Electrical for ALL

71
ADVANTAGES OF PVC CABLES 1. A non-hygroscopic insulation almost unaffected by moisture. 2. Non-migration of compound permitting vertical installation. 3. Complete protection against most forms of electrolytic and chemical corrosion. 4. A tough and resilient sheath with excellent fire- resisting qualities. 5. Good ageing characteristics. 6. Not affected by vibration. ADVANTAGES OF XLPE CABLES 1. Higher Current Rating. 2. Higher short Circuit Rating. 3. Longer service Life. 4. For a short time it can withstand maximum 130 0 C and is favourable to endues short circuit stresses. 5. It is less sensitive to the setting of the network protection. 6. Because of the thermosetting process taking place due to effect of cross linking, the crack resistance is increased. 7. Due to the chemical cross-linked stresses are redused. Consequently the material is less sensitive during manufacturing process to the setting of the cooling gradient. 8. The thermal resistivity of cross-linked material is favourably low, compound to thermoplastic material. 9. The low dielectric loss is a significant advantage. 10. The excellent mechanical features of the insulation improves the protection against external effects. 11. The resistance of the XLPE to acids, alkalies is outstanding and is often compensating the adverse environmental influences. CIRCUIT PROTECTION 1. PVC insulated cables should not be operated, even for comparatively short durations, at Temperature appreciably higher than that permissible for continuous operation, since the PVC insulation is liable to soften at higher temperatures and sustain serious damage. 2. It is, therefore, essential that such cables shall by continuously operated at the rated currents given in the tables only of they are suitably protected against excess currents arising out of the fault conditions, It is assumed that duration of such faults does not exceed four hours and protection is considere to beadequated if the minimum current at which the protective device is designed to operate does not exceed 1.5* times the tabulated rating for cables laid in air or in ducts, and not more than 1.3* times the tabulated values for cables laid direct in the ground.

description

this is for more details about electrical only

Transcript of Electrical for ALL

Page 1: Electrical for ALL

ADVANTAGES OF PVC CABLES1.                  A non-hygroscopic insulation almost unaffected by moisture.2.                  Non-migration of compound permitting vertical installation.3.                  Complete protection against most forms of electrolytic and chemical corrosion.4.                  A tough and resilient sheath with excellent fire-resisting qualities.5.                  Good ageing characteristics.6.                  Not affected by vibration. 

ADVANTAGES OF XLPE CABLES1.                  Higher Current Rating.2.                  Higher short Circuit Rating.3.                  Longer service Life.4.                  For a short time it can withstand maximum 1300 C and is favourable to endues short circuit

stresses.5.                  It is less sensitive to the setting of the network protection.6.                  Because of the thermosetting process taking place due to effect of cross linking, the crack

resistance is increased.7.                  Due to the chemical cross-linked stresses are redused. Consequently the material is less sensitive

during manufacturing process to the setting of the cooling gradient.8.                  The thermal resistivity of cross-linked material is favourably low, compound to thermoplastic

material.9.                  The low dielectric loss is a significant advantage.10.              The excellent mechanical features of the insulation improves the protection against external effects.11.              The resistance of the XLPE to acids, alkalies  is outstanding and is often compensating the adverse

environmental influences. CIRCUIT PROTECTION1.                  PVC insulated cables should not be operated, even for comparatively short durations, at

Temperature appreciably higher than that permissible for continuous operation, since the            PVC insulation is liable to soften at higher temperatures and sustain serious damage.2.                  It is, therefore, essential that such cables shall by continuously operated at the rated currents given

in the  tables only of they are suitably protected against excess currents arising out of the fault conditions, It is assumed that duration of such faults does not exceed four hours and protection is considere to beadequated if the minimum current at which the protective device is designed to operate does not exceed 1.5* times the tabulated rating for cables laid in air or in ducts, and not more than 1.3* times the tabulated values for cables laid direct in the ground.

3.                  If by the nature of the circuit protection, it is not possible to operate the cable at the rated current under the foregoing provisions, the cable required for a given continuous load current shall be chosen to have a ratings as given in the tables which shall be not less than :a)      The given continuous load current andb)      For cables in air on in ducts, 0.57* of the minimum current at which the excess current protection

is designed to operate, for cable laid direct in the ground, 0.77* of the minimum current at which excess current protection is designed to operate.

   ARC EWLDING CABLE

(IS 434 Part 1/ 1964 Latest amendments)  CONDUCTOR  Nominal Hand

welding current

NominalArea

Nominal and diameter of

wires

Maximum Resistance per

km at 20 0 C foruntinned wire

Total thickness of Rubber covering

Normal overall diameter

Amp. Sq.mm mm Ohm mm mm100 16 509/0.20 1.1550 2.00 10.7150 25 796/0.20 0.7384 2.00 12.2230 35 1114/0.20 0.5276 2.00 13.5400 50 1591/0.20 0.3694 2.00 15.2600 70 2228/0.20 0.2638 2.00 17.2

Page 2: Electrical for ALL

C A B L E S Cables from the necessary connections between the machine which generates electricity and the apparatus which use it. They comprise a very wide range of size & types. A cable has three main parts. The Conductor, the insulation & the mechanical protection. Conductor materials: Copper or AluminiumResistivities of copper – 17.24 m ohmResistivities of Aluminium  – 28.02 m ohmStranding – 1,3,7,19,37,61 & 91Size of conductor range from 1.0 mm2  (1/1.113 mm) to 630 mm2 (127/2.52 mm)Insulation: Types of insulating materials

(1)   Polyvinyl Chloride (P.V.C.) (2) Cross Linked Polyethylene (X.L.P.E)  (3) Elastomers (Vulecanized Rubber) (4) Butye Rubber (b.r.) (5) Ethylene – Propylene (e.p.) (6) Silicone Rubber (s.r.) (7) Impregnated paper (8) Mineral Insulation.

Cables may be Single core, Twin Core or Multi Core.Mechenical Protection:Unarmoured Cable                   -                       Lead Sheathing or Jute or Hessian tapeArmoured Cable                       -                       Galvanized iron wire – steel tape 

METHOD OF INSTALLATIONIt is recommended to lay cables as per configuration method below: FOR SINGLE CORE CABLES1.    Laid direct in the ground.

a)   Three in close trefoil formation, orb)      Two touching in horizontal formation.

2.     In ductsa)      Three in trefoil formation, orb)      Two in horizontal formation.

3.      In aira)   Two single core cables are installed one above the other fixed to a vertical wall as follows, the distance between the wall & the surface of the cable being 25mm in each case.i)    Cables of sizes up to & including 185 mm2 are installed at a distance between centers of twice the overall diameter of the cablesii)   Cables of sizes 240 mm2 and above are installed at a distance between centres of 90 mm. Note. The ratings for two cables may be applied with safety in cases where such cables are installed in horizontal formation, or brackets fixed to a wall, either spaced as indicated above or touching throughout.b)    Three single core cables are installed in trefoil formation touching.

FOR TWIN & MULTI CORE CABLESi.                Installed single in the ground.ii.               Installed single in the air.     

Page 3: Electrical for ALL

    RECOMMENDED CAPACITOR RATINGS FOR

DIRECT CONNECTION TO INDUCTION MOTORTo improve power factor to 0.95 or better at all loads.

 KVAR rating when motor speed is

MotorH.P.

3000r.p.m

1500r.p.m

1000r.p.m

750r.p.m

500r.p.m

2.5 1 1 1.5 2 2.55 2 2 2.5 3.5 4

7.5 2.5 3 3.5 4.5 5.510 3 4 4.5 5.5 6.515 4 5 6 7.5 920 5 6 7 9 1225 6 7 9 10.5 14.530 7 8 10 12 1740 9 10 13 15 2150 11 12.5 16 18 2560 13 14.5 18 20 2870 15 16.5 20 22 3180 17 19 22 24 3490 19 21 24 26 37100 21 23 26 28 40110 23 25 28 30 43120 25 27 30 32 46130 27 29 32 34 49140 29 31 34 36 52145 30 32 35 37 54150 31 33 36 38 55155 32 34 37 39 56160 33 35 38 40 57165 34 36 39 41 59170 35 37 40 42 60175 36 38 41 43 61180 37 39 42 44 62185 38 40 43 45 63190 38 40 43 45 65200 40 42 45 47 67250 45 50 55 50 70

 

RECOMMENDED CAPACITOR RATINGS FOR DIRECT CONNECTION TOPRIMARY SIDE OF WELDING TRANSFORMER FOR P.F CORRECTION

KVA rating of Transformer

Required capacitor Rating in KVAR

KVA rating of Transformer

Required capacitor Rating IN KVAR

9 4 36 1812 6 57 2518 8 95 4524 12 128 5030 15 160 75

    

Page 4: Electrical for ALL

  SIZE OF CAPACITORS IN KVAR REQUIREDFOR GIVEN DEGREE OF POWER FACTOR

CORRECTION PER KW OF LOAD 

Internal Power factor

 

Correction to            0.85 

 0.90

 

 0.95

 

 0.98

 

