Electrocatalysis: catalysis of redoxreactions

39
Electrocatalysis: catalysis of redox reactions Marc Koper Leiden University (NL) Summerschool Norderney 21-26 July 2013

Transcript of Electrocatalysis: catalysis of redoxreactions

Page 1: Electrocatalysis: catalysis of redoxreactions

Electrocatalysis:catalysis of redox reactions

Marc Koper

Leiden University (NL)

Summerschool Norderney21-26 July 2013

Page 2: Electrocatalysis: catalysis of redoxreactions

Redox reactions

e-

Ox

Red

Ox + e- � Red

electrode electrolyte

Page 3: Electrocatalysis: catalysis of redoxreactions

Redox reactions of water

E (vs.RHE)

currentdensity

0 1.23

2 H+ + 2 e-→ H2

H2 → 2 H+ + 2 e-diffusion-limitedcurrent

2 H2O → O2 + 4 H+ + 4 e-

O2 + 4 H+ + 4 e- → 2 H2O

diffusion-limitedcurrent

PtNilaccase

RuO2

PSIIplatinumhydrogenase

overpotential

M.T.M.Koper, H.A.Heering, in “Fuel Cell Science”, Eds. A.Wieckowski, J.K.Nørskov, Wiley (2010), p.71-110

Page 4: Electrocatalysis: catalysis of redoxreactions

Catalysis of multi-step reactions

Practically every (interesting) chemical reaction happens in a series of steps;

catalysis is about optimizing that sequence

1 e- / 1 step / 0 intermediate

2 e- / 2 steps / 1 intermediate

>2 e- / >2 steps / >1 intermediate

Page 5: Electrocatalysis: catalysis of redoxreactions

Single electron transfer

• Marcus Theory

• Activation energy determined by solvent reorganization energy λ(a difficult quantity to calculate accurately)

• Marcus Theory does not account for bond breaking, proton transfer, or catalysis.

C.Hartnig, M.T.M.Koper, J.Am.Chem.Soc. 125 (2003) 9840

Page 6: Electrocatalysis: catalysis of redoxreactions

Two electron transfer

2 H+ + 2 e- � H2

H+ + e- � Hads (Volmer)

Hads + H+ + e-� H2 (Heyrovsky)

H+ + e- Hads H2freeenergy

Page 7: Electrocatalysis: catalysis of redoxreactions

Thermodynamics

2 H+ + 2 e- � H2 E0 = 0 V

H+ + e- � Hads E10 = - ∆Gads(H)/e0

Hads + H+ + e-� H2 E2

0 = ∆Gads(H)/e0

Thermodynamic restriction: (E10 + E2

0)/2 = E0

Page 8: Electrocatalysis: catalysis of redoxreactions

Thermodynamic volcano plot

R.Parsons,Trans.Faraday Soc. (1958); H.Gerischer (1958)J.K.Nørskov et al., J.Electrochem.Soc. (2004)

M.T.M.Koper, H.A.Heering, In Fuel Science Science

M.T.M.Koper, E.Bouwman, Angew.Chem.Int.Ed. (2010)

zero thermodynamic overpotential

0

0

∆Gads(H)

Potential of thermodynamicallyleast favorable reaction

H+ + e- ���� HadsH+ + Hads + e- ���� H2

Page 9: Electrocatalysis: catalysis of redoxreactions

Experimental volcano for H2 evolution

J.Greeley, J.K.Nørskov, L.A.Kibler, A.M.El-Aziz, D.M.Kolb, ChemPhysChem 7 (2006) 1032

H binding energy= ca. 220 kJ/mol

Page 10: Electrocatalysis: catalysis of redoxreactions

More than 2 electron transfers

O2 + 4 H+ + 4 e- � 2 H2O E0 = 1.23 V

O2 + H+ + e- � OOHads E1

0

OOHads� Oads + OHads ∆G

Oads + H+ + e- � OHads E2

0

OHads + H+ + e- � H2O E3

0

Page 11: Electrocatalysis: catalysis of redoxreactions

The optimal catalyst

ΔG(OHads) = CO = 1.23 eV

ΔG(Oads) = 2 × CO = 2.46 eV

ΔG(OOHads) = 3 × CO = 3.69 eV

ΔG(O2) = 4 × CO = 4.92 eV

Independent of the mechanism

Page 12: Electrocatalysis: catalysis of redoxreactions

However: scaling relationships

F.Abild-Petersen, J.Greeley, F.Studt, P.G.Moses, J.Rossmeisl, T.Munter, T.Bligaard, J.K. Nørskov,

