Electrical Installations for Schools and Colleges

download Electrical Installations for Schools and Colleges

of 25

Transcript of Electrical Installations for Schools and Colleges

  • 8/12/2019 Electrical Installations for Schools and Colleges

    1/25

    Electrical Installations for Schools and Colleges

    Energy Efficient Lighting in Schools

    Most schools have Fluorescent strip lights however now it is possible to reduce the energy

    consumption by up to 50% and still maintain the same lighting levels. Most of the older fittings are

    fitted with T8 or T12 lamps. These can be replaced with the new more efficient T5 lamps and a

    conversion kit thus saving up to 50% of the energy consumption. A 35W T5 tube and 1W ballast

    produce the same amount of light as a conventional 58W T12 lamp and 19W ballast thus reducing

    consumption by over 50%. If it is a new block or the original light fittings are very old it is also

    possible, and perhaps better, to install new T5 light fittings or LED light fittings.

    New electrical installations or refurbishing of existing rooms

    We can offer a fully managed electrical and data refit of existing school or college rooms or of a

    new building.

    Along with our working partners we offer a design, supply and installation service including

    partition walls and ceilings, data cabling, furniture, decoration and flooring.

    Suspended ceilings and stud partitioning can make new rooms from the division of an existing

    space.

    A furniture layout can be designed for any room whether it is an office or school science

    laboratory, computer room, food technology room or library. We also supply and installinteractive white boards.

    3. INSTALACIONES SANITARIAS

    4. INTRODUCCION Retirar de las construcciones en forma segura, aunque no necesariamente

    econmica, las aguas negras y pluviales, adems de establecer obturaciones o trampas hidrulicas,

    para evitar que los gases y malos olores producidos por la descomposicin de las materias

    orgnicas acarreadas, salgan por donde se usan los muebles sanitarios. Las instalaciones,

    sanitarias, deben proyectarse y principalmente construirse, procurando sacar el mximo provechode las cualidades de los materiales empleados, e instalarse en la forma ms prctica posible, de

    modo que se eviten reparaciones constantes e injustificadas, previendo un mnimo

    mantenimiento, el cual consistir en condiciones normales de funcionamiento, en dar la limpieza

    peridica requerida a travs d los registros. A pesar de que en forma universal a las aguas

    evacuadas se les conoce como AGUAS NEGRAS, suele denominrseles como AGUAS RESIDUALES,

    por la gran cantidad y variedad de residuos que arrastran, o tambin se les puede llamar y con

  • 8/12/2019 Electrical Installations for Schools and Colleges

    2/25

    toda propiedad como AGUAS SERVIDAS, porque se desechan despus de aprovechrseles en un

    determinado servicio.

    5. TUBERAS DE AGUAS NEGRAS. VERTICALES conocidas como BAJADAS HORIZONTALES

    conocidas como RAMALES

    6. CLASIFICACIN DE AGUAS SERVIDAS a).- AGUAS NEGRAS: a las provenientes de mingitorios y

    W.C. b).- AGUAS GRISES: a las evacuadas en vertederos y fregaderos. c). - AGUAS JABONOSAS:

    las utilizadas en lavabos, regaderas, lavadoras, etc.

    7. NMERO DE MUEBLES SANITARIOS SEGN SERVICIO

    8. CLASIFICACIN DE LOS SISTEMAS DE DRENAJE Drenaje sanitario: es el destinado para retirar

    las aguas servidas (aguas negras, grises y jabonosas) y conducirlas al drenaje municipal. Drenaje

    pluvial: es el destinado para transportar el agua de lluvia (sin contaminantes) hacia el

    alcantarillado municipal.

    9. CLASIFICACIN DE LAS INSTALACIONES SANITARIASDependiendo del tipo de casa o edificio al

    que se va a prestarservicio, las instalaciones sanitarias se clasificarn en 3 tipos: Primera clase: Es

    de uso privado y se aplica a instalaciones en viviendas, cuartos de bao privado, hoteles o

    instalaciones similares destinadas a una familia o una persona. Segunda clase: Es la llamada de

    uso semipblico, corresponde a instalaciones en edificios de equipamiento e industrias, en donde

    los muebles son usados por un nmero limitado de personas que ocupa la edificacin. Tercera

    clase: Son las instalaciones de uso pblico, donde no existe limitacin en el nmero de personas ni

    en el uso, tal es el caso de los baos pblicos, sitios de espectculos y centros de reunin.

    10. TUBERAS Para el desage de muebles sanitarios: tubera de fierro fundido, fierro

    galvanizado, cobre, cloruro de polivinilo o de otros materiales que aprueben las autoridadescompetentes. Para el desalojo de aguas residuales: tubera de concreto, PVC o fierro negro. Para

    bajadas de aguas pluviales: tubera de fierro negro o PVC. Es recomendable que exista una

    instalacin para el desalojo de aguas residuales y otra para disponer de aguas de origen pluvial.

    11. TUBERA DIMETROS Dependiendo del mueble o elemento sanitario al que dan servicio, los

    dimetros de los tubos de desage o descarga y de los cspoles o sifones, son de diferentes

    medidas as los tenemos de: 32, 38, 51, 102 mm de dimetro, etc. Unidas las caractersticas de

    dimetro anteriores, recordar que si alguno de los muebles ha de ventilarse, el tubo de ventilacin

    correspondiente debe ser como mnimo, la mitad del dimetro del tubo de desage o descarga del

    mueble correspondiente.

    12. REGISTROSDimensiones mnimas: Caractersticas: 40 x 60 cm: - Tapa de cierre Profundidades

    de hermtico a prueba de hasta 1 metro. roedores 50 x 70 cm : - En locales habitables,

    Profundidades entre 1 de trabajo y reunin, y 2 metros. debern tener doble 60 x 80 cm : tapa

    con cierre Profundidades de ms hermtico de 2 metros. - Colocar uno en cada cambio de

    direccin - Distancia mxima entre registros: 10 metros.

  • 8/12/2019 Electrical Installations for Schools and Colleges

    3/25

    13. SOPORTERA Tuberas horizontales en Tuberas verticales: edificios con falso plafn:-

    Separacin mxima Separacin mxima entre elementos de soporte: Verentre elementos de

    tabla 1.soporte: 3.0 metros. Tipo de elementos de- Tipo de elementos de sujecin: abrazaderas

    de hierro ancladas consujecin: abrazaderas de taquetes expansores yhierro. tornillos u otro

    sistema que garantice la adecuada- Sujetas a: columnas o colocacin de los tubos.trabes. Sujetas

    a: trabes, viguetas o losas.

