Electrical Simulation Lab Manuval

40
SIMULATION OF TRANSIENT RESPONSE OF RLC CIRCUIT 1. RESPONSE OF PULSE INPUT 2. RESPONSE OF STEP INPUT 3. RESPONSE OF SINUSOIDAL INPUT

description

simulation lab manuval

Transcript of Electrical Simulation Lab Manuval

SIMULATION OF TRANSIENT RESPONSE OF

RLC CIRCUIT

1. RESPONSE OF PULSE INPUT

2. RESPONSE OF STEP INPUT

3. RESPONSE OF SINUSOIDAL INPUT

AIM:

To simulate the transient response of RLC circuits with pulse, step and sinusoidal inputs

APPARATUS:

a. Personal computerb. Pspice software package

PULSE RESPONSE OF AN RLC CIRCUIT:

PROGRAM:

VIN 7 0 PULSE(-220V 220V 0 1NS 1NS 100US 200US)

R1 7 5 2

L1 5 3 50UH

C1 3 0 10UF

.TRAN 1US 400US

.PRINT TRAN V(R1) V(L1) V(C1)

.PLOT TRAN V(3) I(R1)

.PROBE

.END

SINUSOIDAL RESPONSE OF AN RLC CIRCUIT:

PROGRAM:

VIN 7 0 SIN(0 10 5KHZ)

R1 7 5 2

L1 5 3 50UH

C1 3 0 10UF

.TRAN 1US 500US

.PLOT TRAN V(3) I(R1)

.PROBE

.END

STEP RESPONSE OF AN RLC CIRCUIT:

PROGRAM:

VI 1 1 0 PWL(0 0 1NS 1V 1MS 1V)

VI 2 4 0 PWL(0 0 1NS 1V 1MS 1V)

VI 3 7 0 PWL(0 0 1NS 1V 1MS 1V)

R1 1 2 2

L1 2 3 50UH

C1 3 0 10UF

R2 4 5 1

L2 2 3 50UH

C2 6 0 10UF

R3 7 8 8

L3 8 9 50UH

C3 9 0 10UF

.TRAN 1US 400US

.PLOT TRAN V(3) V(6) V(9)

.PROBE

.END

ANALYSIS OF THREE PHASE CIRCUITS REPRASENTING THE GENRATION, TRANSMISSION AND LOAD.

PLOT THREE PHASE CURRENTS USING PSPICE

AIM:

To plot the phase currents and neutral currents using pspice for the 3-Ф circuits representing the generation, transmission line and load

APPARATUS:

a. Personal computerb. Pspice software package

PROGRAM:

Van 1 0 AC 120V 0 SIN(0 169.7V 60HZ)

Vbn 2 0 AC 120V 120 SIN(0 169.7V 60HZ 0 0 120DEG)

Vcn 3 0 AC 120V 240 SIN(0 169.7V 60HZ 0 0 240DEG)

RA 1 4 0.5

RB 2 5 0.5

RC 3 6 0.5

RX 4 7 1

RY 5 8 1

RZ 6 9 1

R1 7 10 5

R2 8 11 10

R3 9 12 10

C1 10 12 150UF

L2 11 12 120MH

VX 12 0 DC 0V

.TRAN 5US 50MS

.AC LIN 1 60HZ 120HZ

.PRINT AC IM(RA) IP(RA) VM(7,12) VP(7,12)

.PRINT AC IM(RB) IP(RB) VM(8,12) VP(8,12)

.PRINT AC IM(RC) IP(RC) VM(9,12) VP(9,12)

.PRINT AC IM(VX) IP(VX)

.PROBE

.END

SINGLE PHASE FULL CONVERTER

AND

SINGLE PHASE AC VOLTAGE CONTROLLER

AIM:

To simulate the single phase full converter using RL&E loads and single phase ac voltage controller using RL&E loads

APPARATUS:

a. PERSONAL COMPUTERb. PSPICE SOFTWARE PACKAGE

SINGLE PHASE FULL BRIDGE CONVERTER

PROGRAM:

VS 10 0 SIN(0V 169.7V 60HZ)

VS1 6 2 PULSE(0V 10V 2777.8US 1NS 1NS 100US 16666.7US)

VS2 7 0 PULSE(0V 10V 2777.8US 1NS 1NS 100US 16666.7US)

VS3 8 2 PULSE(0V 10V 2777.8US 1NS 1NS 100US 16666.7US)

VS4 9 1 PULSE(0V 10V 2777.8US 1NS 1NS 100US 16666.7US)

R 2 4 10

L 4 5 20MH

C 2 11 793UF

RX 11 3 0.1

VX 5 3 DC 10V

VY 10 1 DC 0V

XT1 1 6 2 SCR

XT3 0 8 2 SCR

XT2 3 7 0 SCR

XT4 3 9 1 SCR

.SUBCKT SCR 1 3 2

S1 1 5 6 2 SMOD

RG 3 4 50

VX 4 2 DC 0V

VY 5 7 DC 0V

DT 7 2 DMOD

RT 6 2 1

CT 6 2 10UF

F1 2 6 POLY(2) VX VY 0 50 11

.MODEL SMOD VSWITCH(RON=0.0125 ROFF=10E+5 VON=0.5V VOFF=0V)

.MODEL DMOD D(IS=2.2E-15 BV=1800V TT=0)

.END SCR

.TRAN 10US 35MS 16.67MS

.PROBE

.OPTIONS ABSTOL=1.00U RELTOL=1.0M VNTOL=0.1 ITL5=10000

.FOUR 120HZ I(VX) V(2,3)

.END

SINGLE PHASE AC VOLTAGE CONTROLLER

PROGRAM:

VS 1 0 SIN(0 169.7V 60HZ)

VS1 2 4 PULSE(0V 10V 2777.8US 1NS 1NS 100US 16666.7US)

VS2 3 1 PULSE(0V 10V 2777.8US 1NS 1NS 100US 16666.7US)

R 4 5 2.5

L 5 6 6.5MH

VX 6 0 DC 0V

CS 7 7 0.1UF

RS 7 4 750

XT1 1 2 4 SCR

XT2 4 3 1 SCR

.SUBCKT SCR 1 3 2

S1 1 5 6 2 SMOD

RG 3 4 50

VX 4 2 DC 0V

VY 5 2 DC 0V

RT 2 6 1

CT 6 2 10UF

F1 2 6 POLY(2) VX VY 0 50 11

.MODEL SMODE VSWITCH(RON=0.01 ROFF=10E+5 VON=0.1V VOFF=0V)

.END SCR

.TRAN 10US 33.33MS

.PROBE

.OPTIONS ABSTOL=1.00N RELTOL=1.0M VNTOL=1.0M ITLS=10000

.FOUR 60HZ V(4) I(VX)

.END

TRANSIENT RESPONSE OF AN INTEGRATOR WITH

A LINEAR AC OP-AMP MODEL

TRANSIENT RESPONSE OF AN DIFFERENTIATOR WITH

A LINEAR AC OP-AMP MODEL

AIM:

TO SIMULATE TRANSIENT RESPONSE OF AN INTEGRATOR, DIFFERRNTIA-TOR WITH A LINEAR AC OP-AMP MODEL

APPARATUS:

a. PERSONAL COMPUTERb. PSPICE SOFTWARE PACKAGE

TRANSIENT RESPONSE OF A LINEAR AC OP-AMP WITH INTEGRATOR

PROGRAM:

VIN 1 0 PWL(0 01NS -1V 1MS -1V 1.0001MS 1V 2MS 1V 2.000MS -1V 3MS -1V 3.0001MS 1V 4MS 1V)