 Unity

1 2 3 4 5 60.50 1.112 1.248 1.403 1.529 1.7320.51 1.066 1.202 1.357 1.483 1.6860.52 1.024 1.160 1.315 0.441 1.6440.53 0.980 1.116 1.271 1.397 1.6000.54 0.939 1.075 1.230 0.356 1.5570.55 0.899 1.035 1.190 1.316 1.5190.56 0.860 0.996 1.151 1.277 1.4800.57 0.822 0.958 1.113 1.239 1.4420.58 0.785 0.921 1.076 1.202 1.4050.59 0.748 0.884 1.039 1.165 1.3680.60 0.741 0.849 1.005 1.131 1.3340.61 0.679 0.815 0.970 1.096 1.2990.62 0.679 0.781 0.936 1.062 1.2650.63 0.645 0.749 0.904 1.030 1.2330.64 0.613 0.716 0.871 0.997 1.2000.65 0.580 0.685 0.840 0.966 1.1690.66 0.549 0.654 0.809 0.935 1.1380.67 0.518 0.624 0.779 0.905 1.1080.68 0.488 0.595 0.750 0.876 1.0790.69 0.459 0.565 0.720 0.840 1.0490.70 0.429 0.536 0.691 0.811 1.0200.71 0.400 0.508 0.663 0.783 0.9920.72 0.372 0.479 0.634 0.754 0.9630.73 0.343 0.452 0.607 0.727 0.9360.74 0.316 0.425 0.580 0.700 0.9090.75 0.289 0.398 0.533 0.673 0.8820.76 0.262 0.371 0.526 0.652 0.8550.77 0.235 0.345 0.500 0.620 0.8290.78 0.209 0.319 0.473 0.594 0.8030.79 0.183 0.292 0.447 0.567 0.7760.80 0.156 0.266 0.421 0.541 0.7500.81 0.130 0.240 0.395 0.515 0.7240.82 0.104 0.214 0.369 0.489 0.6980.83 0.078 0.188 0.343 0.463 0.6720.84 0.052 0.162 0.317 0.437 0.6450.85 0.026 0.136 0.290 0.417 0.6200.86 … 0.109 0.264 0.390 0.5930.87 … 0.083 0.238 0.364 0.5670.88 … 0.054 0.209 0.335 0.5380.89 … 0.028 0.183 0.309 0.5120.90 …   0.155 0.281 0.4840.91 … … 0.124 0.250 0.4530.92 … … 0.097 0.223 0.4260.93 … … 0.066 0.192 0.3950.94 … … 0.034 0.160 0.3630.95 … … … 0.126 0.3290.96 … … … 0.089 0.2920.97 … … … 0.089 0.2500.98 … … … … 0.2030.99 … … … … 0.143

Page 5: Electrical for ALL

        CAPACITY OF PVC CONDUITS

  

SIZE OF CONDUITSSize of

conductor16mm

Or5/8”

20mmOr

3/4”

25mmOr1”

32 mmOr

1.25”(mm2) Maximum Nos. of Conductors

1.01.52.54610162535

65322----

75432----

19151186432-

30241713106432

CIRCUIT PROTECTION  

1.      PVC insulated cables should not be operated, even for comparatively short durations, at Temperature appreciably higher than that permissible for continuous operation, since thePVC insulation is liable to soften at higher temperatures and sustain serious damage.

 2.      It is, therefore, essential that such cables shall by continuously operated at the rated currents given in

the  tables only of they are suitably protected against excess currents arising out of the fault conditions, It is assumed that duration of such faults does not exceed four hours and protection is considere to be adequated if the minimum current at which the protective device is designed to operate does not exceed 1.5* times the tabulated rating for cables laid in air or in ducts, and not more than 1.3* times the tabulated values for cables laid direct in the ground.

 3.      If by the nature of the circuit protection, it is not possible to operate the cable at the rated current

under the foregoing provisions, the cable required for a given continuous load current shall be chosen to have a ratings as given in the tables which shall be not less than :

  

a)      The given continuous load current and b)      For cables in air on in ducts, 0.57* of the minimum current at which the excess current protection

is designed to operate, for cable laid direct in the ground, 0.77* of the minimum current at which excess current protection is designed to operate.

Page 6: Electrical for ALL

CLASSIFICATION OF INSTALLING MATERIALSFOR ELECTRICAL MECHANARY & APPARATUS

ON THE BASIS OF THERMAL STABILITY 

The endurance of material used for the insulation of Electrical machinery and apparatus is affected by many factors, such as temperature, electrical and mechanical stresses, vibration, exposure to deleterious atmospheres and chemicals, moisture and dirt.

 It is a fact that materials included in a particular class may not withstand for an unlimited time the

temperature assigned to that class. They will, however, withstand the temperature for long periods of time with intervening periods of lower temperatures and so have adequate life in service.

 The recognized classes of insulating materials and temperatures assigned ot them are as follows:                 Class of Insulation                                                               Temperature Limit                                Y                                                                                               900   C                                A                                                                                             1050   C                                E                                                                                              1200  

  C                                B                                                                                             1300    C                                F                                                                                              1550    C                                H                                                                                             1800   C                                C                                                                                             2200   C 

The list of Insulating materials under each group of class is given hereunder:           

CLASS Y (90)                Cotton Natural silk, cellulose Fibre, Paper and paper products, Vulcanising fibre etc. CLASS A (105)                Impregnated cotton, silk, paper and paper products, oil enamels laminates wood, Enamel wire based on

polymide resins etc. CLASS E (120)                Wire enamels based on polyvinyl formal, Polythene or epoxy resin, Phenolformalde mouldings of

cotton, paper et, Polyster resins, Epoxy resins, cellulose, triacetate film etc. CLASS B (130)                Glass Fibre, Asbestors, Oil-modified synthetic resin varnished glass fibre and asbestor Shellic, asphalt,

Bituminous Compounds, Built up Mica. CLASS F (155)                Alkyd, Epoy, Polyster, Silicon-Alkyd and silliconphenolic resin impregnaterd glass fibre cloth. Built

up Mica with Alkyd, Epoxy, Cross Linked Polyster and Polyurthene Resins with Superior ThermalStability Sillicone alkyd resins. 

CLASS H (180)                Silicon, Varinished impregnated Glass Fibre Cloth, Mica Silicon resin Bonded Built up mica and

combinations of Mica and other class materials with suitable bonding materials. CLASS C (above 180)                Mica, Porcelain, Glass Quartz, Asbestos, Built up Mica Treated Glass fibre cloth. IMPREGNATION                Any insulation system is incomplete without the system being impregnated by a suitable varnish. The

impregnation also provides mechanical strength to the system. It becomes a solid structure after it iscured.

  

Page 7: Electrical for ALL

 CONDUCTORS & WIRES

ALL ALUMINIUM (STANDARD) CONDUCTORS (A.A.C.)Based On  I.S. 398/1961

  

CONDUCTOR ELECTRICAL PROPERTIES   

CODENAME

  

Nominal Copper

Area mm2

  

Calculated Equivalent

Area of Aluminum

mm2

Calculated Resistance

at 20 0c     when Corrected to

Standard Weight

Ohm/Km

 Approx.CurrentCarrying

Capacity Amp 

 Stranding

& Wire      Diameter  

40 0C Amb.Temp.

45 0 C              

Amb.                                     Temp.

   No. 

Dia(mm)

ROSE 13 20.89 1.36200 - - 7 1.96GNAT 16 26.56 1.07100 - - 7 2.21IRIS 20 33.45 0.85060 - - 7 2.48PANSY 25 42.02 0.67700 - - 7 2.78LADY BIRD 25 42.33 0.67210 178 165 7 2.79ANT 30 52.26 0.54440 204 189 7 3.10FLY 40 62.86 0.45260 229 212 7 3.40BLUE BOTTLE 45 72.84 0.39360 252 234 7 3.66EARWING 48 77.70 0.36620 264 245 7 3.78GRASS-HOPPER

50 83.13 0.34220 275 255 7 3.91

CLEGG 60 94.56 0.30090 298 276 7 4.17WASP 65 104.80 0.27150 318 295 7 4.39- 80 132.20 0.21520 - - 19 3.00- 90 148.50 0.19160 - - 19 3.18CATERPILLER 110 183.00 0.15550 460 386 19 3.53CHAFFER 130 209.90 0.135660 504 468 19 3.78SPIDER 140 233.80 0.12170 540 500 19 3.99COCKROACH 160 261.50 0.10880 575 535 19 4.22BUTTERFLY 185 317.50 0.08959 655 608 19 4.65MOTH 255 367.20 0.07749 720 660 19 5.00LOCUST 260 421.90 0.06743 790 734 19 5.36MAYBUG 300 473.60 0.05982 850 790 37 4.09SCORPION 325 518.40 0.05488 895 830 37 4.27

  

Page 8: Electrical for ALL

 CONDUCTORS & WIRES

ALUMINIUM CONDUCTORS STEEL REINFORCED(A.C.S.R.) Based On I.S. 389/1961

 CONDUCTOR ELECTRICAL PROPERTIES

CODENAME

Nominal Copper Area Equivalent

mm2

 

 Calculated Equivalent

Area of Aluminium

mm2

 

Calculated Resistance at 20 0 C When Corrected to

Standard Weight

Ohm/Km

Approx. Current Carrying Capacity

Amp 

        Area     (mn2)

  

S.W.G. 

   40 0 C  Amb. Temp.

  

45 0 CAmb.

Temp.