    14. LOCALIZACION DE DUCTOS La ubicacin de ductos es muy importante, obedece tanto al tipo

    de construccin como de espacios disponibles para tal fin. En casas habitacin y en edificios de

    departamentos, se deben localizar lejos de recmaras, salas, comedores, etc., en fin, lejos de

    lugares en donde el ruido de las descargas continuas de los muebles sanitarios conectados en

    niveles superiores, no provoquen malestar. En lugares pblicos y de espectculos, en donde las

    concentraciones de personas son de consideracin, debe tenerse presente lo anterior, amn de

    que otras condiciones podran salir a colacin en cada caso particular.

    trampas hidrulicas que se instalan Atendiendo primordialmente a en los desages de los su

    forma, los obturadores se muebles sanitarios y clasifican como: coladera para evitar que los gases

    eros,

    mingitorios, o materias orgnicas, salgan debajo de rejillas tipo al exterior precisamente por

    IRVINNG en bateras de donde se usan los diferentes regaderas para servicios al muebles

    cono, obturadores en general no en la parte interior de deben tener en su interior ni coladeras, de

    diferentes aristas ni rugosidades que formas y materiales. puedan retener los diversos cuerpos

    extraos y residuos evacuados con las aguas ya usadas.

    16. VENTILACIN Evitan problemas de cambios de presin en las tuberas y mantener la presin

    atmosfrica, equilibrando las presiones en ambos lados de los obturadores o trampas hidrulicas.

    17. TIPOS DE VENTILACIN Existen dos tipos de ventilacin, a saber: 1).- Ventilacin Primaria: A

    la ventilacin de los bajantes de aguas negras, se le conoce como "Ventilacin Primaria" o bien

    suele llamrsele simplemente "Ventilacin Vertical", el tubo de esta ventilacin debe sobresalir de

    la azotea hasta una altura conveniente. La ventilacin primaria, ofrece la ventaja de acelerar el

    movimiento de las aguas residuales o negras y evitar hasta cierto punto, la obstruccin de las

    tuberas, adems, la ventilacin de los bajantes en instalaciones sanitarias particulares, es una

    gran ventaja higinica ya que ayuda a la ventilacin del alcantarillado pblico, siempre y cuando

    no existan trampas de acometida. 2).- Ventilacin Secundaria: La ventilacin que se hace en losramales es la "Ventilacin Secundaria" tambin conocida como "Ventilacin Individual", esta

    ventilacin se hace con el objeto de que el agua de los obturadores en el lado de la descarga de los

    muebles, quede conectada a la atmsfera y as nivelar la presin del agua de los obturadores en

    ambos lados, evitando sea anulado el efecto de las mismas e impidiendo la entrada de los gases a

    las habitaciones.

    18. INSTALACIONES HIDRAULICAS

  • 8/12/2019 Electrical Installations for Schools and Colleges

    4/25

    19. INSTALACIONES HIDRAULICAS QU SON? Son un conjunto de tuberas y conexiones de

    diferentesdimetros y diferentes materiales; para alimentar y distribuiragua dentro de la

    construccin, esta instalacin surtir deagua a todos los puntos y lugares de la obra

    arquitectnicaque lo requiera, de manera que este liquido llegue encantidad y presin adecuada a

    todas las zonas hmedas deesta estalacin tambin constara de muebles y equipos.Estas

    instalaciones pueden ser dentro de la distribucin de unedificio, en condiciones separadas ycolectivas.

    20. DISTRIBUCIN DE AGUADentro de un edificio los elementos a considerar son: Caudal, presin

    y velocidad: el agua debe llegar a todos lospuntos de consumo del edificio con una presin

    suficiente; por lotanto los sistemas de distribucin pueden ser variables. Caudal regular

    suficiente; cubre las necesidades de consumodel edificio , puede tener un sistema de contador

    colectivo o concontadores diversos para cada vivienda. Caudal regular insuficiente; se tiene que

    prever unosdepsitos acumuladores para almacenar el agua durante eltiempo de no consumo.

    Caudal irregular insuficiente ; es necesario de un estudio dela cantidad de agua suministrada.

    Presin; esta puede tenr tres variables; suficiente, excesiva einsuficiente, y en cada uno se optapor hacer un sistema .

    21. Dentro de una instalacin particular, esta se realizara con unapersona autorizada, donde se

    compone con por los siguienteselementos:TUBO ASCENDENTE O MONTANTE : Es aquel que une la

    salidadel contador con la instalacin interior particular.LLAVE DE PASO DEL ABONADO: Se halla

    instalada sobre el tuboascendente o montante esta podr ser cerrada para dejar sinagua su

    instalacin particular.DERIVACIN PARTICULAR: Parte del tubo ascendente omontante y, con el

    objeto de hacer ms difcil el retorno delagua, tiene su entrada junto al techo.DERIVAIN DEL

    APARATO: Conecta la derivacin particular ouna de sus ramificaciones con el aparato

    correspondiente.

    codos o conexiones que ayuda a que el agua corra sin daar o estorbar a otras instalaciones o

    simnplemente para alargar la tuberia, estas pueden ser de distintos materiales los mas usuales

    son:TUBERIAS DE ACERO: Acero inoxidable , que son los que tienen mayor resistencia entre los

    materiales frricos y su caracteristica principal es que tiene una gran resistencia a la corrosin y

    una mayor capacidad mecnica.Tienen un mayor costo. Acero Negro: estas no se utilizan para

    agua potable, ms que nada son para la calefaccin. Acero Galvanizado: son los ms utilizados , su

    nomenclatura se basa en la dimension interior en pulgadas.

    23. TUBERIAS DE COBRE: Es un material de gran aplicacin, su facilidad de colocacin y buencomportamiento al agua caliente lo convierte en eun material de gran aplicacin.TUBERIAS DE

    PLOMO:Las tuberas de plomo son bastante blandas. Se puedencortar fcilmente con sierras para

    metales o serruchoscomunes.Hace tiempo que se prob que el plomo no erarecomendable en

    instalaciones de agua caliente porque sedeterioraba rpidamente con altas temperaturas. Incluso

    seha llegado a cuestionar su uso en la distribucin de agua deconsumo.

  • 8/12/2019 Electrical Installations for Schools and Colleges

    5/25

    dilatacin trmica razonable y los tramos de tubera se unen fcilmente con adhesivos especiales.

    Su uso se recomienda para tragantes (tuberas por donde se evacua el agua usada), bajantes (tubo

    principal de desage) o sifones ("obstculos" de la tubera que permiten filtrar objetos que

    pueden daar la tubera, e impiden el retorno de malos olores). El uso de tuberas de PVC es

    limitado, ya que con altas temperaturas el material puede sufrir alteraciones. Las bajastemperaturas tambin le afectan negativamente, provocan gran rigidez en el plstico y elevan su

    sensibilidad a los golpes.

    boca plana y anulares: son las ms habituales, tambin se denominan de tenedor, pueden ser de

    boca simple o de boca doble. En general son dobles, y poseen dos anchos diferentes en cada

    extremo. Estas llaves nicamente hacen fuerza en dos puntos y por lo tanto no pueden utilizarse

    en lugares poco accesibles. Las llaves anulares son redondas y hacen fuerza sobre toda la cabeza

    de la tuerca o del tornillo, y pueden ser acodadas. Tambin existen llaves dobles con un extremo: son las que "abrazan" la cabeza de la

    tuerca o del tornillo. Su ventaja es que transmiten una mayor fuerza al hacer contacto en seis

    puntos. Se suelen utilizar cuando la cabeza del tornillo o la tuerca resulta accesible.

    26. CISTERNASUna cisterna es un depsito usados para contenerlquidos, generalmente agua. Es

    denominada tinaco enalgunos lugares. Su capacidad va desde unos litros a milesde metros

    cbicos.

