥,0 |

    ,

    r(k, q) ≈ r0δqβ,

    χin(q)† χr(q) ≈ Ω0δq

    γ,

    ksc ≈ ∆0 +∆1δqη

    Stationary phase method around extremal points ksc(q).

    (R. R. Biswas and A. V. Balatsky, Phys. Rev. B 83, 075439 (2011).)

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 4.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Asymptotic theory of electronic standing waves

    δρ ∼extremal∑

    points

    abs(r0Ω0)

    |v⊥,0|sin(∆0y + ϕ) y

    −α+β+γ+1η

    ksc

    ksc,1

    ksc,2 y,k

    y= k

    x,kx= q

    line

    defe

    ct

    1

    |v⊥(q)|≈

    δqα

    |v(B)⊥,0 |

    ,

    r(k, q) ≈ r0δqβ,

    χin(q)† χr(q) ≈ Ω0δq

    γ,

    ksc ≈ ∆0 +∆1δqη

    ➠ Isotropic dispersion:, 2DEG electrons: α = 0, β = 0, γ = 0, η = 2.

    δρ ∼ sin(kscy + ϕ) y−12

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 5.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Asymptotic theory of electronic standing waves

    δρ ∼extremal∑

    points

    abs(r0Ω0)

    |v⊥,0|sin(∆0y + ϕ) y

    −α+β+γ+1η

    ksc

    ksc,1

    ksc,2 y,k

    y= k

    x,kx= q

    line

    defe

    ct

    1

    |v⊥(q)|≈

    δqα

    |v(B)⊥,0 |

    ,

    r(k, q) ≈ r0δqβ,

    χin(q)† χr(q) ≈ Ω0δq

    γ,

    ksc ≈ ∆0 +∆1δqη

    ➠ Isotropic dispersion, helical electrons: α = 0, β = 1, γ = 1, η = 2.

    δρ ∼ sin(kscy + ϕ) y−32

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 6.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Asymptotic theory of electronic standing waves

    δρ ∼extremal∑

    points

    abs(r0Ω0)

    |v⊥,0|sin(∆0y + ϕ) y

    −α+β+γ+1η

    ksc

    ksc,1

    ksc,2 y,k

    y= k

    x,kx= q

    line

    defe

    ct

    1

    |v⊥(q)|≈

    δqα

    |v(B)⊥,0 |

    ,

    r(k, q) ≈ r0δqβ ,

    χbe(q)† χr(q) ≈ Ω0δq

    γ ,

    ksc ≈ ∆0 +∆1δqη

    ➠ Hexagonally warped dispersion, helical electrons: α2 = 0, β2 = 0, γ2 = 0, η2 = 2.

    δρ ∼ A1 sin(ksz,1y + ϕ1) y−32 + A2 sin(ksz,2y + ϕ2) y

    −12 A1 ≪ A2

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 7.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Electronic standing waves on the surface of Bi2Te3 crystal

    δρ ∼ sin(2kfity + ϕ) y−1 →

    Difference between experimental data and the

    asymptotic theory

    A. Varykhalov et al., Phys. Rev. Lett. 101, 157601 (2008).

    Energy contour for E = 330

    meV.

    −0.15 0.15

    −0.1

    0.1

    2kΓ M

    k [A−1]

    knest

    2kfit

    q [A

    −1 ]

    ➠ exact solution of the scattering problem, closer to the line defect.

    ➠ knest: the reflected and transmitted states from the other side cancels each other.

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 8.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Exact solution of the scattering problem

    ➠ characteristics of the standing waves, that are independent of the exact shape of the

    potential. (decay, oscillation wavenumber)

    ➠ We model the cleavage step with a step potential: V (y) = −V0θ(y) (which is trans-

    lational invariant in x)

    ➠ Determine the 6 eigenstates of HTI with given energy E and parallel to line defect

    momentum component q ‖ x. (ETI± (kr, q) = E, r = 1 . . . 6)

    ➠ Matching eigenstates at the potential step ⇒ ψ(L/R)E,q scattering wave function. (L/R

    stand for the incident plane-wave coming from the left/right.)