MOLE 6.5 8 10.47 2.71800 - -SQUIRREL 13 8 20.71 1.37400 115 107GOPHER 16 7 25.9 1.09800 133 123WEASEL 20 6 31.21 0.91160 150 139FERRET 25 4 41.87 0.67950 181 168RABBIT 30 3 52.21 0.54490 208 193MINK 40 2 63.32 0.45650 234 217HORSE 42 - 71.58 0.39770 - -BEAVER 45 1/2/0 74.07 0.38410 261 242RACCOON 48 1/0 77.83 0.36560 270 250OTTER 50 1/2/0 82.85 0.34340 281 260CAT 55 2/0 94.21 0.30200 305 283DOG 65 4/0 103.60 0.27450 324 300LEOPARD 80 4/0 129.70 0.21930 375 343COYOTE 80 4/0 128.50 0.22140 375 348TIGER 80 5/0 128.10 0.22210 382 354WOLF 95 6/0 154.30 0.18440 430 398LYNX 110 7/0 179.00 0.15890 475 440PANTHER 130 - 207.00 0.13750 520 482LION 140 - 232.50 0.12230 555 515BEAR 160 - 258.10 0.11020 595 552GOAT 185 - 316.50 0.08989 680 630SHEEP 225 - 366.10 0.07771 745 690KUNDAH 250 - 394.40 0.07434 - -DEER 260 - 419.30 0.06786 806 747ZEBRA 260 - 428.60 0.06800 795 736FLK 300   465.70 0.06110 860 796CAMEL 300 - 464.50 0.06125 - -MOOSE 325 - 515.70 0.05517 900 835MORKULLA 330 - 549.20 0.05182 - -SPARROW 20 6 33.16 0.85780 - -FOX 22 6 36.21 0.78570 165 135GUINEA 49 1/0 78.56 0.36200 - -LARK 125 - 196.10 0.14510 - -

Page 9: Electrical for ALL

CONDUCTORS & WIRESALUMINIUM CONDUCTORS STEEL REINFORCED

(A.C.S.R.) Based On I.S. 389/1961 

MECHANICAL PROPERTIESStranding & Wire

Diameter (mm) Conductor Diameter

mm

 Conductor

Areamm 2

 

 Approx.Weight

Kg./Km.

Approx.UltimateStrength

Kg.

Aluminium Steel        No. Diam. No. Diam. Total Al. St.  6 1.50 1 1.50 4.50 12.37 43 29 14 4076 2.11 1 2.11 6.33 24.48 85 58 27 7716 2.36 1 2.36 7.08 30.62 106 72 34 9526 2.59 1 2.59 7.77 36.88 128 87 41 11366 3.00 1 3.00 9.00 49.48 171 116 55 15036 3.35 1 3.35 10.05 61.17 214 145 69 18606 3.66 1 3.66 10.98 73.65 255 173 82 220712 2.79 7 2.79 13.95 116.20 542 205 338 61086 3.99 1 3.99 11.97 87.53 303 206 98 26136 4.09 1 4.09 12.27 91.97 318 215 103 27466 4.22 1 4.22 12.66 97.91 339 230 109 29236 4.50 7 4.50 13.50 111.30 385 261 124 33246 4.72 7 1.57 14.16 118.50 394 288 106 32996 5.28 7 1.76 15.48 148.40 493 360 133 413726 2.54 7 1.90 15.86 151.60 521 365 165 463830 2.36 7 2.36 16.52 161.80 604 363 241 575830 2.59 7 2.59 18.13 195.00 727 436 291 688030 2.79 7 2.79 19.53 226.20 844 506 338 795030 3.00 7 3.00 21.00 261.60 976 586 390 912730 3.18 7 3.18 22.26 293.90 1097 659 438 1021030 3.35 7 3.35 23.45 326.10 1219 734 485 1131030 3.71 7 3.71 25.97 400.00 1492 896 596 1378030 3.99 7 3.99 27.93 462.60 1726 1036 690 1591042 3.50 7 1.94 26.82 424.80 1282 1120 162 900230 4.27 7 4.27 29.89 529.80 1977 1188 789 1823054 3.18 7 3.18 28.62 484.50 1623 1185 438 1331630 4.50 1 4.50 31.50 588.40 2196 1320 876 2024054 3.35 7 3.35 30.15 537.70 1804 1318 486 1475054 3.53 7 3.53 31.77 597.00 2002 1463 539 1625042 4.13 7 2.30 31.68 591.70 1790 1564 226 122366 2.67 1 2.67 8.01 39.22 135 92 43 12086 2.79 1 2.79 8.37 42.92 149 101 48 131312 2.92 7 2.92 14.60 127.20 590 224 366 666430 2.92 7 2.92 20.44 247.80 922 556 366 8559

 

Page 10: Electrical for ALL

BUS BARS:     

CONSTTRUCTIONAL DETAILS ALUMINIUM   AND CURRENT CARRYING CAPICITY                             AT 350 

 C AMBIENT TEMP AND 300  C TEMP RISE  

 Size in        mm

Cross Sectional area mm2

 

 Weight(Aprox.)Kg/Mtr.   

   Continuous Current Carrying Capacity in Amps. 

                             A.C.                                          D.C.                            No. of Buses                               No. of Buses    1             2            3           4             1         2            3             4    I             II          III        IIII             I         II         III        IIII 

12X2 23.5 0.0633 80 140 - - 80 145 - -15X2 29.5 0.0795 95 170 - - 95 175 - -

   15X3 44.5 0.120 115 210 - - 115 220 - -

20X2 39.5 1.107 120 220 - - 125 225 - -20X3 59.5 0.161 145 270 - - 150 280 - -20X5 99.1 0.268 195 350 - - 200 370 - -25X3 74.5 0.201 180 330 - - 185 340 - -25X5 124.0 0.335 230 430 - - - 235 440 -

30X3 89.5 0.242 205 385 - - 220 400 - -30X5 149.0 0.403 270 500 - - 275 520 - -40X3 119.0 0.323 280 500 - - 285 525 - -40X5 199.0 0.38 350 650 - - 360 660 - -40X10 399 1.08 515 975 1350 1800 540 1000 1420 -50X5 249 0.673 425 700 1120 1500 445 815 1220 -50X10 499 1.35 625 1150 1600 2160 655 1220 1730 -60X5 299 0.808 500 900 1300 1730 530 960 1420 185060X10 599 1.62 730 1330 1900 2500 770 1430 2030 260080X5 399 1.03 698 1170 1650 2230 700 1260 1850 240080X10 799 2.16 940 1700 2360 3150 985 1840 2640 3400100X5 499 1.35 820 1440 2000 2600 855 1550 2220 2900100X10 999 2.70 1150 2050 2800 3700 1200 2240 3200 4200100X15 500 4.04 1450 2500 3350 4400 1500 2750 4000 5200120X10 1200 3.24 1350 2400 3250 4300 1420 2700 3900 5100120X15 1800 4.86 1660 2900 3900 5000 1750 3250 4800 6300160X15 2400 6.47 2100 3600 4850 6250 2300 4800 6200 8100200X10 2000 5.40 2150 3650 4950 6400 2300 4300 6200 8100200X15 3000 8.09 2550 4200 5600 7300 2850 5250 7650 10100

Page 11: Electrical for ALL

BUS BARS:     CONSTTRUCTIONAL DETAILS

COPPER AND CURRENT CARRYING CAPICITYAT 350

 C AMBIENT TEMP AND 300 C TEMP RISE 

Size inmm

Cross Sectional area mm2

 

 Weight(Approx.)Kg/Mtr.   

   Continuous Current Carrying Capacity in Amps.                              A.C.                    No. of Buses    1             2            3            4    I             II          III       IIII 

D.C.        No. of Buses

1         2            3             4I         I I         I I I        I I I I

 

12X2 23.5 0.209 110 200 - - 115 205 - -15X2 29.5 0.262 140 200 - - 145 245 - -15X3 44.5 0.396 170 300 - - 175 305 - -

20X2 39.5 0.351 185 315 - - 190 325 - -20X3 59.5 0.529 220 380 - - 225 390 - -20X5 99.1 0.882 295 500 - - 300 510 - -25X3 74.5 0.663 270 460 - - 275 470 - -25X5 124.0 1.11 350 600 - - 355 610 - -

30X3 89.5 0.796 315 540 - - 320 560 - -25X5 149.0 1.33 400 700 - - 410 720 - -40X3 119.0 1.06 420 710 - - 430 740 - -40X5 199.0 1.77 520 900 - - 530 930 - -40X10 399.0 3.55 760 1350 1850 2500 770 1400 2000 -50X5 249.0 2.22 630 1100 1650 2100 650 1150 1750 -50X10 499.0 4.44 920 1600 2250 3000 960 1700 2500 -60X5 299.0 2.66 760 1250 1760 2400 780 1300 1900 250060X10 599.0 5.33 1060 1900 2600 3500 1100 2000 2800 360080X5 399.0 3.55 970 1700 2300 3000 1000 1800 2500 320080X10 799.0 7.11 1380 2300 3100 4200 1450 2600 3700 4800100X5 499.0 4.44 1200 2050 2850 3500 1250 2250 3150 4050100X10 999.0 8.89 1700 2800 3650 5000 1800 3200 4500 5800120X10 1200.0 10.7 2000 3100 4100 5700 2150 3700 5200 6700160X10 1600.0 14.2 2500 3900 5300 3700 2800 4800 6900 9000200X10 2000.0 17.8 3000 4750 6350 8800 3400 6000 8500 10000