    27. Existen varios tipos de cisternas Cisternas prefabricadas de concreto CISTERNA

    PREFABRICADAS DE CONCRETO ARMADO FC=250 KG/CM2 Econmicas Fciles de instalar Entrega

    inmediata Modulares Rectangulares IDEALES PARA: Casas habitacin Casas de campo

    Fraccionamientos Auto baos Escuelas Lavanderas Restaurantes Hospitales Hoteles Centros

    comerciales Fabricas Triler park Etc...

    28. CISTERNA RECTANGULAR DimensionesCAPACIDADAPROXIMADA LARGO ANCHO ALTO N PESO

    EN TONELADAS PIEZASCisterna5000 lts. 3.00 1.50 1.75 2 6.0Cisterna 10000lts 3.91 2.1 1.74 2

    6.0Cisterna 15000lts 3.91 2.10 2.40 3 8.0Cisterna 20000 3.91 2.10 3.15 4 10lts .Cisterna 30000lts

    3.91 4.20 2.40 6 15Cisterna 40000lts 3.91 4.20 3.15 8 18

    29. Cisternas de ferro cemento.Materiales y costosaproximadosPara poder construir una cisterna

    conferrocemento, serequiere que la comunidad cuente con lossiguientes materiales:agua,cemento, arena, grava, mallaelectrosoldada, telade gallinero y alambre quemado.El costo

    aproximadopara la construccin de una cisternacon capacidad de 5,000 lts. es de$ 2,776.00, sin

    incluir la mano de obra.Las herramientas que se requieren son:tijeras/hojalatero, cortapernos,

    flexmetro, llana yamarrador.

    30. Formas y materiales para construir cisternas deferrocemento.El ferrocemento es un material

    inoxidable que secomponede malla de gallinero, malla electrosoldada, grava,cemento,agua y una

  • 8/12/2019 Electrical Installations for Schools and Colleges

    6/25

    cimbra de triplay.Las cisternas que se construyen con esta tcnicatienenuna duracin mayor a 30

    aos, y lo ms importantees quela familia y la comunidad participan en

    suconstruccin,aprendiendo la tcnica. De qu material estn hechas? Principalmente de fierro y

    cemento. De qu forma se pueden hacer las cisternas? Redondas, cilndricas, ovaladas, y

    tubulares para distribuir bien el peso del agua.

    31. Cules son los pasos paraconstruir una cisterna con la tcnica delferrocemento?1- Para hacer

    el enmallado se coloca primero una malladegallinero, luego la malla electrosoldada y arriba otra

    degallinero y se entretejen de manera artesanal.Aquhacemos losamarres2- Se forma la

    estructura cilndrica, la cual se planta conunfirme de cemento y grava en el terreno debidamente

    yapreparado.3- Con una cimbra de triplay se colocan varias capas decemento hasta llegar a sellar

    el tanque y en la ltimacapa sele aplicar baba de nopal a la mezcla, ya que es

    unexcelenteimpermeabilizante. 4 Se hace la tapa para cubrir la cisterna, la cual puede ser en

    continuacin al armado o como tapa cnica.

    32. INSTALACIONES DE GAS

    33. INTRODUCCION La terminologa ms usada entre las personas dedicadas a este tipo de

    instalaciones es conocida simplemente como instalaciones de gas, pero de acuerdo al reglamento

    de distribucin de gas, se conoce como instalaciones de aprovechamiento de gas, que son las que

    constan de recipientes porttiles o estacionarios, redes de tuberas, conexiones y artefactos de

    control y seguridad necesarios y adecuados para conducir el gas de los recipientes que lo

    contienen hasta los aparatos que lo consumen.

    34. TIPOS DE GAS Gas L.P.Tipos de Gas Gas Natural

    35. GAS LP Gas LP (Licuado de Petrleo) es el nombre genrico para el gas butano y propano de

    uso comercial. Tambin es incoloro e inodoro (se le agregan odorantes para detectarlo en caso de

    fugas); tiene la propiedad de volverse lquido a temperaturas atmosfricas cuando es sujeto a una

    compresin moderada, y regresa a su estado gaseoso cuando esta presin se reduce. Gracias a

    esta propiedad, el gas LP se puede almacenar y transportar en estado lquido, en cilindros o

    tanques. En el mbito domstico y comercial, el gas LP se utiliza para cocinar, refrigerar,

    alumbrar y en la calefaccin; a nivel industrial se emplea en cualquier equipo que requiera un

    combustible fcilmente controlable (hornos para tratamiento de metales, vidrio, etctera); en el

    sector agrcola se usa para secar alfalfa, heno y semillas, o en la destruccin de malas hierbas; de

    igual forma, se utiliza como combustible de automotores y como materia prima para fabricarplsticos, hule sinttico y productos qumicos, entre otros.

    36. COMO SE DISTRIBUYE EL GAS LP?

    37. GAS NATURAL El gas natural, tambin conocido como gas metano, es un combustible incoloro

    e inodoro al que se le agregan odorantes qumicos, como el mercaptano, para que pueda

    detectarse en caso de fuga. Se trata de uno de los combustibles ms utilizados en el mundo y al

  • 8/12/2019 Electrical Installations for Schools and Colleges

    7/25

    que se tiene acceso en nuestro pas a travs de una red de distribucin que crece

    constantemente. Sus usos son muy variados, por ejemplo, se utiliza para satisfacer las

    necesidades energticas de los hogares, para la operacin de sistemas de calefaccin y de aire

    acondicionado, en diversas actividades industriales y, principalmente, para la generacin de

    electricidad.

    38. CMO SE DISTRIBUYE? El gas natural se distribuye a travs de ductos de acero o de

    polietileno, materiales de alta durabilidad y resistencia, que son adecuados para cualquier tipo de

    suelo y que permiten disponer del combustible las 24 horas del da, los 365 das del ao. Para

    poder disfrutar de este servicio en su hogar es necesario que la zona donde vive cuente con la

    infraestructura necesaria para hacer llegar el gas natural hasta su casa, es decir, que cuente con

    una red de distribucin. Esta infraestructura es desarrollada por las empresas distribuidoras

    autorizadas por la Comisin Reguladora de Energa (CRE).

    39. DIFERENCIAS ENTRE EL GAS LP Y EL GAS NATURAL

    40. DIFERENCIAS ENTRE EL GAS LP Y EL GAS NATURAL

    41. MATERIALES MAS UTILIZADOS EN LAS INSTALACIONES DE GAS Galvanizada cdula 40. De

    cobre flexible. De cobre rgido tipo "L". De cobre rgido tipo "K". Manguera especial de

    neopreno. De fierro negro cdula 80. Tubera de polietileno de alta densidad.

    42. COMPONENTES DE UNA INSTALACIN DE GAS Para establecer una diferencia marcada en las

    instalaciones de gas se verian que sus componentes principales seran: Aquellos que tienen una

    instalacin de gas natural Instalacin conrecipientes estacionarios Instalacin con recipientes

    porttiles Dentro de esta clasificacin podemos encontrar los siguientes elementos: Tuberas

    Recipientes Conexiones, llaves, vlvulas Reguladores Medidores en caso del gas natural.