Phys.Rev.Lett. 99 (2007) 016105

For (111) metal surfaces

F.Calle-Vallejo, J.I.Martinez, J.M.Garcia-Lastra, J.Rossmeisl, M.T.M.Koper, Phys.Rev.Lett. 108 (2012) 116103

Page 13: Electrocatalysis: catalysis of redoxreactions

The optimal scaling relations

ΔG(OHads) (≈ 0.50×ΔG(Oads) + 0.05 eV)

= 0.5×ΔG(Oads) + KOHΔG(OOHads) (≈ 0.53×ΔG(Oads) + 3.18 eV)

= 0.5×ΔG(Oads) + KOOH

KOH = 0 eV

KOOH = 2.46 eV

Page 14: Electrocatalysis: catalysis of redoxreactions

The optimal volcano

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0-0.5

0.0

0.5

1.0

1.5

2.0

2.5

O2+ H

++ e

- = OOH

adsoptimal

E0 / V

∆G(Oads) / eV

1.23

optimalOH

ads+ H

++ e

- = H

2O optimal catalyst

sub-optimal catalyst

Page 15: Electrocatalysis: catalysis of redoxreactions

Does optimal scaling exist?

Metals:

ΔG(OHads) ≈ 0.50×ΔG(Oads) + 0.05 eV

ΔG(OOHads) ≈ 0.53×ΔG(Oads) + 3.18 eV

Oxides:

ΔG(OHads) ≈ 0.61×ΔG(Oads) - 0.90 eV

ΔG(OOHads) ≈ 0.64×ΔG(Oads) + 2.03 eV

KOOH – KOH = 3.13 eV, 2.93 eV; Optimal = 2.46 eV

M.T.M.Koper, J.Electroanal.Chem. 660 (2011) 254

Page 16: Electrocatalysis: catalysis of redoxreactions

“Fundamental” overpotential?

ηT (ORR,OER) =KOOH – KOH – 2.46 eV

2 e

~ 3.15 eV

= ~ 0.35 V

One does not even need to know the catalyst-oxygen interaction…

∆G[HO2(aq)] - ∆G[OH (aq)] = 3.4 eV

I.Man, J.Rossmeisl et al., ChemCatChem 3 (2011) 1159M.T.M.Koper, J.Electroanal.Chem. 660 (2011) 254; Chem.Sci. 4 (2013) 2710

Page 17: Electrocatalysis: catalysis of redoxreactions

Proton-coupled electron transfer

2 H+ + 2 e- � H2

O2 + 4 H+ + 4 e- � 2 H2O

CO2 + 6 H+ + 6 e- � CH3OH + H2O

• Are proton and electron transfer always coupled?

• How does (de-)coupled proton-electron transfer manifest?

Page 18: Electrocatalysis: catalysis of redoxreactions

Proton-coupled electron transfer

S. Hammes-Schiffer, A.A.Stuchebrukhov, Chem.Rev.110 (2010) 6939

solvent coordinatecoupled to ET

solvent coordinatecoupled to PT

AH+

A

AH

A-

Page 19: Electrocatalysis: catalysis of redoxreactions

Hamiltonian of PCET

j.Grimminger, S.Bartenschlager, W.Schmickler, Chem.Phys.Lett. 416 (2005) 316 M.T.M.Koper, Phys.Chem.Chem.Phys. 15 (2013) 1399

( )

2

22

12

*

2122,11,

*

222

),(

nnqqqqqq

ccVccVnnccVccVnnqqH

Appeepeppee

ptptpp

k

kAkAkkk

k

kAApe

βλλλλλ

εεεε

+−−−++

+++++++= ++++∑∑

Electron affinity + solvation energy

-

Proton affinity = pKa(AH+)

Page 20: Electrocatalysis: catalysis of redoxreactions

Proton-coupled electron transfer

A + 2H+ + 2e- A- + 2H+ + e-ETET

CPET PTPT

A2- + 2H+

AH+ + H+ + 2e- AH + H+ + e-

PT

PT

AH22+ + 2e-

CPETCPET

CPET

AH- + H+

PT PT

AH2+ + e- AH2

ET ET

ET ET

M.T.M.Koper, Phys.Chem.Chem.Phys. 15 (2013) 1399M.T.M.Koper, Chem.Sci. 4 (2013) 2710

Page 21: Electrocatalysis: catalysis of redoxreactions

When PT and ET decouple

• PT and ET are concerted if off-diagonal states are energetically unfavorable. Reaction rate is independent of pH on the RHE potential scale.

