Electron paramagnetic resonance (EPR) study of solid solutions of MoO 3 in SbVO 5

17
Electron paramagnetic resonance (EPR) study of solid solutions of MoO 3 in SbVO 5 Janusz Typek Institute of Physics West Pomeranian University of Technology Szczecin, Poland

description

Electron paramagnetic resonance (EPR) study of solid solutions of MoO 3 in SbVO 5. Janusz Typek Institute of Physics West Pomeranian University of Technology Szczecin, Poland. Outline. The aim of th is work Preparation and characterisation of samples - PowerPoint PPT Presentation

Transcript of Electron paramagnetic resonance (EPR) study of solid solutions of MoO 3 in SbVO 5

Page 1: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

Electron paramagnetic resonance (EPR) study of solid solutions of MoO3 in SbVO5

Janusz TypekInstitute of Physics

West Pomeranian University of TechnologySzczecin Poland

Outline

bull The aim of this work

bull Preparation and characterisation of samples

bull Results of the EPR study ndash magnetic defects

bull Conclusions

The aim of the work

Why to study these materials

bull They are used widely as catalysts

What are the oxidation states of ionsbull Only assumed on general grounds

What is the structure of the defect centres bull Not known

Components concentration triangle

0 20 40 60 80 100

0

20

40

60

80

1000

20

40

60

80

100

MoO

3 m

ol

Sb 2

O 4

mol

V2O

5 mol

V2O

5Sb

2O

4

MoO3

SbVO5 MoO3

SbVO5

Preparation of samples

Samples of SbVO5 were produced by

heating in air equimolar mixture of V2O5 with α-Sb2O4 in the following

stages

bull stage I 550ordmCrarr600ordmC (48h)

bull stage II 600ordmCrarr600ordmC (48h)

bull stage III 600ordmCrarr620ordmC (24h)

bull stage IV 620ordmCrarr650ordmC (48h)

bull stage V 650ordmCrarr650ordmC (48h)

Samples of MoO3 solid solutions in SbVO5

were made by homogenization of the reagents in suitable proportions by grinding shaped into pastilles and then heated in the following stages

bull stage I 400ordmC (1h)rarr500ordmC (24h)rarr 500ordmC (24h)

bull stage II 600ordmC (48h)

bull stage III 630ordmC (24h)

bull stage IV 645ordmC (24h)

V2O5+Sb2O4+12 O2rarr2 SbVO5 V2O5+Sb2O4+MoO3

Investigated samples

General formulae of the solid solutionsSb1-6x xV1-6xxMo10xO5

Composition of initial mixtures [mol]

Formulae index

xMoO3 V2O5 Sb2O4

500 4750 4750 00051

750 4625 4625 00077

1000 4500 4500 00104

1250 4375 4375 00132

1500 4250 4250 00159

1750 4125 4125 00188

The matrix SbVO5

Scanning Electron Microscope (SEM) picture

Thickness ~05 μm

Length ~3divide10 μm

The SbVO5 matrix crystal structure

Monoclinica=986 Aring b=493 Aring c=712 Aring

β=10979deg Z=4

From IR study it follows that

SbO6 octahedra VO6 deformed octahedra Separate layers

Solid solution SbVO5MoO3

SEM picture of SbVO5MoO3 (15mol)

More deformed smaller sizes

SbVO5MoO3 - Charge compensation

V5+O6

V5+O6

Sb5+O6

Sb5+O6

Mo6+

Mo6+

Mo6+ Mo6+

Mo6+ Mo6+

Preferred model of charge compensation based on TG bull V5+ and Sb5+ vacancies bull substitution of Mo6+ at V5+ and Sb5+ sites

EPR paramagnetic centers

VanadiumV5+ (3p6) nominal nonmagneticV4+ (3d1) defect magnetic S=12AntimonySb5+ (4d10) nominal nonmagneticSb4+ (5s1) defect magnetic S=12MolybdenumMo6+ (4p6) nominal nonmagneticMo5+ (4d1) defect magnetic S=12

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 2: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