    43. DIMETROS DE TUBERA

    44. INSTALACIN DE GAS

    45. INSTALACIN DE GAS NATURAL

    46. LNEA DE LLENADO PARA TANQUE ESTACIONARIO

    47. INSTALACIONES ELECTRICAS

    48. SISTEMA DE SUMINISTRO ELCTRICO El sistema de suministro elctrico siempre comprende

    el conjunto de medios y elementos tiles para la generacin, el transporte y la distribucin de la

    energa elctrica. Este conjunto est dotado de mecanismos de control, seguridad y proteccin.

    49. En la figura siguiente, se pueden observar en un diagrama esquematizado las distintas partes

    componentes del sistema de suministro elctrico:

  • 8/12/2019 Electrical Installations for Schools and Colleges

    8/25

    50. GENERACIN La energa elctrica se genera en las Centrales Elctricas. Una central elctrica

    es una instalacin que utiliza una fuente de energa primaria para hacer girar una turbina que, a su

    vez, hace girar un alternador, generando as electricidad. El hecho de que la electricidad, a nivel

    industrial, no pueda ser almacenada y deba consumirse en el momento en que se produce

    51. TRANSPORTE La red de transporte es la encargada de enlazar las centrales con los puntos deutilizacin de energa elctrica. Para un uso racional de la electricidad es necesario que las lneas

    de transporte estn interconectadas entre s con estructura de forma mallada, de manera que

    puedan transportar electricidad entre puntos muy alejados, en cualquier sentido y con las

    menores prdidas posibles.

    52. SUBESTACIONES Las instalaciones llamadas subestaciones son plantas transformadoras que

    se encuentran junto a las centrales generadoras (Estacin elevadora en la Figura 1) y en la periferia

    de las diversas zonas de consumo, enlazadas entre ellas por la Red de Transporte.

    53. DISTRIBUCIN Desde las subestaciones ubicadas cerca de las reas de consumo, el servicio

    elctrico es responsabilidad de la compaa suministradora (distribuidora) que ha de construir ymantener las lneas necesarias para llegar a los clientes. constituyen la red de distribucin.

    54. CENTROS DE TRANSFORMACIN Transformador final a 127 V C.A. para alimentar una

    institucin escolar Los Centros de Transformacin, dotados de transformadores o

    autotransformadores alimentados por las lneas de distribucin en Media Tensin, son los

    encargados de realizar la ltima transformacin, efectuando el paso de las tensiones de

    distribucin a la Tensin de utilizacin.

    55. ELEMENTOS PRINCIPALES DE UNA INSTALACION ELECTRICA

    56. 1. INTRODUCCIN El uso de la energa elctrica se ha generalizado al mximo en la aplicacinde la iluminacin y de innumerables elementos de uso domstico en la vivienda. El dibujo

    elctrico, como tal, es fcil y consiste en lneas sencillas y en el empleo de smbolos

    convencionales. Es suficiente cuidar la unidad y equilibrio de la composicin. No hace falta realizar

    los dibujos a escala. Lo que s encierra cierta dificultad es el conocimiento de los smbolos, pues

    son numerossimos y, como vers, no existe absoluta uniformidad en su grafismo.

    57. 2. ELEMENTOS PRINCIPALES Y CONCEPTOSAcometida: La acometida de una instalacin

    elctrica est formada por una lnea que une la red general de electrificacin con la instalacin

    propia de la vivienda. Clases: Acometida Area: Es la que va desde el poste hasta la vivienda

    Acometida SubterrneaMedidor: Es el aparato destinado a registrar la energa elctricaconsumida por el usuario.

    58. Conductores: Los conductores son los elementos que transmiten o llevan el fluido elctrico.

    Clasificacin de conductores: Hilo o alambre: Es un conductor constituido por un nico alambre

    macizo. Cordn: Es un conductor constituido por varios hilos unidos elctricamente arrollados

    helicoidalmente alrededor de uno o varios hilos centrales. Cable: Es un conductor formado por

  • 8/12/2019 Electrical Installations for Schools and Colleges

    9/25

    uno o varios hilos o cordones aislado elctricamente entre s. Normalmente en las viviendas se

    usan cables de 8, 10, 12 y 14 mm de dimetro.

    59. Interruptores, apagadores o suiches Los interruptores son aparatos diseados para poder

    conectar o interrumpir una corriente que circula por un circuito.Conmutadores: Los

    conmutadores son aparatos que interrumpen un circuito para establecer contactos con otra partede ste a travs de un mecanismo interior que dispone de dos posiciones: conexin y

    desconexin.Cajas de empalmes y derivacin: Las cajas de empalme (cajetines) se utilizan para

    alojar las diferentes conexiones entre los conductores de la instalacin. Son cajas de forma

    rectangular o redonda, dotadas de guas laterales para unirlas entre s.

    60. 3. SMBOLOS ELCTRICOS En electricidad, con el fin de facilitar el diseo y montaje de

    instalaciones, la representacin grfica de los circuitos, valores, cantidades y aparatos, se realiza

    mediante smbolos. Reunimos los elementos por definir de acuerdo a su afinidad, en los siguientes

    grupos:A-GeneradoresB-Elementos de proteccinC-Clases de corrienteD-Lnea y conexionesE-

    ReceptoresF-Aparatos de accionamientoG-Aparatos de medida

    61. Generadores: Mquinas o elementos que producen corriente elctrica.Elementos de

    Proteccin: Son los que sirven para proteger la instalacin contra aumentos excesivos de la

    intensidad de la corriente.Clases de Corrientes: Corriente continua: La que circula siempre en el

    mismo sentido y con un valor constante. Corriente alterna: Corriente peridica, cuya intensidad

    media es nula.Lnea: Conjunto de conductores, aisladores y accesorios destinados al transporte o a

    la distribucin de la energa elctricaReceptores: Son los aparatos que utilizan la energa elctrica

    para su aprovechamiento con diversos fines.Aparatos de accionamiento: INTERRUPTOR,

    CONMUTADOR Y PULSADOR:Aparatos de medida: Voltmetro: Instrumento que mide la fuerza

    electromotriz y las diferencias de potencial. Ampermetro: Instrumento que mide la intensidad de

    la corriente elctrica. Vatmetro: Instrumento que mide la potencia de la corriente elctrica en

    vatios.

    62. PLANO DE LA CASA

    63. INSTALACIN EN

    caja de empalmes de ella sale un cable negro hacia la lmpara, y otro a una base de

    la lmpara sale un cable azul que va hasta el interruptor y finalmente vuelve otro rojo a la caja de

    empalmes. All se junta con el que regresa de la base de enchufe.

    ruptor al lado

    instalacin en la caja de empalmes de donde sale un cable rojo hacia el interruptor, del interruptor

    sale un cable azul hacia la lmpara y de la lmpara sale un cable negro hasta la caja de empalmes.

    De la caja de empalmes sale tambin un cable rojo hacia una base de enchufe y de esta vuelve un

    cable negro a la caja de empalmes.