CONSTRUCTIONAL DETAILS FOR BAREALUMINIUM CONDUCTOR

Area 

mm2

Stranding 

mm

Overall Diameter

mm

Area 

mm2

Standing 

mm

Overall Diameter

mm6 1/2.80 2.80 120 37/.2.06 14.4210 1/3.55 3.55 150 37/2.24 15.6816 7/1.70 5.10 185 37/2.50 17.5025 7/2.24 6.72 225 37/2.80 19.6035 7/2.50 7.50 240 37/3.00 21.00        {7/3.00 9.00 300 61/2.50 22.50

50 {19/1.80   400 61/3.00 27.00        {61/4.25 29.25

70 19/2.24 11.20 500 {91/2.65 29.1595 19/2.50 12.50 625 91/3.00 33.00

 

Page 12: Electrical for ALL

CONTRUCTIONAL DETAILS 1100 VOLTSALUMINIUM CONDUCTOR

UNARMOURED AND ARMOURED CABLE IS: 1554(PART 1)

 UNARMOURED ARMOURED

No. of Cores & Nominal

area of Conductors

Approximate overall

diameter

ApproximateNet

Weight

Approximate overall

diameter

Approximate NetWeight

Sq. mm mm Kg./Km. mm Kg./Km.2X2.5 11.8 175 15.7 5402X4 13.1 220 17.0 6302X6 14.2 260 18.0 7102X10 15.7 320 19.6 8302X16 18.8 460 20.8 8602X25 19.8 530 21.4 8702X35 21.1 600 22.6 9602X50 23.7 760 25.2 11603X2.5 12.4 190 16.3 5803X4 13.8 240 17.4 6803X6 15.0 280 18.7 7803X10 16.6 350 19.5 8403X16 20.4 530 22.5 9803X25 21.2 630 23.0 10403X35 22.5 730 24.0 11603X50 25.3 940 26.9 14303X70 28.7 126 30.9 18403X95 32.2 1590 34.0 22003X120 35.4 1920 37.2 25903X150 38.1 2210 40.0 29503X185 44.0 2780 46.3 36803X225 48.4 3470 50.3 44103X240 50.8 3920 52.0 4960

ALUMINIUM STRIPS WEIGHT(Appx.) IN KG.

PER12 RFT (3.656 MTS) 

THICKNESS 

WIDTH 

1/8” 

3.2 mm

3/16” or 

4.76 mm

1/4” or 

6.4 mm

3/8” or 

6.4 mm

1/2” or 

12.7 mm1”        or      25.4      mm .820 1.200 1.600 2.300 3.2001 ¼”    or      31.8        “ 1.000 1.600 2.000 3.200 4.0001 ½”    or      38.1        “ 1.300 …… 2.400 3.600 4.8001 ¾”    or      44.5        “ 1.400 …… 2.800 4.200 5.6002”        or      50.8        “ …… …… 3.200 4.800 6.4002 ½”    or      63.5        “ …… …… 4.000 6.000 8.0003”        or     76.2         “ …… …… 4.800 7.200 9.5004”        or     101.6       “ …… …… 6.500 9.750 13.0005”        or     127.0       “ …… …… …… 14.850 16.6006”        or     152.4       “ …… …… 9.900 14.850 19.8008”        or     203.2       “ …… …… 12.650 19.000 25.300

Page 13: Electrical for ALL

CONSTRUCTIONAL DETAILS OF 1100 VOLTSALUMINIUM CONDUCTOR

UNARMOURED AND ARMOURED CABLE IS: 1554(PART 1)

 

WEIGHT OF COPPER STRIPS(ELECTROLYTIC GRADE) WT. IN KGS / MTRS

 THICKNESS

 WIDTH 

1/16” 

1.6 mm

1/8” 

3.2 mm

3/16” 

4.76 mm

1/4” 

6.4 mm

3/8” 

9.53 mm

1/2” 

12.7 mm1/2" or      12.70 mm .184 .367 .574 .746 1.089 1.4345/8” or      15.88 mm .230 .459 .717 .932 1.363 1.7933/4" or      19.05 mm .275 .550 .860 1.119 1.635 2.1511”    or      25.40 mm .362 .734 1.417 1.491 2.180 2.86811/4” or     31.75 mm .459 .958 1.434 1.864 2.725 3.58511/2” or      38.10 mm …… 1.104 1.720 2.237 4.270 4.3022      or     50.80 mm …… 1.470 2.294 2.982 4.359 5.7362 ½” or     57.15 mm …… …… 2.582 3.356 4.905 6.4532 ¼”  or    63.50 mm …… …… 2.868 3.729 5.499 7.1703”     or     76.20 mm …… …… 3.442 4.475 6.359 8.6044”     or   101.60 mm …… …… 4.588 5.965 8.719 11.4725”    or    127.00 mm …… …… 5.736 7.457 10.898 14.3406”   or     152.40 mm …… …… 6.883 8.948 13.078 17.208

 

UNARMOURED ARMOUREDNo. of Cores & Nominal area of Conductors

Approximate overall diameter

ApproximateNet

Weight

Approximate overall diameter

Approximate NetWeight

Sq. mm mm Kg./Km. mm Kg./Km.3X300 55.0 4480 57.2 5623X400 63.8 6140 65.7 74003.5X25 23.5 750 25.2 11503.5X35 25.0 870 26.8 13003.5X50 27.7 1110 29.4 16203.5X70 32.2 1500 34.0 21003.5X95 35.5 1840 37.2 25003.5X120 39.0 2350 40.4 30503.5X150 42.8 2730 44.7 34503.5X185 48.6 3360 50.5 41903.5X225 54.6 4190 56.3 51803.5X240 57.2 4690 58.9 57403.5X300 61.0 5300 63.1 56803.5X400 71.5 7090 73.7 85004X2.5 13.3 220 17.2 6404X4 14.8 280 18.7 7604X6 16.2 330 19.0 780

4X10 18.0 420 21.3 8504X16 22.2 640 25.0 11104X25 24.1 810 25.6 12504X35 25.7 920 27.2 14004X50 29.0 1190 31.0 1790

Page 14: Electrical for ALL

CURRENT RATINGS: PVC INSULATED CABLES650/1100 VOLTS ARMOURED/ UNARMOURED AND SHEATHED ALUMINIUM

CONDUCTOR CABLES CONFORMING TO IS – 1554(PART-I) 1976 AMENDED UO TO DATE       

RATING AT 30 0 C TEMPERATURENomiinal 

area of conductor   

LAID IN THE GROUND 

IN SINGLE WAY DUCT 

IN AIR 

 SINGLE  CORE  

TWIN       CORE                  

3or

4 coreamp

     SINGLE      CORE  

 TWIN          CORE         

 

3or4 coreamp

 SINGLECORE 

 TWIN               CORE           

 

        mm2

3 Nos.amp

2 Nos. amp 

Singleamp

  3 Nos.amp

2 Nos. amp 

Singleamp

  3 Nos.amp

2 Nos. amp 

Singleamp

 

 

1.5 17 21 18 16 17 19 16 14 15 18 16 13  2.5 24 28 25 21 24 25 21 18 21 25 21 18  4 31 36 32 28 30 33 27 23 27 32 27 23  6 39 44 40 35 37 42 34 30 35 41 35 30  10 51 59 55 46 51 56 45 39 47 56 47 40  16 66 75 70 60 65 71 58 50 64 72 59 51  25 85 97 90 76 84 93 76 63 84 99 78 70  35 100 120 110 92 100 11

092 77 104 120 99 86

 

50 120 135 135 110

115 130

115 95 130 150 125 105 

70 140 160 160 130

135 155

140 115

155 185 150 130 

95 175 190 190 165

155 180

170 140

190 215 185 155 

120 195 210 210 185

170 200

190 155

220 240 210 180 

150 220 240 240 210

190 220

210 175

250 270 240 205 

185 240 275 275 235

210 240

240 200

290 305 275 240 

225 260 305 305 260

220 260

260 220

320 335 305 265 

240 270 320 320 275

225 270

275 235

335 350 325 280 

300 295 355 355 305

245 295

305 260

380 395 365 315 

400 325 385 385 335

275 335

345 290

435 455 420 375 

500 345 - - 370

295 355

- 320

480 480 - 425 

630 390 - - 405

320 395

- 350

550 560 - 480 

800 440 - - - 345 430

- - 600 640 - - 

1000 490 - - - 370 465

- - 720 740 - - 

 

Page 15: Electrical for ALL

Rating factor for variation in Ground Temperature for cables laid direct in the ground: 

Ground Temperature 0 C           15        20        25        30        35              40             45Rating Factors                          1.17     1.12     1.06     1.00     0.94           0.87           0.79Rating factor for variation in Ground Temperature for cables in ducts:Ground Temperature 0 C           15        20        25        30        35              40             45Rating Factors                       1.17     1.12     1.06     1.00      0.94         0.87           0.79Rating factors for variation in Ambient Air Temperature.Ground Temperature 0 C           20        25        30        35        40              45             50Rating Factors                       1.33     1.25     1.16     1.09      1.00         0.90           0.83 

  

Page 16: Electrical for ALL

DESIGN OF LIGHTING SCHEMS 

-          The lighting scheme should be such that it may 

i)              Provide adequate illuminationii)             Provide light distribution all over the working place as uniform as possible.iii)           Provide light of suitable color andiv)           Avoid glare and hard shadows as far as possible The following factors are required to be considered while designing the lighting scheme :i)            Illumination Level                         v)         Gladeii)           Uniformity of Illumination              vi)        Mounting Heightiii)         Color of Light                                         vii)        Spacing of Luminariesiv)         Shadows                                                 viii)       Colour of surrounding walls 