Outline

bull The aim of this work

bull Preparation and characterisation of samples

bull Results of the EPR study ndash magnetic defects

bull Conclusions

The aim of the work

Why to study these materials

bull They are used widely as catalysts

What are the oxidation states of ionsbull Only assumed on general grounds

What is the structure of the defect centres bull Not known

Components concentration triangle

0 20 40 60 80 100

0

20

40

60

80

1000

20

40

60

80

100

MoO

3 m

ol

Sb 2

O 4

mol

V2O

5 mol

V2O

5Sb

2O

4

MoO3

SbVO5 MoO3

SbVO5

Preparation of samples

Samples of SbVO5 were produced by

heating in air equimolar mixture of V2O5 with α-Sb2O4 in the following

stages

bull stage I 550ordmCrarr600ordmC (48h)

bull stage II 600ordmCrarr600ordmC (48h)

bull stage III 600ordmCrarr620ordmC (24h)

bull stage IV 620ordmCrarr650ordmC (48h)

bull stage V 650ordmCrarr650ordmC (48h)

Samples of MoO3 solid solutions in SbVO5

were made by homogenization of the reagents in suitable proportions by grinding shaped into pastilles and then heated in the following stages

bull stage I 400ordmC (1h)rarr500ordmC (24h)rarr 500ordmC (24h)

bull stage II 600ordmC (48h)

bull stage III 630ordmC (24h)

bull stage IV 645ordmC (24h)

V2O5+Sb2O4+12 O2rarr2 SbVO5 V2O5+Sb2O4+MoO3

Investigated samples

General formulae of the solid solutionsSb1-6x xV1-6xxMo10xO5

Composition of initial mixtures [mol]

Formulae index

xMoO3 V2O5 Sb2O4

500 4750 4750 00051

750 4625 4625 00077

1000 4500 4500 00104

1250 4375 4375 00132

1500 4250 4250 00159

1750 4125 4125 00188

The matrix SbVO5

Scanning Electron Microscope (SEM) picture

Thickness ~05 μm

Length ~3divide10 μm

The SbVO5 matrix crystal structure

Monoclinica=986 Aring b=493 Aring c=712 Aring

β=10979deg Z=4

From IR study it follows that

SbO6 octahedra VO6 deformed octahedra Separate layers

Solid solution SbVO5MoO3

SEM picture of SbVO5MoO3 (15mol)

More deformed smaller sizes

SbVO5MoO3 - Charge compensation

V5+O6

V5+O6

Sb5+O6

Sb5+O6

Mo6+

Mo6+

Mo6+ Mo6+

Mo6+ Mo6+

Preferred model of charge compensation based on TG bull V5+ and Sb5+ vacancies bull substitution of Mo6+ at V5+ and Sb5+ sites

EPR paramagnetic centers

VanadiumV5+ (3p6) nominal nonmagneticV4+ (3d1) defect magnetic S=12AntimonySb5+ (4d10) nominal nonmagneticSb4+ (5s1) defect magnetic S=12MolybdenumMo6+ (4p6) nominal nonmagneticMo5+ (4d1) defect magnetic S=12

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 3: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

The aim of the work

Why to study these materials

bull They are used widely as catalysts

What are the oxidation states of ionsbull Only assumed on general grounds

What is the structure of the defect centres bull Not known

Components concentration triangle

0 20 40 60 80 100

0

20

40

60

80

1000

20

40

60

80

100

MoO

3 m

ol

Sb 2

O 4

mol

V2O

5 mol

V2O

5Sb

2O

4

MoO3

SbVO5 MoO3

SbVO5

Preparation of samples

Samples of SbVO5 were produced by

heating in air equimolar mixture of V2O5 with α-Sb2O4 in the following

stages

bull stage I 550ordmCrarr600ordmC (48h)

bull stage II 600ordmCrarr600ordmC (48h)

bull stage III 600ordmCrarr620ordmC (24h)

bull stage IV 620ordmCrarr650ordmC (48h)

bull stage V 650ordmCrarr650ordmC (48h)