  • 8/12/2019 Electrical Installations for Schools and Colleges

    10/25

    ndemos la lmpara

    tiempo disponemos de un interruptor para encender los apliques que estn al lado del espejo y un

    enchufe al lado de este para porejemplo enchufa

    comienza saliendo un cable rojo de la caja de empalmes al conmutador al lado de la puerta de

    entrada. Despus de este van dos cables verdes a cruzamiento. De aqu van dos cables morados al

    conmutador del otro lado del pasillo. Un cable azul une este conmutador con la primera lmpara y

    otro de una lmpara a otra y de la ltima uno negro a la caja de empalmes.

    67. INSTALACIN ELECTRICA DE UN SALN Un cable rojo sale de la caja de empalmes para el

    interruptor, de este sale uno azul que conecta con las dos lmparas, de las lmparas conecta junto

    a la base de enchufe un cable negro y finalmente desde la base de enchufe sale un cable rojo que

    va directo a la caja de empalmes. La segunda parte del circuito comienza en una segunda caja de

    empalmes. De esta sale un cable rojo al interruptor y de este sigue hasta la base de enchufe. De la

    base de enchufe sale un cable negro que conecta con las dos lamparas y regresa a la caja de

    empalmes. De las lamparas sele un cable azul que va hasta el interruptor.

    68. INSTALACIN ELECTRICA DE UN BAO Y por ultimo elbao con un interruptor que enciende

    la luz del techo y una base de enchufe en la pared.

    Verde

    Passive building

    The expression passive building refers to a construction standard that can be achieved using

    various types of construction materials. It can also mean a green building construction that

    guarantees an interior climate as comfortable in summer as it is in winter without a conventional

    heating system. Taken from the German word Passivhaus, this expression concerns both

    collective and individual habitats. The purpose of the passivhaus is to reduce energy consumptionin residential buildings by capturing a passive solar energy contribution, reinforcing building

    insulation, using renewable energies and recuperating heat.

    A passive building consumes no more than 15 kWh/m2/year for its heating and no more than 30

    kWh/m2/year for heating, hot water and ventilation. Total consumption (including household

  • 8/12/2019 Electrical Installations for Schools and Colleges

    11/25

    appliances) must not exceed 120 kWh/m2/year in primary energy (that which is taken from nature

    before transformation). The passive building mark includes many specific and technical elements

    concerning windows, insulation and facade seals, air renewal, etc. Rigorous testing is carried out

    to obtain the passive building mark.

    Individual passive houses are often compact. This is one condition for achieving low energy

    consumption. To build a passive building, the following requirements must be satisfied:

    Excellent insulation all over the building, exterior insulation from 25 to 35 cm;

    High quality triple-glazed windows;

    Building orientation to capture passive solar energy and large south-facing picture windows;

    A dual-flow mechanical ventilation system with a heat recuperation rate of at least 75%.

    Solar thermal units for hot water requirements.

    Popular instructions

    There remains a great deal of effort to make in promoting eco-construction and renovation with

    our populations. Today the majority of people recognise the expression Green Building and most

    consider it with a positive connotation. Among those who perceive eco-construction under a

    positive light, many are ignorant of the specific nature of such practices. The often ignore what

    distinguishes them from conventional construction methods, how they are integrated into

    residential construction and what the selection of ecological options implies for companies and

    acquirers.

    Therefore within the population there is a lack of information, combined with the circulation of

    several misconceptions. In fact, most people associated a particular architectural style with eco-

    construction, something modern and contemporary, with the addition of complex systems such as

    solar panels and water heaters, geothermal systems or green roofs. Promotional communicationshould accentuate the fact that it is possible to build a high-performance eco-home which

    neverthless has traditional aesthetics. What is more, subtle or even invisible measures, such as

    low-emission windows, high-quality ventilation ducts and suitable insulation make a significant

    contribution to the energy efficiency of a home without changing its physical aspect or rendering

    the construction process overly complicated.

  • 8/12/2019 Electrical Installations for Schools and Colleges

    12/25

    For optimum operation, ecological methods and technologies must be integrated into a coherent

    design. The expectations of todays owners and occupants in terms of maintenance, operation and

    comfort are very high, which results in corresponding technological and energy costs. An

    important vector for promoting ecological construction is construction regulations.

    GREEN BUILDINGCOMPONENTS

    ENERGY EFFICIENCY AND RENEWABLE ENERGY

    General considerations

    construction saine

    Energy efficiency is a major concern and an essential component of green building. It has even

    become a major factor in its success. A green building must always be fitted with solutions that

    offer enhanced electrical energy management, reduce consumption and contribute to supplying

    quality energy.

    This efficiency can be materialised in a home through the use of occupancy detectors and full

    home automation systems. All these solutions help to manage and programme lighting, heating

    and other uses to optimise their use at a lower cost. In commercial buildings, solutions are

    multiplied to reduce energy use and contribute to reducing greenhouse gases, both in lighting

    management, office equipment management, security lighting, infrastructure measurement and

    surveillance. In such buildings, capacitor banks increase the efficiency of the installation and

    network analysers make it possible to measure the consumption and quality of the energy.

    Renewable energy sources present the advantage of being available in unlimited quantities. Their

    use is a way of satisfying our energy needs while conserving the environment. The main forms of

    renewable energy are solar power, wind power, biomass power, geothermal power, hydraulic

    power, etc.

  • 8/12/2019 Electrical Installations for Schools and Colleges

    13/25

    The energy produced by photovoltaic panels is an undeniable component of renewable energy

    production, which must satisfy the dual issue of integration into buildings and optimised

    production. Heavy investment in various clean energy technology projects around the world have

    been undertaken to improve the efficiency of renewable energies, to reinforce the economy,protect the environment and reduce our dependence on oil products.

    Energy efficiency and green building

    Waste

    For the past 10 years, observers have complained about peaks of energy consumption due to air

    conditioning equipment. Among other factors, they point out unsuitable dimensions, non-existentor unsuitable cleaning and maintenance, the use of obsolete and energy-inefficient technologies.

    To stop energy waste, air conditioning systems are subject to regular inspections. In effect, a

    decree and law now require that owners have their units regularly inspected, every 5 years at

    least, by a certified technician.

    In France, this concerns decree 2010-349 of 31 March 2010 and the administrative order of 16

    April 2010. These legal texts continue the enactment of the European Directive on Building Energy

    Performance in French law and the implementation of the Grenelle Environment round table

    recommendations. The aim is to end wasteful use of energy. Air-conditioning systems and

    reversible heat pumps with a rated cooling power above 12 kW are equipment for home comfort.

    Their energy use is not in proportion to actual needs, either because they are incorrectly

    dimensioned, or that they are not correctly maintained or managed. Cooling systems for computer

    rooms and industrial use are not concerned by these texts. Waste is not welcome in a green

    building.

    Specific electricity

    Logo Dveloppement durable Legrand

    Specific electricity corresponds to that required for services that can only be provided through the

    use of electricity. Items that are not taken into account in specific electricity include hot water,

    heating and cooking, which can use other types of power. Specific electricity consumption has

  • 8/12/2019 Electrical Installations for Schools and Colleges

    14/25

    doubled over the past 20 years and this trend is likely to continue. Choosing energy-efficient

    appliances is therefore of great importance in a green building.