SUGGESTIVE LUX LEVEL AREA OFFICESConference roomsSHOP SupermarketsShowrooms-Car-GeneralSCHOOLClassroomHOSPITALSGeneralExaminationCorridors-General-Reception/EnquiryHOMESLiving Rooms-Casual Reading-Desk and prolonged readingHOTELSReception/Cashier/LobbyCoffee Bar/RestaurantsMULTI-PURPOSE SPORTS HALL-Table Tennis, Gymnasium, Squash   

LUX750

 500

 500500

 500

 3001000

 150300

  

150300

 300150

 500

   

  

   

Page 17: Electrical for ALL

 EARTHING SYSTEMS

 EARTHING – The term’EARTHING’ means connecting the neutral point of a power supply system or the non – current carrying parts of electrical apparatus to the general mass of earth the earth electrode and the ear thing lead. This is essential as provides safely to human being from the fatal electric shocks. EARTH ELECTRODE AND EARTHING LEAD – Any wire, pipe, rod or metal plate embedded in earth for the purpose of making an effective electrical connection with the general mass of earth is known as earth electrodes. The wire or strip which connects earth electrode to any ear thing pr. Is known as ear thing lead. According to I.S.I. specifications. The cross section of the earthing lead, as a general rule, should not be less than half of the section of the main supply conductor feeding the installation. In small instruction, G.I. or copper wire of 8 SWG should be run from earth electrode to main distribution board and to sub main distribution board. From submain distribution board copper wire of 14 SWG should be run to three pin sockets and other ear thing points. In large installations the cross section of ear thing lead should not be less than 161.1 mm2 for main connections and 64.5 mm2 for branch connection. Copper strip of 25.4 mm x 3.18 mm or 6.35 mm are usually employed as a  rinf main for connecting all the electrical apparatus to the earth. Methods of Ear thing – The various methods of ear thing are:-

(a)               Pipe Ear thing(b)               Plate Ear thing(c)                Strip or Wire Ear thing(d)               Rod Ear thing

 (a)               Pipe Ear thing – Pipe Ear thing is the beast from of ear thing and is very cheap in cost. In this method

of ear thing, a galvenised and performed pipe of approved length & diameter is placed upright in a permanently wet soil. The size of the pipe depends upon the current to be carried and type of soil. Usually the pipe used for this purpose is of diameter 38 mm and 2.5 meters in length for ordinary soil or of grater length in case of dry and rocky soil. The depth at which the pipe is to be buried depends upon the moisture of the ground but it should be minimum 3.75 metres. The pipe is tapered at lower end in order to facilitate the driving. The pipe at the bottom is surrounded by broken pieces of coke or charcoal for a distance of about 15 cm. around the pipe. Alternate layers of coke and salt are used to increase the effective areas of earth and to decrease the earth resistance respectively. Another pipe of 19 mm diameter and 1.25 metres length is connected at the tape to G.I. Pipe through reducing socket. In summer session, 3 or 4 buckets of water are put through the funnel can connect to 19 mm diameter pipe which is further connected to G.I. Pipe. The earth wire (either G.I. wire or G.I. strip of sufficient cross section to carry fault currents safely) is carried in G.I. pipe of diameter 12.7 mm at a depth of about 60 cm. from the ground Care should be taken that earth wire is well protected from mechanical injury, when it is carried from 1.2 another.

 (b)         Plate Earthing – In Plate ear thing an ear thing plate either of copper of

            Dimension 60cm x 60cm x 3.15 mm or galvanized iron of dimension 60 cm. x

Page 18: Electrical for ALL

            60cm.x 6.30 mm is buried into the ground with its face vertical at a depth of not             Less than 3 meteres from ground level. The earth plate is embedded in alternate             layers of coke & salt for a minimum thickness of 15 cm. The earth Wire is             securely bolted to an earth plate with the help of a bolt, nut & washer made of              Material of that of earth plate.                A small masonry brick wall enclose with a cast iron cover on top is provided to            Facilitate identification and for carrying out periodical inspection and tests. 

(c)          Strip or Wire Earthing – In this system strip electrodes of cross section not less than 25 mm x 1.6 mm of copper and 25 mm x 3 mm if of galvanized iron or steel are  builed in horizontal trenches of minimum depth 0.5 metre. It round conductors are used, their cross sectional area shall not be smaller then 3 mm 2 in case of 6 mm2 in case of galvanized iron or steel. The length of buried conductor shall be sufficient to give the required earth resistance. Its shall however be not less than 15 meters. The electrodes shall be as widely distributed as possible, preferably in a single straight or circular trench or in a number of trenches reradiating from a point, If condition require use of more than one strip, they shall be laid either in parallel trenches or in radial trenches.

 This type of ear thing is used at places which have rockey soil earth bed because at such places excavation work for plate ear thing is difficult.

 (d)         Rod Earthing – In this system of earthing 12.5 mm diameter solid rods of copper or 16 mm diameter

solid rods of galvanized iron steel or hollow section 25 mm G.I. pipes of length not less than 2.5 metres are driven vertically into the earth. This system of ear thing is suitable for areas which are sandy in character. For smaller installations G.I. pipe earthing is used and for larger installations and transmission lines where the fault current is likely to be high, plate earthing is to be used. Under no circumstances gas pipe be used for the purpose of earthing of electrical equipment.

 (e)         Ear thing Resistance- the main principle regarding earth resistance is that the earth

 Resistance should be low enough to cause flow of sufficient current to operate the Protective relays or to blow fuses. The value of earth resistance is maximum duringSummer season as it depends upon the moisture content of the soil.The following values of earth resistance will give satisfactory results : Large power station                  -     0.5 ohm, Major Power Station       -           1.5 ohmSmall Substation                       -     2.0 ohm, In all other cases  -           8.0 ohm The resistance of ear thing lead from earth electrode to any pt. in the installationShould not be more then 1.0 ohm.

 

 

Page 19: Electrical for ALL

 SIZE OF EARTH WIRE AND EARTH PLATE

FOR DOMESTIC & MOTOR INSTALLATION 

Sl.No.

Capacity of Equipments Size of Earth Wire in SWG 

Size of Earth electrode 

      Copper 

G.I. 

      Copper GI

1 Up to 10 hp No. 8 No. 8 60 cm x 60 cm x 3.15 mm

60 cm x 60 cm x 6.3 mm

2 Above 10 hp & up to 15 hp No. 8 No. 8 -do- -do-3 Above 15 hp & up to 30 hp No. 6 No. 2 -do- 90 cm x 90 cm x

6.30 mm4 Above 30 hp & up to 80 hp No. 4 - 90 cm x 90 cm x

6.30 mm-

5 Above 50 hp & up to 100 hp No. 2 or strip 12.7 mm. x 2.54

mm

- -do- -

6 Above 100 hp Strip 25.4 mm x 2.54 mm

- -do- -

 EARTHING PLATE READY RECKONER

 Sl. No.

Sizemm

CopperKg

AluminumKg

G.I.Kg

1. 300 x 300 x 3 MM 2.41 0.73 2.132. 300 x 300 x 6 MM 4.83 1.46 4.253. 600 x 600 x 3 MM 9.65 2.92 8.504. 600 x 600 x 6 MM 19.30 5.83 17.005. 600 x 600 x 12

MM38.60 11.66 34.00

 

 PERFORMANCE DATA (EXHAUST FAN)

FAN DIA MM/INCHES

SPEED RPM

INPUT POWER WATTS

PHASE CURRENT AMP

MAX FREE M3/HR

SOUND LEVEL DB

305/12” H/D 1400 90 SINGLE 0.43 1900 40-45305/12” H/D 900 55 SINGLE 0.30 1250 35-40380/15” H/D 1400 160 SINGLE 0.75 4000 60-65380/15” H/D 1400 150 THREE 0.45 4000 60-65380/15” H/D 900 100 SINGLE 0.40 2460 50-55380/15” H/D 900 85 THREE 0.29 2460 50-55457/18” H/D 1400 350 SINGLE 1.55 6800 65-70457/18” H/D 1400 345 THREE 0.65 6800 65-70457/18” H/D 900 160 SINGLE 0.65 4350 55-60457/18” H/D 900 125 THREE 0.30 7350 55-60610/24” H/D 700 290 SINGLE 1.40 7900 55-60610/24” H/D 700 260 THREE 0.50 7900 55-60610/24” H/D 900 550 SINGLE 2.60 10450 60-65610/24” H/D 900 470 THREE 0.85 10450 60-65

 

Page 20: Electrical for ALL

 VENTILATING FAN

 SWEEP VOLTAGE

AC 50 HZPOWER

(WATTS)SPEED   RPM AIR DELIVERY

 M3 / HRINCH MM6 150 220/240 20   3009 230 220/240 42 1400 75012 305 220/240 55 1400 1350

 COOLER FAN

 SWEEP VOLTAGE

AC 50 HZPOWER

(WATTS)SPEED   RPM AIR DELIVERY

 M3 / HRINCH MM20 510 220/240 180 1380 4600

 CEILING FAN

 SWEEP VOLTAGE

AC 50 HZPOWER

(WATTS)SPEED   RPM AIR DELIVERY

 M3 / HRINCH MM36” 900 220 58 360 15542” 1050 220 60 325 18048” 1200 220 64 300 25656” 1400 220 67 250 290

 TABLE FAN

 SWEEP VOLTAGE

AC 50 HZPOWER

(WATTS)SPEED   RPM AIR DELIVERY

 M3 / HRINCH MM16 400 220 60 1340 76

 AIR CIRCULATOR

 SWEEP mm

/ inchVOLTS

(V)A/C

CYCLE C/S

POWER CONSU-MPTION

SPEED RPM

PHASE AIR DELIVERY

M3 / MN

NO. OF BLADES

450 MM 18”

230 50 100 W 1440 1 150 3

600 MM 24”

230 50 180 W 1440 1 270 3

750 MM 30”

230 50 250 W 1440 1 400 3

 

Page 21: Electrical for ALL

 HALOGEN LAMPS FOR FLOOD LIGHTING WITH R 75 BASE

Type and Wattage

Voltage

V

Overall

Length

Diameter

mm

Luminous

Flex Im.