Samples of MoO3 solid solutions in SbVO5

were made by homogenization of the reagents in suitable proportions by grinding shaped into pastilles and then heated in the following stages

bull stage I 400ordmC (1h)rarr500ordmC (24h)rarr 500ordmC (24h)

bull stage II 600ordmC (48h)

bull stage III 630ordmC (24h)

bull stage IV 645ordmC (24h)

V2O5+Sb2O4+12 O2rarr2 SbVO5 V2O5+Sb2O4+MoO3

Investigated samples

General formulae of the solid solutionsSb1-6x xV1-6xxMo10xO5

Composition of initial mixtures [mol]

Formulae index

xMoO3 V2O5 Sb2O4

500 4750 4750 00051

750 4625 4625 00077

1000 4500 4500 00104

1250 4375 4375 00132

1500 4250 4250 00159

1750 4125 4125 00188

The matrix SbVO5

Scanning Electron Microscope (SEM) picture

Thickness ~05 μm

Length ~3divide10 μm

The SbVO5 matrix crystal structure

Monoclinica=986 Aring b=493 Aring c=712 Aring

β=10979deg Z=4

From IR study it follows that

SbO6 octahedra VO6 deformed octahedra Separate layers

Solid solution SbVO5MoO3

SEM picture of SbVO5MoO3 (15mol)

More deformed smaller sizes

SbVO5MoO3 - Charge compensation

V5+O6

V5+O6

Sb5+O6

Sb5+O6

Mo6+

Mo6+

Mo6+ Mo6+

Mo6+ Mo6+

Preferred model of charge compensation based on TG bull V5+ and Sb5+ vacancies bull substitution of Mo6+ at V5+ and Sb5+ sites

EPR paramagnetic centers

VanadiumV5+ (3p6) nominal nonmagneticV4+ (3d1) defect magnetic S=12AntimonySb5+ (4d10) nominal nonmagneticSb4+ (5s1) defect magnetic S=12MolybdenumMo6+ (4p6) nominal nonmagneticMo5+ (4d1) defect magnetic S=12

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 4: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

Components concentration triangle

0 20 40 60 80 100

0

20

40

60

80

1000

20

40

60

80

100

MoO

3 m

ol

Sb 2

O 4

mol

V2O

5 mol

V2O

5Sb

2O

4

MoO3

SbVO5 MoO3

SbVO5

Preparation of samples

Samples of SbVO5 were produced by

heating in air equimolar mixture of V2O5 with α-Sb2O4 in the following

stages

bull stage I 550ordmCrarr600ordmC (48h)

bull stage II 600ordmCrarr600ordmC (48h)

bull stage III 600ordmCrarr620ordmC (24h)

bull stage IV 620ordmCrarr650ordmC (48h)

bull stage V 650ordmCrarr650ordmC (48h)

Samples of MoO3 solid solutions in SbVO5

were made by homogenization of the reagents in suitable proportions by grinding shaped into pastilles and then heated in the following stages

bull stage I 400ordmC (1h)rarr500ordmC (24h)rarr 500ordmC (24h)

bull stage II 600ordmC (48h)

bull stage III 630ordmC (24h)

bull stage IV 645ordmC (24h)

V2O5+Sb2O4+12 O2rarr2 SbVO5 V2O5+Sb2O4+MoO3

Investigated samples

General formulae of the solid solutionsSb1-6x xV1-6xxMo10xO5

Composition of initial mixtures [mol]

Formulae index

xMoO3 V2O5 Sb2O4

500 4750 4750 00051

750 4625 4625 00077

1000 4500 4500 00104

1250 4375 4375 00132

1500 4250 4250 00159

1750 4125 4125 00188

The matrix SbVO5

Scanning Electron Microscope (SEM) picture

Thickness ~05 μm

Length ~3divide10 μm

The SbVO5 matrix crystal structure

Monoclinica=986 Aring b=493 Aring c=712 Aring

β=10979deg Z=4

From IR study it follows that

SbO6 octahedra VO6 deformed octahedra Separate layers

Solid solution SbVO5MoO3

SEM picture of SbVO5MoO3 (15mol)