    Efficient appliances will make significant savings on the specific electricity bill. For example, the

    savings generated by low energy lamps reduces costs by a factor of 4 compared to incandescent

    lamps. For cooling appliances, the difference in consumption between two different new machines

    can be anywhere from 1 to 3. Note also that a new appliance can consume up to six times less

    than an aged appliance.

    Energy savings

    By energy savings, we mean all economically interesting actions undertaken to reduce energy

    consumption, by for instance installing suitable equipment in electrical installations. The aim is

    also to consume energy in an optimal manner (e.g. recuperate heat lost in combustion gases or

    produce energy from waste). We should be aware that energy savings do not concern just

    electricity. Adopting some simple daily habits along with a judicious choice of equipment also

    enables us to control consumption of all other forms of energy (gas, heating fuel, etc.). In a green

    building, the main priority is to identify energy savings.

    Some of the main measures that enable energy savings are:

    Good thermal insulation of all exterior components (walls, windows, roof, etc.)

    Eliminate thermal bridges and other energyleaks

    Good airtight seal on the exterior building envelope

    Reduction of thermal losses through ventilation

    Efficiency of a reduced-inertia boiler

    Optimised electricity management (reduction of installed power ratings, central management,

    use of lighting control equipment, etc.).

    Renewable energy

    Solar power systems

  • 8/12/2019 Electrical Installations for Schools and Colleges

    15/25

    Logo Dveloppement durable Legrand

    Solar energy is the source of the water cycle and of wind. The plant kingdom, on which the animal

    kingdom depends, also uses solar energy by transforming it into chemical energy through

    photosynthesis.

    Apart from nuclear power, geothermal energy and tidal power, solar energy is the origin of all

    other energies on Earth. Solar energy is also inexhaustible on a human timescale and hugely

    abundant. It is estimated that the Earth receives from the sun about 10,000 times the total

    amount of energy consumed by all of humanity. Solar power capture technologies can be split into

    three categories: Solar photovoltaic, solar thermal and solar thermodynamic. The use of solar

    power is of tremendous importance in a green building.

    Solar heating systems can be installed in all types of buildings. Using solar power to pre-heat

    outside air before it is allowed to enter a building can considerably reduce heating costs both inresidential buildings and commercial constructions. Solar heating systems are especially efficient

    for large buildings such as hospitals, hangars, school and gyms, as well as multi-storey residential

    buildings. To make solar electricity available on a large scale, scientists and engineers around the

    world have been trying to develop a low-cost solar cell for many years. Such cells must be very

    efficient and easy to manufacture, with a high yield.

    The vast majority of solar heating systems require the installation of solar walls. Such equipment

    can be installed on new or existing buildings. Solar walls require very little maintenance, feature

    no liquids or detachable parts other than the ventilators connected to the ventilation system.Moreover, solar walls can operate under cloudy conditions and at night time, even if their

    efficiency is much less. The ROI is two years due to the energy savings they produce.

    Geothermal power

    Geothermal energy is extracted from the ground for use in air conditioning, heating or

    transformation into electricity. Installing a geothermal heat pump system represents a major

    investment, but it enables users to make use of an inexhaustible source of energy that will provide

    60 to 70% of the power required to heat a building. Geothermal systems can be installed on new

    houses or renovation projects. This technology can therefore considerably reduce the use of fossil

    fuels or electricity, which emit much more greenhouse gases and which are generally less

    financially interesting in the long term. Geothermal technologies are naturally included in green

    building parameters.

  • 8/12/2019 Electrical Installations for Schools and Colleges

    16/25

    Geothermal systems present some major advantages. Effectively, underground heat is present

    everywhere on Earth. Geothermal energy comes from an almost continuous source that is not

    dependent on atmospheric conditions. The ease of extraction of this energy depends on the

    structure of the geological formations or the composition of the rock beds. This technology is split

    into two categories: Deep geothermal or near-surface geothermal energy.

    Other energy sources

    Alongside solar energy and geothermal energy, wind power is the third major source of green

    building energy. Today wind power is the least expensive clean energy to produce, which explains

    the strong enthusiasm for this technology. Current research could enable it to keep this

    comfortable head start for several years to come. Water or hydraulic power is mainly produced by

    the displacement or accumulation of fresh water or sea water. As it is everywhere, water plays an

    extremely important role in transporting the Earths energy.

    Biomass is generated by photosynthesis, where solar energy is stored by plants in the form of

    carbohydrates, as they use the carbon dioxide in the atmosphere. In a wide sense, the expression

    biomass refers to all living matter (the total mass of living matter). In terms of energy, biomass

    refers to all organic material that can become a source of energy in the form of biogas, biofuel or

    directly by combustion: Wood or organic agricultural or urban waste, etc. Biomass energy is used

    by the biogas, biofuel and wood industries.

    The radiant system is a comfortable heating system. Radiant heating transfers heat directly from

    the floor to your body as well as heating the ambient air. Radiant heating systems produce

    uniform temperatures in all rooms or heated floor areas, in all seasons. Radiant heating is also a

    technique to prevent the transmission of dust and pollen, which are prevalent in warm air heating

    systems.

    SUSTAINABLE MANAGEMENT

    Sustainable water management

    Water savings in a green building

  • 8/12/2019 Electrical Installations for Schools and Colleges

    17/25

    The availability of fresh water has become a matter of increasing concern in a context where

    developed and developing countries are engaged in a race to obtain resources that are inexorably

    becoming scarcer. A green building must therefore be designed to use water efficiently. Managing

    waste water, irrigation water and rain water are also essential for a sustainable approach.

    The use of mixer taps reduces water consumption as it is easier to control the temperature.

    Aerator tap fittings reduce the amount of water used without it being noticed during use. Waste

    through negligence is to be avoided. Even if repairing a leaking tap can be a chore, tens of millions

    of cubic metres of water are lost every year, just in France, because of inadequate seals on taps.

    Thermostatic mixer taps can also generate savings. As water runs at a predetermined

    temperature, the water that is usually lost when adjusting a shower temperature is saved. An

    efficient and sustainable water-saving approach also depends on existing knowledge orprojections of water use, tracing and preventing leaks. Replacing unsuitable equipment and using

    water-efficient devices, communicating and raising user awareness are also potential sources for

    water savings.

    Recuperation and use of rain water

    Rain water is an inexhaustible natural resource which has its place in the green building. Rain

    water is collected as it runs off a roof and is stored in a tank. Whether polluted or not, rain water is

    naturally slightly acidic (pH from 5 to 6), due to its carbon dioxide content, present in theatmosphere. This acidity means it should not be stored in plastic or metal containers. For domestic

    use, the ideal solution is a concrete or limestone tank that neutralises the natural acidity of rain

    water.

    Rain water is only rarely recuperated and often only used for watering gardens. Its use should

    nonetheless be systematic both to unblock waste networks and to save on a resource that is

    becoming scarcer and is weighing on household budgets. A farmers common sense has always

    encouraged them to put a container under the gutter pipe to recuperate rain water. If optimised,

    rain water collection can enable homes to be autonomous in water use, without it being visible or

    visually un-aesthetic.