Average Life hrs.

150 W

300 W

500 W

1000 W

230

230

230

230

78.3

117.6

117.6

189.1

11

11

11

11

2250

5100

9000

22000

2000

2000

2000

2000

 

LAMP DATA FOR FLUORESCENT LAMP

LIFE IN HOURS 5000 TO 7000 HOURSTYPE Nominal

Length

mm.

Nominal

Dia

mm.

                                                Nominal

CAP             Light                Luminous

                    Colour                  Flux Im.

TL20 W

 

TL40 W

 

T5 6 W

T5 8 W

T5 14 W

T5 28 W

T5 35 W

610

 

1220

 

226.3

302.5

563.2

1163.2

1463.2

38

 

38

 

16

16

17

17

17

G 13          White Warm        1160

                   Cool Daylight        970

G 13          Warm White        2770

                  Cool Day Light       800

G 5

G 5            in 6500 K / 4200 K / 2900 K

G 5                     Co lour Temperature

G 5

G 5

 

Page 22: Electrical for ALL

SODIUM VAPOUR LAMPS

 

Sodium Vapour Elliptical Tubular

Wattage

70 W

150 W

250 W

400 W

1000 W

Lumens

6000

15000

25000

45000

13000

Height (mm)

 

227

227

286

Dia (mm)

 

92

92

122

Height (mm)

 

257

283

Dia (mm) Base

 

47

47

47

E 27

E 27

E 27

E 27

E 27

 

METAL HALIDE LAMPS

Metal Halide

Wattage

 

Lumens

Double Ended / RX 7 s

Colours

 

Height (h)

 

Width (w)

70 W 5500 White 3K/5K 117 mm 21 mm

150 W 12100 White 3K/5K 135 mm 24 mm

250 W 20000      

Metal Halide

Wattage

Single Ended /

Lumens

E 27 E 40 BASE

Colours

 

Height (h)

 

Width (w)

70 W 5600 White 3K/5K 120 mm 55 mm

150 W 11500 White 3K/5K 138 mm 55 mm

250 W 17000 White 3K/5K 257 mm 48 mm

400 W 30500 White 3K/5K 283 mm 48 mm

 

Page 23: Electrical for ALL

  

WEIGHT OF G.I. FLAT/WIRE

  

           

   

 

G.I.FLAT FLATSl. No. Size

Mm x mmSectional Weight

/ K.G./MTR.1. 20 x 3 0.5002. 25 x 3 0.6563. 25 x 6 1.304. 32 x 6 1.665. 40 x 6 2.006. 50 x 6 2.507. 65 x 6 4.2258. 65 x 10 5.235

G.I.WIRESl. No Size

SWGWEIGHT/ KG./MTR

1. 4 SWG 0.2602. 6 SWG 0.1923. 8 SWG 0.1314. 10 SWG 0.0625. 12 SWG 0.0546. 14 SWG 0.0307. 16 SWG 0.0218. 7/8 SWG 0.9179. 7/10 SWG 0.43410. 7/12 SWG 0.378

Page 24: Electrical for ALL

Selection of Fan The procedure of estimating the rate of ventilation is to calculate the total interior space by the number of air charges per hour for the respective space given in the table. That gives the rate of air movement required in cubic metre per hour. Thus ventilation on air-charge per-hour basis is calculated as follows: (Length x width x height of the building x air charges per hour)                                                            =          air movement per hour Example: Calculate the volume of air movement required for ventilation of a factory building 30m x 20m x 8 m requiring 20 air charges an hours. Solution: Air movement                       =          30m x 20m x 8m x 20                                                            =          96,000m3 /hr 610mm (24”) exhaust fan has an air displacement of 7900 m3/hr against free air: therefore, 96,000 divided by 7900=12.1, so, 12nos. of 610mm fans required to do this job satisfactorily. Ventilation System Fan ventilation is necessary in most cases for maintaining air conditions at a satisfactory standard. Three different systems may be employed. 

(a)                Extraction of air(b)                  Supply of air(c)                   A combination of extraction and supply

 Each method has its particular merits. One or another of the three may be preferable according to the application. The fans should be positioned so that the fresh air drawn in will permeate the entire room. The best results are usually obtained obtained when fans are on the opposite wall to the inlets. Fans should not be installed in close proximity to doors or windows which may be left open. In such cases, the air movement would be short-circuited between the fans and adjacent inlets, and other parts of the room would be unventilated. 

Sound Levels The sound level ratings are the sound pressure levels under free air flow conditions, which should be measured at a distance equal to three impeller diameters from the fan open inlet or outlet (3 ft for 7 ½ in. and 9 in. fans) The decibel (dB) units are measured on the flat response (C scale) reading of the sound level meter, the average of readings in all directions being taken. In comparing fan sound level measurement techniques do not justify significance being placed on difference of less than 3 dB.

As a general guide  45-50 dB                     Recommended where very low sound level is required 51-60 dB                     Fairly quiet. 61-65 dB                     For light industrial use. 

Page 25: Electrical for ALL

66 dB and above          For general industrial use. INDUSTERIAL TYPE SINGLE AND THREE PHASE RING ANDDIAPHRAGM MOUNTING PROPELLER FANS Propeller fans are use for a large proportion of general ventilation work. They are widely selected for exhausting fumes or heated air from work rooms, bakeries, laundries etc. for ventilating public and commercial buildings.   Motor are designed specially for fan duties. The performance ratings of these propeller fans are obtained by tests in accordance with I.S.S. 2312/1966 (Received), which represents a guarantee  that the quoted volume and pressures will be obtained in service under similar conditions. 12 TO 18 INCH FANS    :    These fans are leading for domestic and commercial   ventilation                                                Single phase motors are capacitor type machines with condenser                                                s fitted within the doomed end cover (except 18 inch at 1400                                                 r.p.m.) 24 AND 36 INCH FANS :     These fans give large air deliveries at slow or moderate speeds,                                                   with minimum sound level and low power consumption. They are                                                 used extensively for industrial ventilation. The ring mounted fan is                                                 Designed to give maximum volume under free air flow conditions.                                                 Located in the cooling air system, this special streamlined                                                 Condenser is an exclusive feature. The fans qincoroporate patent                                                 Resilient suspension.   FORMS OF RUNNING. The fans can be used for delivering air either away, or towards, the motor. The rated air volumes of ring mounted fans apply to forms of Running. A, C and E. There will be 10 percent reduction for Forms B, D and F. the air deliveries of Diaphragm Mounting Fans will not be affected. It is essential that the impeller be mounted on the motor spindle below. Discharge away from motor,                                         Discharge towards motor,Rotation anti-clockwise when                                        Rotation clockwise when lookingLooking at the impeller side of the                                 at the impeller the fan.Fan. Impeller mounted so that it                                    Impeller mounted so that it rotatesRotates in the direction indicated                                   in the direction indicated by theBy the arrow on one of the wings.                                 Arrow or one of the wings.

 

  

Page 26: Electrical for ALL

HARD DRAWAN BARE COPPER SOLID WIRE 

Size Diameter Calculated Area WeithtResistance at 200

ohnsUltimate Tensile

Strength

S.W.G. mm sq.mm kgm per km per km kg7/0 12.7000 126.6769 1126 0.1613 41706/0 11.7856 109.0921 969.008 0.1613 17115/0 10.9728 94.5638 840.007 0.1863 33134/0 10.0166 81.0732 720.007 0.2175 29173/0 9.4488 70.1202 623.004 0.2516 25842/0 8.8392 61.3643 545.005 0.2877 23101/0 8.2296 53.1921 472.009 0.332 20401 7.62 45.6037 405.004 0.3875 17812 7.0104 38.599 343.002 0.4579 15353 6.4008 32.178 386.001 0.5495 13024 5.8928 27.273 242.004 0.6489 11195 5.3848 22.7734 202.004 0.777 0.9456 4.8768 18.6792 1666.006 0.9478 7877 4.4704 15.6958 139.053 1.0129 6718 4.064 12.9717 115.032 1.0366 5629 3.6576 10.5071 93.043 1.0686 46110 3.2512 9.3019 73.079 2.0136 37011 2.9464 6.8183 60.063 2.0601 30712 2.6416 5.4805 48.072 3.0237 24913 2.3368 4.2888 38.013 4.0137 19614 2.032 3.2429 28.083 5.0471 14915 1.8288 2.6268 23.035 6.0756 12216 1.6256 2.0755 18.451 8.0552 96.617 1.4224 1.589 14.126 11.0018 74.418 1.2192 1.1675 10.379 15.0021 38.119 1.016 0.8107 7.207 21.0091 38.120 0.9144 0.6567 5.838 27.0004 3121 0.8128 0.5189 4.613 34.0022 24.522 0.7122 0.3973 3.531 44.007 18.8