• For a reduction reaction, ET happens first if the intermediate has a high electron affinity.

• For an oxidation reaction, PT happens first if the intermediate has a low proton affinity.

• If PT and ET decouple, the reaction rate becomes pH dependent on the RHE potential scale. Optimal activity is at pH=pKa

M.T.M.Koper, Phys.Chem.Chem.Phys. 15 (2013) 1399M.T.M.Koper, Chem.Sci. 4 (2013) 2710

Page 22: Electrocatalysis: catalysis of redoxreactions

Formic acid oxidation on Pt

J.Joo, T.Uchida, A.Cuesta, M.T.M.Koper, M.Osawa, J.Am.Chem.Soc. 135 (2013) 9991

Formic acid oxidation prefers intermediate pH

pKa

Page 23: Electrocatalysis: catalysis of redoxreactions

Oxidation of poly-ols

R-OHα

� Hβ

R-O- + Hα

+

“sugar alcohols”, poly-ols mono-ols

Y.Kwon, S.C.S.Lai, P.Rodriguez, M.T.M.Koper, J.Am.Chem.Soc. 133 (2011) 6914

Page 24: Electrocatalysis: catalysis of redoxreactions

Hammond relationship

Y.Kwon, S.C.S.Lai, P.Rodriguez, M.T.M.Koper, J.Am.Chem.Soc. 133 (2011) 6914

Page 25: Electrocatalysis: catalysis of redoxreactions

More detailed mechanism

Overall: R-CHHβ-OHα → R-CH=O + Hα+ + Hβ

+ + 2 e-

1. First proton: R-CHHβ-OHα + OH- → R-CHHβ-O

- + H2O

“base catalyzed”

2. OH adsorption on gold:

OH- + * ⇌ OHδ-ads + (1-δ) e

-

COads favors OHads formation

3. Second proton:

R-CHHβ-O- + OHads →

R-CH=O + HαOHβ + e-

gold catalyzed

P.Rodriguez, Y.Kwon, M.T.M.Koper, Nature Chem. 4 (2012) 177

Page 26: Electrocatalysis: catalysis of redoxreactions

CPET in oxygen reduction on Pt

-0.6 -0.3 0.0 0.3 0.6 0.9

-6

-4

-2

0

0.0 0.2 0.4 0.6 0.8 1.0

-6

-4

-2

0

E / V vs SHE

a

b

j / m

A c

m-2

E / V vs RHE

0.1 M HClO4

35 mM HClO4

7 mM HClO4

20 mM NaOH

0.1 M NaOH

The ORR rate on Pt is independent of pH on the RHE scale.

Concerted proton-electron transfer.

M.F.Li, L.W.Liao, D.F.Yuan, D.Mei, Y.-X.Chen, Electrochim.Acta (2013), in press

Page 27: Electrocatalysis: catalysis of redoxreactions

Decoupled PCET in ORR on Au

0.0 0.3 0.6 0.9 1.2

-1.2

-0.9

-0.6

-0.3

0.0

1 mM HClO4+NaClO4

10 mM HClO4+NaClO4

100 mM HClO4

0.5 mM NaOH +NaClO4

2 mM NaOH +NaClO4

10 mM NaOH +NaClO4

100 mM NaOH +NaClO4

b

i / uA

E / V vs RHE

-0.8 -0.4 0.0 0.4 0.8 1.2

-1.2

-0.9

-0.6

-0.3

0.0

a

E / V vs SHE

The ORR rate on Au is dependent of pH on the RHE scale.

Decoupled proton-electron transfer.

Q.J.Chen, Y.L.Zheng, L.W.Liao, J.Kang, Y.-X.Chen, Scientia Sinica Chimica 41 (2011) 1777

Page 28: Electrocatalysis: catalysis of redoxreactions

Mechanism of ORR

O2

H2O2

O2(ads)

O2H(ads)OOHads

OHads + OH 2 OH

H2O

Oads + OH

ET

ET

ET ET

PT

PT

PT

CPET

CPET CPET

CPET

CPET

CPET

DIS

Oads + OHads

CPET

DIS

Pt

Au, Hg, Ag, C, [Au(100)]

M.T.M.Koper, Chem.Sci. 4 (2013) 2710

Page 29: Electrocatalysis: catalysis of redoxreactions

Pt

Rh

HNO3

NO3-

pH dependence of nitrate reduction

J.Yang, P.Pascual, M.Duca, M.T.M.Koper, submitted

pKa[HNO3] = -1.3

Two reactive forms of nitrate:

HNO3 is the only reactive species on Pt.