    In certain buildings, rain water is recuperated, treated and reused in applications that do not

    require potable water. This kind of solution helps reduce fresh water needs in the public network,

    while avoiding the propagation of pollutants by run-off. Other solutions are available, such as

  • 8/12/2019 Electrical Installations for Schools and Colleges

    18/25

    green roofs, which not only store rain water, but also provide a green oasis in an urban

    environment along with many other benefits.

    Reduction of waste and toxic substances

    Logo Dveloppement durable Legrand

    A good green building design helps the occupants to reduce the quantity of waste generated. It

    also offers solutions such as composting bins, to reduce the volume of matter going to landfills.

    The green architect also aims to reduce waste in terms of energy, water and materials used for the

    construction. This considerable reduces the volume of waste sent for disposal during the

    construction phase. Green building avoids the systematic burial of materials retrieved from

    buildings at the end of their life by recycling and recuperating them. The extension of the useful

    lifetime of a structure also enables waste reduction.

    The quality of interior air is an important factor in a green building. To do this, it must also seek to

    reduce volatile organic compounds (VOC) and other air impurities such as microbial contaminants.

    The ventilation systems must be well-designed to ensure suitable ventilation and air filtration, as

    well as to isolate certain activities (kitchens, dry-cleaning, etc.) from other applications.

    During design and construction, the choice of construction materials and interior finishingproducts is made to reduce the amount of toxic substances in the building. In effect, many

    construction materials and cleaning products emit toxic gases such as VOC and formaldehyde.

    These gases can have a negative impact on occupant health. By avoiding these products, we can

    increase the quality of the interior environment in a building.

    CONSTRUCTION MATERIALS USED ON A GREEN BUILDING

    Wooden structure

    Wood occupies a primordial place in the green building approach. There are many different

    possibilities in terms of wooden structure. We can opt for walls with solid wood beams, wall with

    glued and laminated timber, and the wooden frame structure, which are suitable for an urban

  • 8/12/2019 Electrical Installations for Schools and Colleges

    19/25

    environment as from the outside they look identical to a conventional construction. The

    foundations of these constructions are made of concrete.

    The benefits reside in the fact that wood is a clean material that generates neither radon nor static

    electricity. Wood protects itself naturally as it contains polyphenols of vegetal origin, which have a

    disinfectant effect. It is also an excellent thermal and hygrometric regulator, regulating ambient

    humidity like other green building construction materials.

    One of its many benefits is its lightness. Wood also resists well to traction and compression along

    the axis of the tree from which it came. It offers high insulation properties, which enables the

    construction of thinner bearing walls. Wood offers good insulation both in winter and summer by

    naturally contributing to the thermal inertia necessary to keep warmth inside during the winter

    and maintain coolness in summer. It can significantly reduce heating consumption in winter.

    The insulating load-bearing clay brick

    Bricks are becoming more important in the green building approach. The insulating load-bearing

    clay brick (monomur brick) does not need insulating cladding on either the inside or the outside.

    It is a self-insulating material. The thermal insulation produced is in fact a combination of

    insulation and thermal inertia achieved by multiple air holes and extending the thermal path

    crossing the wall. As a resistant and durable heat regulation system and humidity barrier, the

    insulating clay brick displays admirable performance. Its efficiency is clearly demonstrated today

    through many tests and studies.

    In addition to all these benefits, the insulating clay brick also offers a technology that simplifies its

    deployment, respects all construction regulations and makes this material a future concept that is

    increasingly appreciated by builders. It presents a highly reassuring safety rating. In the event of

    flooding, the characteristics of the insulating clay brick remain intact after drying out, which is not

    the case with interior insulation. Without additional insulation, the insulating clay brick is totallynon-combustible. It emits no toxic gases in the event of fire. Insulating clay brick elements can

    easily be used to build buildings that must comply with seismic protection regulations.

    The clay brick is a natural temperature controller that retains its properties throughout its lifetime.

    In winter, the brick absorbs heat from the heating system and redistributes it gradually by

  • 8/12/2019 Electrical Installations for Schools and Colleges

    20/25

    radiation, reducing energy consumption by about 10% whatever the source. In summer, it

    naturally regulates the temperature and retains the coolness offered by nocturnal ventilation all

    day long, due to its excellent thermal inertia, but on condition that heat is not permitted to enter

    during the daytime by opening the windows.

    Cellular concrete

    Cellular concrete, sometimes referred to as aerated concrete, is a lightweight concrete that is very

    interesting for green building. It is a combination of water, siliceous sand, cement, lime and air.

    The lime reacts in contact with the aluminium powder present to 0.05%, emitting hydrogen gas to

    create the air bubbles. After hardening, the material is fairly light with a density of 400 Kg/m3 as it

    contains thousands of trapped air bubbles (up to 80% of its volume), and offers excellent thermal

    characteristics. Also, the expansion agent produced by recycling after chemical bonding with thelime, forms non-toxic calcium aluminates.

    The materials used in its manufacture make it an eco-material as it respects the environment. It is

    100% recyclable and can be used to cover rubble without risk of polluting soils. Cellular concrete

    offers a high thermal inertia and enables efficient correction of thermal bridges. It also offers

    exceptional resistance to fire, in excess of 6 hours. Soundproofing taken into account in the HEQ

    approach is 49 dB.

    The sound-damping performance of these blocks satisfies the most stringent requirements of

    acoustic regulations in effect for exterior walls. Cellular concrete is a natural mineral, non-

    combustible material. It offers remarkable protection against fire and its frequent use in industry

    and buildings requiring such protection is highly appreciated. A wall built of cellular concrete is

    water tight and can breathe. It is a real humidity regulator: It softens dry air by releasing gas and

    absorbs excessive humidity in a damp atmosphere. It therefore creates a healthy, pleasant

    atmosphere throughout the home.

    A major benefit of cellular concrete and what sets it apart from other materials is how it controls

    interior temperatures through thermal inertia. The thermal inertia of this material guarantees high

    attenuation of external temperature variations. It has an excellent capacity to accumulate heat

    and return it. This can help reduce the amount of time heating is used in half-season and can even

    offer natural temperature control in summer.

  • 8/12/2019 Electrical Installations for Schools and Colleges

    21/25

    The Euromac2 structure

    This construction system comprises two insulating cladding walls made of high density expanded

    polystyrene, joined by two metal spacers that are reinforced in their lateral parts by flat metal

    bands. Then concrete is poured inside the cladding up to a height of 3.6 metres in one go. This wall

    system is totally seismic-protected and has a variable width of 0.25 m to 0.45 m, with excellent

    acoustic and thermal insulation properties.

    Aside its exceptional thermal insulation properties, it offers excellent acoustic insulation and a fire-

    retardant effect from 90 to 120 minutes, depending on the thickness of the wall. It naturally

    insulates the outside from the inside, eliminating all thermal bridges and offering full protection to

    the construction. This type of construction method can be used for high buildings (up to 10

    storeys) and underground basements.

    With its reinforced insulation concept for all exterior walls and the slow inertia of its walls,

    Euromac2 (walls, floors, roofs) is particularly effective for BBC (low energy) buildings (Effinergie,

    Minergie and passive house certificates) and suitable for green building projects.