 

Page 27: Electrical for ALL

HARD DRAWAN BARE COPPER SOLID WIRE 

Size Diameter Calculated Area WeithtResistance at

200 ohnsUltimate Tensile

Strength

S.W.G. mm sq.mm kgm per km per km kg23 .6096 .2919 2.595 60.85 13.024 0.5588 .2453 2.180 72.42 11.725 .5080 .2027 1.8018 87.63 9.6626 .4572 .16417 1.4595 108.20 7.8027 .4166 .13628 1.2116 130.40 6.4928 .3759 .11099 .0865 160.10 5.3129 .3454 .09372 .8334 189.5 4.4830 .3150 .07791 .6928 227.9 3.7231 .2946 .06818 .6063 260.4 3.2732 .2743 .05910 .5252 300.6 2.8333 .2540 .05067 .4505 350.6 2.4334 .2337 .04289 .3813 414.3 2.0535 .2134 .03575 .3178 496.8 1.7136 .1930 .02927 .2602 607.0 1.4037 .1727 .02343 .2083 758.2 1.1238 .1524 .018241 .16217 973.9 .8839 .1321 .013701 .12180 1297 .6640 12.19 .011675 .10370 1522 .5641 .1118 .009810 .08721 1811 .4742 .1016 .008107 .07207 21192 .3243 .0914 .006567 .05838 2706 .3244 .0813 .005189 .04613 3423 .2545 .0711 .003973 .3531 4473 .1946 .0609 .002919 .02595 6087 .1447 .0508 .002027 .01802 8766 .1048 .0406 .001297 .01153 13696 .05949 .0305 .0007297 .006487 24350 .03550 .0254 .0005067 .004505 35063 .024

 

Page 28: Electrical for ALL

BATTERY & BATTERY CAPACITY A battery is an important source of power in modern electric and electrical equipment.Batteries are made up of cells. Each celle provides 2.1 volt.The no. of cells in a battery is related to the desired voltage & required current.Common Termini logyThe open circuit emf of a battery is the battery voltage with no load.Terminal voltage when battery is supplying power of load is called output voltage or load voltage.The lowest voltage that a coil can tolerate and still be functional is called its end point voltage. BATTERY   CAPACITY The single characteristic of a battery in which everyone is interested its current capacity unfortunately there is no simple way for a precise calculation or determination of current capacity of a battery. The capacity of a battery is defined by Ampere Hour (AH) which is the product of current in ampere and time in hours. E.g. A60 AH battery will supply 3 amp. For 20 hours. Normally battery capacity is defined at 20 hour discharge & knows as C20 rating i.e. the capacity will hold good if the battery is discharged in 20 hours. Capacity will reduce if battery is to be discharged at less than 20 hours & will increase if it is discharged at more than 20 hours. Industrial batteries are rated at 10 hour discharge & capacity is known as C 10 rating. A 120 AH battery of C10 rating will deliver 135 AH at 20 hour discharge & 100 AH at 5 hour discharge. 

TYPICAL VALUE OF BATTERY RATING AT DIFFERENT DISCHARGE RATEBattery Capacity C20 C10 C5 C3 C1

135 AH 135 120 100 86 60150 AH  150 125 104 90 62.5180 AH 180 160 133 115 80225 AH 225 200 167 143 100

 CALCULATION OF BACK UP TIMESuppose we want to find out back up time of our inverter or UPS for followingInverter or UPS is of 800 VA capacity & size of battery is 12 volt 150 AHBack up time depends on actual consumption of load, say load consumption is 300 VA 

Battery capacity in AHBackup time H in hour  =   --------------------------------------                                                   A in amp. Where A =     Load consumed                (A = Amp. Delivered to load by the battery)                       Eff. X Battery Volt 

300VA                Hence A =   ------------------      =   27.7 or 28 Amp. (Efficiency is taken to be .9)                       09 x 12V 

150 AH               Backup time H in hour =   ---------------- =   3.7 hours.                                                 28 Amp.   So back up time will be 3 hour 42 minutes. Similarly using the above mentioned formula battery capacity for required back up time may be calculated,Battery capacity in AH = Required back up hour x Amp. Consumed by loadOr Battery capacity in AH = Required   back up hour x Load consumed in VA

Eff. X battery Volt 

Page 29: Electrical for ALL

 

HOUSE WIRE CABLESSINGLE CORE ELECTROLYTIC COPPER CONDUCTORSHEATHED AND UNSHEATHED HOUSE WIRE CABLE

AS PER B.S.S.: 2004/61 

Conductor Code (SWG)

Conductor size inm.m.

Conductor size in inches

Conductor Area Sq.m.m.

Current carrying capacity Amp.

1/18 1/1.12 1/.044 0.984 053/22 3/.737 3/.029 1.27 103/20 3/.914 3.036 1.96 157/22 7/.737 7/.029 2.984 207/20 7/.914 7/.036 4.59 287/18 7/1.12 7/.044 6.892 337/16 7/1.635 7/.064 14.51 5319/18 19/1.12 19/.044 18.709 6219/16 19/1.635 19/.064 39.38 9619/14 19.2.10 19/.083 65.77 16037/16 37/1.635 37/.064 76.60 17737/14 37/2.10 37/.083 128.08 250

  

CURRENT RATINING OF HOUSE WIRING CABLES650/1100 VOLTS. P.V.C. INSULATED SINGLE

CORE SHEATHED CABLE WITHALUMINIUM CONDUCTOR CONFORMING TO IS : 694 -1977

 Conductor Area Sq. mm. Conductor Size in. m.m. Conductor Resistance at

200 C ohm/KmCurrent carrying Capacity Amp.

1.5 1/1.38   or    3/0.81 19.7 102.5 1/1.78   or   3/1.06 11.8 15

4.0 1/ 2.28   or   7/0.86 7.39 206.0 1/ 2.76   or   7/.1.06 4.91 2710.0 1/ 3.57   or   7/1.35 2.94 3416.0     7/1.70 1.85 4325.0     7/2.14 1.17 5935.0     7/2.50 0.859 6950.0    19/1.78 0.592 91

  

LAMP DATA FOR H.P.M.V. COLOUR CORRECTED LAMP 

Type Cap Lamp Current

A

Lamp Voltage

V

Luminous FluxIm.

Starting TimeMin.

Max. Diameter

mm.

 Length

mm.HPL-N 80 W 3 Pin BC & E

270.80 115 3500 3.5 70 152

HPL-N 250 W 3 Pin BC& E 27

1.15 125 6250 1.5 75 173

HPL-N 250 W E 40 2.00 135 13500 4.0 90 227HPL-N 250 W E 40 3.20 140 23000 4.0 120 290HPL-N 250 W E 40 7.50 145 57000 4.0 165 410

Page 30: Electrical for ALL

 

LAMP DATA FOR BLENDED LAMP

Lamp & Type No.

V

Nominal Voltage    V

Min.  Main Voltage   V

Lamp Current

A

Luminous Flux      Im.

Max.   Dia.    Mm. Overall Length

mm.MLL 160

W230 190 0.72 2900 75 177

MLL 250 W

230 195 1.15 5200 90 277

Wattageof CFL Lamps

Equivalent wattageCompound to GLS

LUMENS

5 W7 W9 W10 W11 W13 W14 W18 W20 W22 W23 W30 W36 W55 W

25 W40 W60 W60 W75 W75 W75 W100 W100 W110 W115 W150 W260 W400 W

2252555355806958509001180120013001500240029004800

 The above are available in 2g7, g23, 2g11, b22, e14, Base. Available in 2700K (War, White) & (Cool day light).

 

Page 31: Electrical for ALL

ILLUMINATION  Light is a sensory experience of both physical & emotional aspect i.e. intangible, impalpable and invisible, light defines what we perceive by means of what we see. Lighting schemes may be classified as (i) Direct Lighting (ii) Semi-direct lighting (iii) Semi-indirect lighting (iv) Indirect lighting (v) General lighting. (i)                       Direct Lighting : In this scheme more than 90 percent of total light flux is made to fallDirectly on the working place with help of with of deep reflectors. This cause hard shadowsand glare. It is mainly used for industrial and general outdoor lighting. (ii)                     Semi-direct Lighting: In this scheme 60 to 90 percent of total light flux is made to fallDownwards directly with the help of semi direct reflectors, remaining light is used toIlluminate the ceiling and walls. Such a lighting scheme is best suited to rooms with highCeiling where a high level of uniformly distributed illumination is desirable. (iii)                   Semi- indirect Lighting: In this scheme 60 to 90 percent of total light flux is thrown                Upward to the ceiling and rest reaches the working place. This scheme is with soft shadows                and glarefree. It is mainly used for indoor light decoration purpose. (iv)             Indirect Lighting: In this scheme more than 90 percent of total light flux is thrown                 upwards to the ceiling. In such a system the ceiling acts as a light source and the glare is                 reduced to minimum. In used for Cinemas, Theatres, Hotels etc. (v)                     General Lighting: In this scheme, lamps made of diffusing glass are used which give                 nearly equal illumination in all directions. Types of Electric Lamps: This various types of electric lamps in common use are:1.                        Incandascent or Filament Lamps: The incandescent or filament type lamp consists of a glass

globe completely evacuated and a fine wire known as filament within it. The materials used for filaments are carbon, osmium, tantalum and tungsten. Lamp with tungsten filament has higher efficiency than all other such types. The average power consumption of tungsten filament lamp is about 1.2 watt/C.P., that of carbon filament is 4 watt/ C.P. consumption of osmium and tangston filament lamp is 1.6 W/C.P. and 1.75 W/C.P. respectively.