    ➠ The electronic standing waves correspond to the oscillations in the local DOS:

    ρ(E, y) =1

    (2π)2~

    d=L,R

    Γ(d)E

    dκ|ψ

    (d)k,q(y)|

    2

    v(k, q)

    Γ(L/R)E stand for the energy contour segments on the left/right side of energy E.

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 9.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Pre-asymtotic contribution to the oscillations (E = 330 meV)

    P. Rakyta et al., Phys. Rev. B. 86, 085456 (2012).

    50 100 150 200 250

    −0.5

    0

    0.5

    y [A]

    δρ [1

    0−4 ρ

    0] f1

    f2

    0 0.12 0.24 0.36

    −15

    −10

    −5

    0

    2kfit

    knest

    k [A−1]

    FF

    T [A

    −1 m

    eV−

    1 ]

    −0.15 0.15

    −0.1

    0.1

    2kΓ M

    k [A−1]

    knest

    2kfit

    q [A

    −1 ]

    150 200 250 300 3500

    0.060.120.180.240.3 2k

    fitknest

    2kΓ M

    E [meV]k

    [A−

    1 ]

    (a)

    (b)

    (c)

    (d)

    f1(x, n) = A1 sin(2kfitx+ ϕ1)x−3/2 f2(x, L) = A2 sin(2kfitx+ ϕ2)e

    −x/L

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 10.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Pre-asymtotic contribution to the oscillations

    0.09 0.1 0.11 0.12 0.13 0.14048

    100

    |r|

    0.09 0.1 0.11 0.12 0.13 0.140

    0.7

    |χ+ χ

    |

    0.09 0.1 0.11 0.12 0.13 0.143

    6

    1/v |

    |

    0.09 0.1 0.11 0.12 0.13 0.140

    0.2

    0.4

    kfit

    k [A−1]

    |Szo

    rzat

    |

    (a)

    (b)

    (c)

    (d)

    −0.15 0.15

    −0.1

    0.1

    2kΓ M

    k [A−1]

    knest

    2kfit

    q [A

    −1 ]

    The

    characteristic kfit wavenumber is related to

    the non-monotonic behaviour of the prallel

    to line defect component of the group

    velocity.

    δρ(E, y) ∼

    dk

    (

    rk,q′χ†k,q′χ−k,q′e

    −i2ky + c.c.)

    |v‖(E, k)|; F2k ∼ Re

    (

    rk,q′χ†k,q′χ−k,q′

    |v‖(E, k)|

    )

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 11.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Exponential decay of the oscilaltions

    Direct data f2(x, L) = A2 sin(2kfitx+ ϕ)e−x/L

    0 0.12 0.24 0.36

    −15

    −10

    −5

    0

    2kfit

    knest

    k [A−1]

    FT

    [A−

    1 meV

    −1 ]

    0 0.12 0.24 0.36

    −3

    −2

    −1

    0

    12k

    fit

    k [A−1]

    FT

    [A−

    1 meV

    −1 ]

    0 0.5 1

    −0.2

    −0.1

    0

    2kfit

    k [A−1]

    FT

    [A−

    1 meV

    −1 ]

    0 0.12 0.24 0.36−3

    −2

    −1

    0

    2kfit

    k [A−1]

    FT

    [A−

    1 meV

    −1 ]

    a) b)

    c) d)

    f1(x) = A2 sin(2kfitx+ ϕ)x−3/2 f1(x) = A2 sin(2kfitx+ ϕ)x

    −1/2

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 12.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Conclusions

    Pre-asymptotic standing waves:

    ➠ The characteristic wavenumber in the oscillations (closer to the line defect) is related

    to the non-monotonic behavior of the parallel to line defect component of the group

    velocity.