    GREEN BUILDINGENVIRONMENT AND CLIMATE

    THE ENVIRONMENT

    Natural resources

    The conservation of natural resources is the main objective of the green building approach. A

    natural resource is a raw material, whose properties are used by humans or other species to

    satisfy a need. Natural resources can be used in their raw state, with possibly some processes that

    do not alter them (the case of vegetal and animal resources, but also renewable energies from air,

  • 8/12/2019 Electrical Installations for Schools and Colleges

    22/25

    wind, water and the sun). They can also be transformed to be used. The latter mostly involves

    fossil fuels such as coal, oil, natural gas or uranium.

    We can distinguish two types of natural resources: Biological resources and energy resources.

    Natural biological resources are the water we drink, the soils that we cultivate, the air we breathe,

    the forests that provide oxygen for the atmosphere, along with all plant and animal species.

    Natural energy resources are by definition those we use to produce energy. They include air, the

    sun, water, geothermal sources, plants and fossil fuels.

    We can observe that natural resources are running out and that their extraction has harmful

    effects: Soil erosion, deforestation, destruction of natural habitats, biodiversity and disappearance

    of fish stocks. The exploitation of these resources generates pollution which to all evidence harms

    most countries and represents an increasingly dangerous threat to the quality of water, soil andair. Our current production, construction and consumption models, along with global climate

    change are factors that lead to us to wonder if the planets stock of natural resources will remain

    sufficient to satisfy the needs of a world population that is growing in number and increasingly

    drawn to live in cities.

    We often distinguish renewable resources and non-renewable resources. In terms of renewable

    resources, we consider those that naturally regenerate, or those that are in unlimited quantities.

    The two distinctions (biological or energy resources, renewable or non-renewable) can be further

    sub-divided. Effectively, a resource can be biological and renewable (air), biological and non-renewable (red tuna in the Mediterranean, very soon), energy and renewable (sun) or energy and

    non-renewable (coal). Today all natural resources are under threat, not just the finite reserves of

    energy. The most essential is water, which is cruelly lacking in certain regions of the world.

    Waste treatment

    In France, the law of 15 July 1975 on waste elimination and recuperation of materials defineswaste as any residue of a production process, transformation or usage, any substance, material,

    product or more generally, any furniture that is abandoned or destined to be abandoned by its

    owner. In our current society of consumption, goods circulate quickly and are renewed

    incessantly due to the existence of disposable goods. Waste is therefore produced in greater

    quantities and in increasingly complex forms.

  • 8/12/2019 Electrical Installations for Schools and Colleges

    23/25

    There are several waste management principles where use varies according to the country or

    regions. The hierarchy of strategies (the three Rs): Reduce, Reuse and Recycle: classifies waste

    management policies according to the priorities we wish to assign. Certain experts in waste

    management have recently added a fourth R: Rethink, which implies that the current system has

    weaknesses and that a perfectly efficient system would require a whole new vision of waste

    management.

    We now need to consider waste as a resource to be exploited and not as waste that we need to

    get rid of. The methods used to produce new resources from waste are varied and plentiful: For

    example we can extract raw materials from waste then recycle them or incinerate them to

    produce electricity. These methods are in full development, notably thanks to contributions from

    new technologies.

    The recycling of waste as raw materials is becoming increasingly popular, in particular in urban

    areas where space to open new waste management centres is becoming scarcer. Private

    individuals are therefore required to participate and selective waste collection is increasingly used.

    Public opinion is clearly evolving towards a position that in the long term, we cannot just dispose

    of our waste when raw materials are only available in limited quantities. The green building

    approach naturally integrates optimised waste management.

    Respect for the environment

    The commercial and residential construction sector can represent up to 40% of primary energy

    consumption. Overall, it is also responsible for 20 to 25% of waste dumped and 5 to 12% of total

    water consumption. The United States Green Building Council considers that on average, green

    building currently reduces energy consumption by 30%, carbon emissions by 35%, water

    consumption by 30% to 50%, costs relating to waste by 50% to 90%.

    A considerable number of research reports confirm the benefits for health and productivity,environmental properties such as natural lighting, the increased use of natural air for ventilation

    and humidity reduction, the choice of products with low emission rates for carpets, adhesives,

    paints and other coatings, as well as interior finishing products. In the USA, the annual cost of

    sickness related to buildings is estimated at 58 billion dollars. According to researchers, the

    ecologisation of construction could achieve annual savings of 200 billion dollars in the USA,

  • 8/12/2019 Electrical Installations for Schools and Colleges

    24/25

    simply by improving worker productivity through the improvements of ambient air in office

    buildings.

    Buildings also influence our quality of life, the deployment of infrastructures and transport

    networks. Bad land management practices often lead to inefficient use of land, which generates

    higher energy consumption and increased travel time. This can also result in a loss of productivity,

    the discharge of polluted run-off water into surface water storage and waste water treatment

    networks, the loss of farm land, the fragmentation of habitats and financial pressure for local

    authorities.

    CLIMATE CHANGE

    Reports produced by the worlds leading scientists stress the need to take action on a planetary

    scale to manage climate change. According to the forecasts of the Intergovernmental Panel on

    Climate Change (IPCC), if we do not immediately take sufficient measures to limit greenhouse

    gases, global warming could have irreversible and possibly catastrophic consequences. Every year,

    the energy used by buildings ejects thousands of megatonnes of CO2 emissions into the

    atmosphere.

    Reports indicate that energy-efficient buildings are one of the fastest and most economical ways

    of considerably reducing greenhouse gas emissions, and often a source of net economic benefits.

    An increasing number of organisations, institutions and government entities are demanding a

    radical improvement in energy yield in the construction sector. In short, the green building

    approach represents one of the most likely short term methods of considerably reducing

    emissions responsible for climate change.

    According to the IPCC report (ref 2b, 2007, institutional efforts in favour of eco-construction), the

    building sectors offer the best opportunity to achieve considerable reductions in CO2 emissions. In

    its fourth evaluation report, the Intergovernmental panel of experts confirms we should be able toeliminate approximately 30% the worlds emissions of greenhouse gases in the construction sector

    by 2030. With such reductions in energy consumption, renewable sources could satisfy additional

    energy needs, which would make it possible us to produce buildings with zero net energy

    consumption and which are carbon neutral. This limitation of CO2 emissions would also improve

    the quality of interior and exterior air, increase social well-being and secure our energy resources.

  • 8/12/2019 Electrical Installations for Schools and Colleges

    25/25

    ENVIRONMENTAL QUALITY

    The environmental quality of a green building is its ability to satisfy three complementary

    requirements:

    Control the impacts of the building on the exterior environment

    Create a comfortable and healthy environment for its users

    Preserve natural resources by optimising their use.

    This rule applies to construction but also more widely to urban programmes and land

    management (business parks, zoning, infrastructures, etc.).

    It is a concern that stems from discussions at the Rio summit in 1992, where 164 nations met to

    talk about sustainable development. The construction of a building can in effect have a major

    negative impact on the quality of our environment. The building sector consumes: 50% of natural

    resources, 40% energy and 16% of water.