Both HNO3 and NO3- can

be reduced on the more reactive Rh.

Page 30: Electrocatalysis: catalysis of redoxreactions

Electrocatalytic CO2 reduction

CO2

CO

HCOOH

C2O42-

2e-

2e-

2e-

CH4, C2H4, CxHy

Cu

highoverpotential

aldehyde

Calvin cycle

alcohol

difficult

Page 31: Electrocatalysis: catalysis of redoxreactions

CO2 and CO reduction on copper electrodes produces H2, HCOOH,CH4 and C2H4.

Y.Hori, Mod.Asp.Electrochem (2008) K.J.P.Schouten, Y.Kwon, C.J.M.van der Ham, Z.Qin, M.T.M.Koper, Chem.Sci. (2011)

CO and CO2 reduction on copper

Page 32: Electrocatalysis: catalysis of redoxreactions

K.J.P.Schouten, Z.Qin, E..Perez Gallent, M.T.M.Koper, J.Am.Chem.Soc. 134 (2012) 9864

CO + 6 H+ + 6 e- → CH4 + H2O 2 CO + 8 H+ + 8 e- → C2H4 + 2 H2O

CO reduction on Cu(111) and Cu(100)

Page 33: Electrocatalysis: catalysis of redoxreactions

(100) terraces - not (100) steps

K.J.P.Schouten, E.Perez Gallent, M.T.M.Koper, ACS Catal. 3 (2013) 1292

Page 34: Electrocatalysis: catalysis of redoxreactions

A consistent mechanism

K.J.P.Schouten, Y.Kwon, C.J.M.van der Ham, Z.Qin, M.T.M.Koper, Chem.Sci. 2 (2011) 1902F.Calle Vallejo, M.T.M.Koper, Angew.Chem.Int.Ed 52 (2013) 7282

CO2 COads

HCOOH

2H+,2e-

2H+,2e-

HCOads HCads CH4

HCHO CH2OHads CH3OH

OC

O-

C

H+,e-

e-=CHO

HCO

CH2

O CH

C2H4

OHC = CH

reductive CO couplingMcMurry couplingepoxide reduction

?

Page 35: Electrocatalysis: catalysis of redoxreactions

A. Paets van Troostwijk, J.R. Deiman, Obs. Phys. 35 (1789) 369.

1789: birth of water splitting

“Sur une manière de décomposer l'Eau en Air inflammable et en Air vital”

Page 36: Electrocatalysis: catalysis of redoxreactions

O.Diaz-Morales, F.Calle-Vallejo, C.de Munck, M.T.M.Koper, Chem.Sci. 4 (2013) 2334

Oxygen evolution on gold: SERS

oxide formation

oxygen evolution

O-O stretch?

H216O

H218O

Page 37: Electrocatalysis: catalysis of redoxreactions

Oxygen evolution from a Au electrode with an oxide layer formed in 18O-water: 36O2 is evolved first.

Suggests an oxide decomposition/dispropor-tionation mechanism

O.Diaz-Morales, F.Calle-Vallejo, C.de Munck, M.T.M.Koper, Chem.Sci. 4 (2013) 2334

O2 evolution on gold: online MS

Teyler’s Museum, Haarlem (NL)

Page 38: Electrocatalysis: catalysis of redoxreactions

Conclusions

• Transfer 2 electrons at a time

• If you insist on transferring more than 2 electrons with 1 catalyst, be prepared to deal with scaling relationships…

• Unfavorable scaling between OOH and OH leads to irreversible kinetics of the oxygen electrode

• Proton-decoupled electron transfer leads to strong pH dependence of catalysis

• Each PCET reaction has an optimal pH, and an optimal catalyst at the optimal pH

• Many important electrocatalytic reactions are pH dependent

Page 39: Electrocatalysis: catalysis of redoxreactions

Acknowledgements

• Paramaconi Rodriguez, Youngkook Kwon, Klaas Jan Schouten, Zhisheng Qin, Elena Perez Gallent, Stanley Lai, Federico Calle-Vallejo, Oscar Diaz-Morales, Jian Yang

• Jiyong Joo, Masatoshi Osawa (Sapporo)• Netherlands Organization for

Scientific Research (NWO)• National Research School Catalysis (NRSC)• BioSolarCells consortium (NL)• European Commission (FP7 ELCAT Network)• Japan Society for the Promotion of Science (JSPS)