R1 1 2 2.5K

RF 2 4 1MEG

RX 3 0 2.5K

RL 4 0 100K

C1 2 4 0.1UF

XA1 2 3 4 0 OPAMP

.SUBCKT OPAMP 1 2 7 4

RI 1 2 2.0E6

GB 4 3 1 2 0.1M

R1 3 4 10K

C1 3 4 1.5619UF

EA 4 5 3 4 2E+5

R0 5 7 75

.ENDS

.TRAN 50US 4MS

.PLOT TRAN V(4) V(1)

.PROBE

.END

TRANSIENT RESPONSE OF A LINEAR AC OP-AMP WITH

DIFFERENTIATOR

PROGRAM:

VIN 1 0 PWL(0 0 1MS 1 2MS 0 3MS 1 4MS 0)

R1 1 2 100

RF 3 4 10K

RX 5 0 10K

RL 4 0 100K

C1 2 3 0.4UF

XA1 3 5 4 0 OPAMP

.SUBCKT OPAMP 1 2 74

RI 1 2 2.0E6

GB 4 3 1 2 0.1M

R1 3 4 10K

C1 3 4 1.5619UF

EA 4 5 3 4 2E+5

RO 5 7 75

.ENDS OPAMP

.TRAN 10US 4MS

.PLOT TRAN V(4) V(1)

.PROBE

.END

TRANSFER FUNCTION ANALYSIS OF A BJT AMPLIFIER

AIM:

THE TRANSFER FUNCTION ANALYSIS OF A BJT AMPLIFIER

APPARATUS:

a. PERSONAL COMPUTERb. P-SPICE SOFTWARE

PROGRAM:

VIN 1 0 DC 1V

R1 1 2 1K

R2 2 0 20K

RP 2 6 1.5K

RE 3 0 250

F1 4 3 VX 40

RO 4 3 100K

RC 4 5 2K

VX 6 3 DC 0V

VY 5 0 DC 0V

.TF V(4) VIN

.END

PSPICE SIMULATION OF A SINGLE PHASE INVERTER WITH A PWM CONTROLER

AIM:

THE PSPICE SIMULATION OF A SINGLE PHASE INVERTER WITH A PWM CONTROL

APPARATUS:

a. PERSONAL COMPUTERb. PSPICE SOFTWARE PACKAGE

PROGRAM:

VS 1 0 DC 10V

VR 17 0 PULSE(50V 0V 0 833.33US 833.33US 1NS 16666.67US)

RR 17 0 2MEG

VC1 15 0 PULSE(0 -30V 0 1NS 1NS 833.33US 16666.67US)

RC1 15 0 2MEG

VC3 16 0 PULSE(0 -30V 833.33US 1NS 1NS 833.33US 16666.67US)

RC3 16 0 2MEG

R 4 5 2.5

L 5 6 10MH

VX 3 4 DC 0V

VY 1 2 DC OV

D1 3 2 DMOD

D2 0 6 DMOD

D3 6 2 DMOD

D4 0 3 DMOD

.MODEL DMOD D(IS=2.2E-15 BV=1800V TT=0)

Q1 2 7 3 QMOD

Q2 6 9 0 QMOD

Q3 2 11 6 QMOD

Q4 3 13 0 QMOD

.MODEL QMODNPN(IS=6.734F BF=416.4 CJC=3.638P CJE=4.493P)

RG1 8 7 100

RG2 10 9 100

RG3 12 11 100

RG4 14 13 100

XPW1 17 15 8 3 PWM

XPW2 17 15 10 0 PWM

XPW3 17 16 12 0 PWM

XPW4 17 16 14 0 PWM

.SUBCKT PWM 1 2 3 4

R1 1 5 1K

R2 2 5 1K

RIN 5 0 2MEG

RF 5 3 100K

R0 6 3 75

C0 3 4 10PF

E1 6 4 0 5 2E+5

.ENDS PWM

.TRAN 10US 16.67MS 0 10US

.PROBE

.OPTIONS ABSTOL=0.01 VNTOL=0.1 ITL5=20000

.FOUR 60HZ V(3,6)

.END

SIMULATION OF RESONANT PULSE COMMUTATION CIRCUIT AND BUCK CHOPPER

AIM:

TO OBTAIN THE SIMULATION OF RESONANT PULSE COMMUTATION CIRCUIT USING PSPICE

APPARATUS:

a. PERSONAL COMPUTER

b. PSPICE SOFTWEAR PACKAGE

RESONANT PULSE COMMUTATION CIRCUIT

PROGRAM:

VS 1 0 DC 220V

VG1 7 0 PULSE(0 100V 1US 1US 0.4MS 1MS)

VG2 8 0 PULSE(0 100V 0.4MS 1US 1US 0.6MS 1MS)

VG3 9 0 PULSE(0 100V 1US 1US 0.2MS 1MS)

RG1 7 0 10MEG

RG2 8 0 10MEG

RG3 9 0 10MEG

CS 10 11 0.1UF

RS 11 4 750

C 1 2 31.2UF IC=200V

L 2 3 6.4UH

D1 4 1 DMOD

DM 4 0 DMOD

.MODEL DMOD D(IS=1E-25 BV=1000V)

RM 4 5 0.5

LM 5 6 5MH

VX 6 0 DC 0V

VY 1 10 DC 0V

XT1 10 4 7 0 DCSCR

XT2 3 4 8 0 DCSCR

XT3 1 3 9 0 DCSCR

.SUBCKT DCSCR 1 2 3 4

DT 5 2 DMOD

ST 1 5 3 4 SMOD

.MODEL DMOD D(IS=1E-25 BV=10000V)

.MODEL SMOD VSWITCH(RON=0.1 ROFF=10E+6 VON=10V VOFF=5V)

.ENDS DCSCR

.TRAN 0.5V 3MS 1.5MS 0.5US

.PROBE

.OPTIONS ABSTOL=1.000U RELTOL=0.01 VNTOL=0.1 ITL5=20000

.END

BUCK CHOPPER

AIM:

TO OBTAIN THE SIMULATION OF BUCK CHOPPER USING PSPICE

APPARATUS:

a. PERSONAL COMPUTERb. PSPICE SOFTWARE PACKAGE

PROGRAM:

VS 1 0 DC 110V

VY 1 2 DC 0V

VG 7 3 PULSE(0 20 0 0.1NS 0.1NS 27.28US 50US)

RB 7 6 250

LE 3 4 681.83UH

CE 4 0 8.33UF IC=60V

L 4 8 40.91UH

R 8 5 3

VX 5 0 DC 0V

DM 0 3 DMOD

.MODEL DMOD D(IS=2.2E-15 BV=1800V TT=0)

Q1 2 6 3 QMOD

.MODEL QMOD NPN (IS=6.73F BF=416.4 BR=.7371 CJC=3.638P CJE=4.493P TR=239.5N TF=301.2P)

.TRAN 1US 1.6MS 1.5MS 1US UIC

.PROBE

.OPTIONS ABSTOL=1.00N RELTOL=0.01 VNTOL=0.1 ITL5=50000

.FOUR 20KHZ I(VY)

.END

PLOTTING OF BODE PLOT, ROOT LOCUS AND NYQUIST PLOT

AIM:

TO OBTAIN THE BODE PLOTS, ROOT LOCUS AND NYQUIST PLOTS FOR A GIVEN TRANSFER FUNCTION USING MATLAB

APPARATUS:

a. PERSONAL COMPUTERb. MATLAB

PROGRAM:

TO OBTAIN THE BODE PLOT FOR THE STABILITY ANALYSIS OF THE GIVEN TRANSFER FUNCTION

UP TO 3rd ORDER USING MATLAB:

Clear all

Num=[0 0 10];

Den=[1 4 8 0];

Sys=tf(num,den);

Bode(sys);

Margin(sys)

4th ORDER USING MATLAB:

Clear all

Num=[0 0 10];

Den=[1 2 4 8 0];

Sys=tf[num,den];

Bode(sys);

Margin(sys)

5th ORDER USING MATLAB:

Clear all

Num=[0 0 10];

Den=[1 2 3 4 8 0];