More deformed smaller sizes

SbVO5MoO3 - Charge compensation

V5+O6

V5+O6

Sb5+O6

Sb5+O6

Mo6+

Mo6+

Mo6+ Mo6+

Mo6+ Mo6+

Preferred model of charge compensation based on TG bull V5+ and Sb5+ vacancies bull substitution of Mo6+ at V5+ and Sb5+ sites

EPR paramagnetic centers

VanadiumV5+ (3p6) nominal nonmagneticV4+ (3d1) defect magnetic S=12AntimonySb5+ (4d10) nominal nonmagneticSb4+ (5s1) defect magnetic S=12MolybdenumMo6+ (4p6) nominal nonmagneticMo5+ (4d1) defect magnetic S=12

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 5: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

Preparation of samples

Samples of SbVO5 were produced by

heating in air equimolar mixture of V2O5 with α-Sb2O4 in the following

stages

bull stage I 550ordmCrarr600ordmC (48h)

bull stage II 600ordmCrarr600ordmC (48h)

bull stage III 600ordmCrarr620ordmC (24h)

bull stage IV 620ordmCrarr650ordmC (48h)

bull stage V 650ordmCrarr650ordmC (48h)

Samples of MoO3 solid solutions in SbVO5

were made by homogenization of the reagents in suitable proportions by grinding shaped into pastilles and then heated in the following stages

bull stage I 400ordmC (1h)rarr500ordmC (24h)rarr 500ordmC (24h)

bull stage II 600ordmC (48h)

bull stage III 630ordmC (24h)

bull stage IV 645ordmC (24h)

V2O5+Sb2O4+12 O2rarr2 SbVO5 V2O5+Sb2O4+MoO3

Investigated samples

General formulae of the solid solutionsSb1-6x xV1-6xxMo10xO5

Composition of initial mixtures [mol]

Formulae index

xMoO3 V2O5 Sb2O4

500 4750 4750 00051

750 4625 4625 00077

1000 4500 4500 00104

1250 4375 4375 00132

1500 4250 4250 00159

1750 4125 4125 00188

The matrix SbVO5

Scanning Electron Microscope (SEM) picture

Thickness ~05 μm

Length ~3divide10 μm

The SbVO5 matrix crystal structure

Monoclinica=986 Aring b=493 Aring c=712 Aring

β=10979deg Z=4

From IR study it follows that

SbO6 octahedra VO6 deformed octahedra Separate layers

Solid solution SbVO5MoO3

SEM picture of SbVO5MoO3 (15mol)

More deformed smaller sizes

SbVO5MoO3 - Charge compensation

V5+O6

V5+O6

Sb5+O6

Sb5+O6

Mo6+

Mo6+

Mo6+ Mo6+

Mo6+ Mo6+

Preferred model of charge compensation based on TG bull V5+ and Sb5+ vacancies bull substitution of Mo6+ at V5+ and Sb5+ sites

EPR paramagnetic centers

VanadiumV5+ (3p6) nominal nonmagneticV4+ (3d1) defect magnetic S=12AntimonySb5+ (4d10) nominal nonmagneticSb4+ (5s1) defect magnetic S=12MolybdenumMo6+ (4p6) nominal nonmagneticMo5+ (4d1) defect magnetic S=12

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 6: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

Investigated samples

General formulae of the solid solutionsSb1-6x xV1-6xxMo10xO5

Composition of initial mixtures [mol]

Formulae index

xMoO3 V2O5 Sb2O4

500 4750 4750 00051

750 4625 4625 00077

1000 4500 4500 00104

1250 4375 4375 00132

1500 4250 4250 00159

1750 4125 4125 00188

The matrix SbVO5

Scanning Electron Microscope (SEM) picture

Thickness ~05 μm

Length ~3divide10 μm

The SbVO5 matrix crystal structure

Monoclinica=986 Aring b=493 Aring c=712 Aring

β=10979deg Z=4

From IR study it follows that

SbO6 octahedra VO6 deformed octahedra Separate layers

Solid solution SbVO5MoO3

SEM picture of SbVO5MoO3 (15mol)