    ➠ The decay of the pre-asymptotic contribution to the oscillations is exponential when a

    dominant nesting vector is missing.

    Asymptotic standing waves:

    ➠ The characteristic wavenumbers in the oscillations are given by nesting vectors on the

    constant energy contour.

    ➠ The decay of the asymptotic oscillations is power-like (xn) for the dominant nesting

    vectors.

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 13.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Three-dimensional topological insulator: Bi2Te3

    ➠ The exact shape of the constant energy con-

    tours is important to describe standing waves

    around line defects. (vk = v0 + αk2)

    ETI± (k) =k2

    2m∗±√

    v2kk2 + λ2k2x(k

    2x − 3k

    2y)

    2

    −0.1 0 0.1

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15

    kx [A−1]

    k y [A

    −1 ]

    −0.5

    0

    0.5

    ARPES data:

    A. Varykhalov et al., Phys. Rev. Lett. 101, 157601 (2008).

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 14.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Bi2Te3 : band-structure parameters from ARPES data (+, ., DOS)

    BCB: bulk conduction band, BVB: bulk valance band

    0 0.05 0.1 0.150

    100

    200

    300

    k [A−1]

    E [m

    eV]

    0 0.05 0.1 0.150

    100

    200

    300

    k [A−1]

    E [m

    eV]

    0 100 3000

    150

    300

    E [meV]

    ρ 0 [m

    eV−

    1 µm

    −2 ]

    0 100 3000

    200

    400

    600

    E [meV]

    ρ 0 [m

    eV−

    1 µm

    −2 ]

    a) b)

    c) d)

    BVB

    BCB

    BVB

    BCB

    BVB

    BCB

    BVB

    BCB

    theory ↔ ARPES

    solid ↔ E(ΓM)

    dashed ↔ E(ΓK)

    Density of states

    (only theory shown)

    v0 = 2.55 eVÅ, λ = 250 eVÅ3,

    12m∗ = 0, α = 0

    v0 = 3.5 eVÅ, λ = 150 eVÅ3,

    α = 21 Å2, γ = −19.5 eVÅ2

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 15.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Fourier analysis of oscillating functions

    −30 −20 −10 0 10 20 30 40 50−1

    −0.5

    0

    0.5

    1x

    maxx

    min2x

    max

    x

    f 2(x

    )

    ➠ The Fourier transform of the symmetrized function are real.

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 16.

  • Electronic standing waves on the surface of the topological insulator Bi2Te3 Peter Rakyta

    Electronic standing waves around line defect ⊥ ΓK (E = 330 meV)

    50 100 150 200 250−1.5

    −1

    −0.5

    0

    0.5

    1

    y [A]

    δρ [1

    0−4 ρ

    0]

    knestΓ K

    k

    FT

    −0.2 −0.1 0 0.1 0.2−0.2

    −0.1

    0

    0.1

    0.2

    2kΓ K

    knestΓ K

    k [A−1]q

    [A−

    1 ]

    a) b)

    f1(x) = A2 sin(2kfitx+ ϕ)x−1/2

    ➠ Power-like decay recovered with nesting vector kΓKnest

    Electronic standing waves on the surface of the topological insulator Bi2Te3 slide 17.

    Experimental background of electronic standing waves on a crystal surfaceThree-dimensional topological insulator: Bi2Te3 Asymptotic theory of electronic standing wavesAsymptotic theory of electronic standing wavesAsymptotic theory of electronic standing wavesAsymptotic theory of electronic standing wavesElectronic standing waves on the surface of Bi2Te3 crystalExact solution of the scattering problemPre-asymtotic contribution to the oscillations (E=330 meV)Pre-asymtotic contribution to the oscillationsExponential decay of the oscilaltionsConclusionsThree-dimensional topological insulator: Bi2Te3 Bi2Te3 : band-structure parameters from ARPES data (+, ., DOS)Fourier analysis of oscillating functionsElectronic standing waves around line defect K (E=330 meV)