Sys=tf[num,den];

Bode(sys);

Margin(sys)

Program to obtain the root locus for the stability analysis of the given transfer function

Up to 3rd order using MATLAB:

Clear all

N=[0 0 10];

D=[1 4 8 0];

Sys=tf[n,d];

Rlocus(sys)

4th order using MATLAB:

Clear all

N=[0 0 10];

D=[1 2 4 8 0];

Sys=tf[n,d];

Rlocus(sys)

5th order using MATLAB:

Clear all

N=[0 0 10];

D=[1 2 3 4 8 0];

Sys=tf[n,d];

Rlocus(sys)

Program to obtain nyquist plot for the stability analysis of the given transfer function

Up to 3rd order using MATLAB:

Clear all

N=[0 0 10];

D=[1 4 8 0];

Sys=tf[n,d];

Nyquist(sys);

[re,im]=nyquist(sys)

4th order using MATLAB:

Clear all

N=[0 0 10];

D=[1 2 4 8 0];

Sys=tf[n,d];

Nyquist(sys);

[re,im]=nyquist(sys)

5th order using MATLAB:

Clear all

N=[0 0 10];

D=[1 2 3 4 8 0];

Sys=tf[n,d];

Nyquist(sys);

[re,im]=nyquist(sys)

POWER FLOW SOLUTION USING GAUSS-SIEDAL METHOD

AIM:

To develop a program for the solution of load flow using gauss-siedal method.

APPARATUS:

a. Personal computerb. MATLAB software

PROGRAM:

Clear

N=4

V=[1.04 1.04 1]

Y=[3-j*9 -2+j*6 -1+j*3 0

-2+j*6 3666-j*11 -0.666+j*2 -1+j*3

-1+j*3 -0.666+j*2 3.666-j*11 -2+j*6

0 -1+j*3 -2+j*6 3-j*9 ]

Type=ones(n,1)

Typechanged=zeros(n,1)

Qlimitmax=zeros(n,1)

Qlimitmin=zeros(n,1)

Vmagfixed(2)=1.04

Diff=10,noofilter=1

Vperv=v;

While(diff>0.00001 || nofilter==1)

Abs(v)

Abs(vprev)

%pause

Vprev=v;

P=[inf 0.5-1 0.3];

Q=[inf 0 0.5-0.1];

S=[inf+j*inf (0.5-j*0.2) (-10+j*0.5) (0.3-j*0.1)];

For i=2:n;

If type(i)==2||type changed (i)==7,

If(Q(i)>Qlimitmax(i)||Q(i)<Qlimitmin =(i)),

If(Q(i)<Qlimitmin(i)),

Q(i)=Qlimitmin(i);

Else

Q(i)=Qlimitmax(i);

End

Type(i)=1;

Type changed(i)=1;

Else

Type(i)=2;

Type changed(i)=0;

End

End

End

Sumyv=0

For k=1:n,

If(i~=k)

Sumyv=sumyv+y(i,k)*v(k);

End

End

V(i)=(1/y(i,i)*((p(i)-j*q(i))/conj(v(i)-sumyv);

If type (i)==2 & type changed (i)~=1,

V(i)=polartorect(vmagfixed(i),angle(v(i)*180/pi);

End

Diff=max(abs(abs(v(2:n))-abs(vprev(2:n))));

Noofilter=nofilter+1;

End.

MODELLING OF TRANSFORMER

AIM:

To find the rms current and gain of frequency plot of following circuit with the transfer function by using PSPICE.

APPARATUS:

a. Personal computerb. Pspice software

PROGRAM:

VIN 1 0 AC 120V

RI 5 2 0.5

VY 1 5 DC 0V

L1 2 0 1MH

L2 0 4 0.5MH

K12 L1 L2 0.999

R2 4 6 0.5

RL 6 7 150

VX 7 0 DC 0V

.AC LIN 150HZ 1000HZ

.PRINT AC IM(VIN) IM(RL) IP(RL)

.PROBE

.END