More deformed smaller sizes

SbVO5MoO3 - Charge compensation

V5+O6

V5+O6

Sb5+O6

Sb5+O6

Mo6+

Mo6+

Mo6+ Mo6+

Mo6+ Mo6+

Preferred model of charge compensation based on TG bull V5+ and Sb5+ vacancies bull substitution of Mo6+ at V5+ and Sb5+ sites

EPR paramagnetic centers

VanadiumV5+ (3p6) nominal nonmagneticV4+ (3d1) defect magnetic S=12AntimonySb5+ (4d10) nominal nonmagneticSb4+ (5s1) defect magnetic S=12MolybdenumMo6+ (4p6) nominal nonmagneticMo5+ (4d1) defect magnetic S=12

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 7: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

The matrix SbVO5

Scanning Electron Microscope (SEM) picture

Thickness ~05 μm

Length ~3divide10 μm

The SbVO5 matrix crystal structure

Monoclinica=986 Aring b=493 Aring c=712 Aring

β=10979deg Z=4

From IR study it follows that

SbO6 octahedra VO6 deformed octahedra Separate layers

Solid solution SbVO5MoO3

SEM picture of SbVO5MoO3 (15mol)

More deformed smaller sizes

SbVO5MoO3 - Charge compensation

V5+O6

V5+O6

Sb5+O6

Sb5+O6

Mo6+

Mo6+

Mo6+ Mo6+

Mo6+ Mo6+

Preferred model of charge compensation based on TG bull V5+ and Sb5+ vacancies bull substitution of Mo6+ at V5+ and Sb5+ sites

EPR paramagnetic centers

VanadiumV5+ (3p6) nominal nonmagneticV4+ (3d1) defect magnetic S=12AntimonySb5+ (4d10) nominal nonmagneticSb4+ (5s1) defect magnetic S=12MolybdenumMo6+ (4p6) nominal nonmagneticMo5+ (4d1) defect magnetic S=12

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 8: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

The SbVO5 matrix crystal structure

Monoclinica=986 Aring b=493 Aring c=712 Aring

β=10979deg Z=4

From IR study it follows that

SbO6 octahedra VO6 deformed octahedra Separate layers

Solid solution SbVO5MoO3

SEM picture of SbVO5MoO3 (15mol)

More deformed smaller sizes

SbVO5MoO3 - Charge compensation

V5+O6

V5+O6

Sb5+O6

Sb5+O6

Mo6+

Mo6+

Mo6+ Mo6+

Mo6+ Mo6+

Preferred model of charge compensation based on TG bull V5+ and Sb5+ vacancies bull substitution of Mo6+ at V5+ and Sb5+ sites

EPR paramagnetic centers

VanadiumV5+ (3p6) nominal nonmagneticV4+ (3d1) defect magnetic S=12AntimonySb5+ (4d10) nominal nonmagneticSb4+ (5s1) defect magnetic S=12MolybdenumMo6+ (4p6) nominal nonmagneticMo5+ (4d1) defect magnetic S=12

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 9: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

Solid solution SbVO5MoO3

SEM picture of SbVO5MoO3 (15mol)

More deformed smaller sizes

SbVO5MoO3 - Charge compensation

V5+O6

V5+O6

Sb5+O6

Sb5+O6

Mo6+

Mo6+

Mo6+ Mo6+

Mo6+ Mo6+

Preferred model of charge compensation based on TG bull V5+ and Sb5+ vacancies bull substitution of Mo6+ at V5+ and Sb5+ sites

EPR paramagnetic centers

VanadiumV5+ (3p6) nominal nonmagneticV4+ (3d1) defect magnetic S=12AntimonySb5+ (4d10) nominal nonmagneticSb4+ (5s1) defect magnetic S=12MolybdenumMo6+ (4p6) nominal nonmagneticMo5+ (4d1) defect magnetic S=12

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 10: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

SbVO5MoO3 - Charge compensation

V5+O6

V5+O6

Sb5+O6

Sb5+O6

Mo6+

Mo6+

Mo6+ Mo6+

Mo6+ Mo6+

Preferred model of charge compensation based on TG bull V5+ and Sb5+ vacancies bull substitution of Mo6+ at V5+ and Sb5+ sites

EPR paramagnetic centers

VanadiumV5+ (3p6) nominal nonmagneticV4+ (3d1) defect magnetic S=12AntimonySb5+ (4d10) nominal nonmagneticSb4+ (5s1) defect magnetic S=12MolybdenumMo6+ (4p6) nominal nonmagneticMo5+ (4d1) defect magnetic S=12

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 11: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

EPR paramagnetic centers

VanadiumV5+ (3p6) nominal nonmagneticV4+ (3d1) defect magnetic S=12AntimonySb5+ (4d10) nominal nonmagneticSb4+ (5s1) defect magnetic S=12MolybdenumMo6+ (4p6) nominal nonmagneticMo5+ (4d1) defect magnetic S=12

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 12: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

250 300 350 400 450-8

-6

-4

-2

0

2

4

6

8

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

118 K146 K187 K229 K293 K37 K43 K50 K60 K72 K

The SbVO5 matrix EPR

100 200 300 400 500 600

-2

-1

0

1

2

3

Ab

sorp

tion

de

riva

tive

[a

rb

un

its]

Magnetic fie ld [mT]

T=365 K

D=1910-4 cm-1

bull Only 002 of all vanadium ions are EPR active (V4+)

bull There are separate V4+ (showing 8 hfs narrow lines) and involved in a V4+ndashOndashV5+ bond with mobile electron hopping (broad line)

bull Separate V4+ in SbVO5 exist as VO2+ ions in octahedral coordination with a tetragonal compressionbull There are also pairs of two interacting VO2+ with a singlet S=0 (ground state) and a triplet S=1 state (excited state)

0 20 40 60 80 1000 0

0 2

0 4

0 6

0 8

1 0

(Int

egra

ted

EP

R in

tens

ity)

-1 [a

rb u

nits

]

T e m p e ra t u re [K ]

TCW=8 K

I(T)=C(T-TCW)

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 13: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

0

2

4

6

8

10

12

14

16

150 200 250 300 350 400

EP

R a

bsor

ptio

n [a

u]

Magnetic field [mT]

1

2

3

4

56

2000 3000 4000

-400

-200

0

200

400

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-300

-200

-100

0

100

200

300

400

500

2000 3000 4000

-400

-200

0

200

400

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

-400

-200

0

200

400

2000 2400 2800 3200 3600 4000 4400

-400

-200

0

200

400

1

2

3

4

EP

R s

ign

al i

nte

nsi

ty [a

u]

Magnetic field [G]

56

EPR solid solution SbVO5MoO3

bull No hfs lines visible ndash all V4+ ions strongly coupled to the magnetic spin systembull The intensity of EPR spectra increases with the Mo6+ contents ndash only cation vacancy compensation model could not be used

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 14: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

45

50

55

60

65

70

06 08 10 12 14 16 18 20 22 24 26 28

30

32

34

36

38

EP

R in

teg

rate

d

inte

nsi

ty [a

u]

EP

R li

ne

wid

th [m

T]

Concentration of Mo [mole]

EPR solid solution SbVO5MoO3

05 10 15 20 25 30

15

20

25

30

35

Fra

ctio

n o

f Mo

ion

s ca

usi

ng

va

len

ce r

ed

uct

ion

[]

Concentration of Mo ions [ mole]

bull No linear dependence of V4+ content on amount of Mo6+ ionsbull The EPR linewidth decreases with Mo6+ content (exchange interaction narrowing)bull The fraction of Mo6+ ions involved in V5+rarrV4+ compensation decreases with Mo6+

increase

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 15: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

Solid solution possible centres

Possible paramagnetic Mo6+-V4+ centres involving one V4+ ion

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 16: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

Solid solution possible centres

Possible paramagnetic centres involving more than one V4+ ion (equatorial view)

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
Page 17: Electron paramagnetic resonance (EPR) study of solid solutions  of MoO 3  in SbVO 5

Conclusions

bull At least one third of Mo6+ ions are involved in charge compensation through changing the oxidation state of cations

bull Compensation mechanism through cation vacancy is more efficient for larger concentrations of Mo6+ ions

bull V4+ ions are strongly coupled to the rest of spin system ndash no distant charge compensation

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17