 2.                        Gas filled Lamp: An evacuated bulb works at a temperature of 20000 C only For higher                Efficiency this bulb is filled by an inert gas argon, with a small percentage of nitrogen & is                Made to work at a temperature of 2,400 0 C according to the size of lamps. Efficiency of                Such lamp is about 12 lumens/ watt. 3.                        Gaseous Discharge Lamps: A gaseous discharge lamp is a glass or quartz envelope containing

two electrodes and a small quantity of gas or vapour at low pressure. In these lamps light is obtained by applying an electric potential difference to a gas or vapour contained by the lamp under a suitable pressure. The colour of the light obtained, depends upon the nature of the gas or vapour used.

 Some common gaseous discharge lamps are as under:

a)            Sodium Vapour Lampb)            High Pressure Mercury Vapour Lampc)            Neon Lampd)            Neon Tubese)            Fluorescent Tubes & P.L.Lampsf)             Metal Halide Lamp

Page 32: Electrical for ALL

  Discharges lamps are of two types: i)              Those which give the light of the same colour as produced the discharge through the gas or          vapour such as sodimum vapour, mercury vapour and neon gas lamps. i.i)      Those which use the phenomenon of fluorescence are known as fluourescent lamps. In these           lamps the discharge through the vapour produces ultra-violet waves which cause fluorescence           in certain materials called as phosphor. The inside of the fluorescent lamps is coated with a           phosphor which absorbs invisible ultra-violet rays and radiate visible rays. Example is           fluourescent tube. 

Protection against Ingress of Dust, Solid Objects and moisture(IP Classification)

First Number : Degreeof Protection against accidential   contact / contact with external elements.

Second Number : Degree of Protraction against ingress of moisture

FirstNumber

 Description

 Explanation

Second Number

 Description

 Explanation

01  2   3     4     5      6         

Non ProtectedHead Protected  Finger protected   Tool Protected     Wire Protected     DustAccumulationProtected    DustPenetrationProtected

Not protectedProtected against solid objectExceeding 50 mm in diameter Protected against fingerContact with live parts; against solid objects exceeding 12 mm in diameterProtected against contact with live parts of tools, wire or similar objects over 2.5 mm thick; Protection against, penetration of solid objects exceeding 1 mm in diameterProtected against contact with live parts by tools., wire or similar objects over 1 mmthick; protection against penetration of solid object exceeding 1 mm in diameterComplete protection against contact with live parts and against harmful accumulation of dust; some dust may penetrate but not to extent that operation is impaired Complete protection against contact with live parts and against penetration of dust

01  2   3     4     5      6     7   

Non protectedDrip-ProfAgainst vertical water dropsDrip-proofWhen titled at angles up to 150

 Rain-/spray- proof    Splash-Proof     Jet-proof      Jet-Proof     Watertight   

Not protected moistureWater drips falling vertically shall have no harmful effect Water drips shall no harmful effect  Water falling at an angle of up to 600 shall have no harmful effect   Splashing water from any direction shall have no harmful effect   Water projected by a nozzle from any direction shall have no harmful effect. (Nozzle diameter 12.5 mm. pressure 30 kPa)   Water projected by a nozzle from any direction shall have no harmful effect. (nozzle diameter 12.5 mm. pressure 100 kPa) Watertight, temporary immersion 

Page 33: Electrical for ALL

            

     8   

     Pressure    

In water under specified conditions of pressure and time possible without ingress of water in harmful quantities.Pressure watertight; continuous watertight submersion in water under specified conditions of pressure and harmful quantities. 

LAYING OF CABLESFor laying of cables special cares to be taken to prevent sharp bending, kinking, twisting. Cables should be unwound from drum by proper mounting the cable drum on a cable wheel making sure the spindle is strong to carry the weight without bending and that it is laying horizontally in the bearing so as to prevent the drum creeping to one side or the other while it is rotating.

 FIGURE

 However, following salient points are to be considered during laying procedure of cables laid in racks and in built-in trenches.1.            For laying of cables power cables to be pleased at the bottom most layer and control cable at top most

layer.2.      Single core power cable for use on A.C. system shall be laid in delta formation supported by   non –

magnetic material. Trefoil clamps of suitable size are to be placed at regular intervals but preferably not more than 800 mm. Axial spacing of two curcuits in delta formation shall not be less than 4 times the cable dia.                                                                                                                                                   

         In Case of multicore power cables, cables shall be laid side by side with spacing not less than one cable diameter. However derating factors for cable laid on trenches are to be referred.  

         Multicore power cables and single core D.C. circuits may be clamped by means of galvanized mild steel saddles but 1.1 KV single core cables should be clamped by means of non- magnetic saddles. The saddles shall not be placed at intervals more than 1500 mm. for horizontal and 1200 mm. for vertical runs.                               

3.       Multicore control cables can be laid touching each other on cable racks and whenever required may be taken in two layers. They should be clamped by means of PVC straps both for horizontal and vertical runs (alternatively. Fabricated aluminium clamps may be used) at regular intervals.

4.      a)      If the cables are buried directly in ground I.S. 1255 is to be followed for code or practice. However, generally cables are laid 1000 mm. below finished ground level at any point of  cable run and 75 mm. of sand cushioning to be provided.

 4.      b)     In loose soil concrete pillar should be provided for a support and hence pipes are                  Recommended to the use for cable path.    

       5.      If there is a possibility of mechanical damage, cables should be protected by means of                   mild steel covers placed on racks.

6.          While laying cables, special core to be taken at bends. Following are the recommended radius         for power and control cables. 

         Voltage Rating                              PVC AND XLPE CABLES      Kv      Upto 1.1

Single core                    Multi core 

  15 D 12D     Above 1.1 but up to 11 k.v.     Above 11 k.v.

15D20 D

15 D15 D

FIGURE 7.          Maximum Safe pulling force (when pulled by eye Aluminium Conductor Cables : 3.0

Kg/mm2  Copper Conductor Cables: 5.0 Kg/mm2 proper of pulling of cable should be used.

Page 34: Electrical for ALL

 

METHOD OF INSTALLATION 

It is recommended to lay cables as per configuration method below: FOR SINGLE CORE CABLES 

1.                                   Laid direct in the ground. 

a)   Three in close trefoil formation, orb)       Two touching in horizontal formation. 

2.                              In ductsa)      Three in trefoil formation, orb)       Two in horizontal formation. 

2.                                   In air 

a)      Two single core cables are installed one above the other fixed to a vertical wall as follows, the distance between the wall & the surface of the cable being 25mm in each case.

 i)          Cables of sizes up to & including 185 mm2 are installed at a distance between

centers of twice the overall diameter of the cables. ii)         Cables of sizes 240 mm2 and above are installed at a distance between centres of

90 mm.             Note. The ratings for two cables may be applied with safety in cases where such

cables are installed in horizontal formation, or brackets fixed to a wall, either spaced as indicated above or touching throughout.

 b)                              Three single core cables are installed in trefoil formation touching. 

 FOR TWIN & MULTI CORE CABLESi.                                Installed single in the ground.ii.               Installed single in the air.                        

Page 35: Electrical for ALL

MINIATURE CIRCUIT BREAKER(M.C.B.)

 M.C.B.’s are used safely to provide safely to electrical equipments and circuit (cable) against overheating arising out of excess current due to sustained overloads or short circuits. In case of short circuits the M.C.B. trips instantaneously through electromagnetic release & in case of overload it opens the circuit with inverse time delay through its inbuilt thermal bimetal element. M.C.B.’s can be used with reliability for providing protection of lighting and motor circuits. These are available for D.C. circuits also. TECHENICAL DATA Specification                           Conforms to                 No. of Poles – 1, 2, 3, 4, 1 + N, 3 + N                                                IS 8828 – 1978 Current Ratings -                   0.5 to 63 Amp. Rated Frequency – 50 HZ                                                In C series                    Breaking Capacity – 3 KA, 6 KA,10 KA                                                6 to 63 Amp.                                                In B series                    Ambient Temp 400 C                                                0.5 to 40 Amp. Mechenical life – 1,00,000 Operations                                                For D.C. supply           Electrical life – 50,000 Operations                                                                                    Max. Cable Size – 25 mm2

 GENERAL APPLICATION

 For Lighting Circuit (‘B’ Series MCB) – Current rating of M.C.B. should be lower than the Current carrying capacity of the smallest size of wire/cable used in the circuit, Example – If an a circuit which is to be protected through the M.C.B., smallest size of wire used is 3/22 or 1.5 sq.mm. The current capacity of which is 10 Amps. A M.C.B. of 6 Amps. Should be used. For Motor Circuit (‘C’ Series MCB) – Current rating of the M.C.B. should be one size higher than the full load current of the motor. Example- C series 10 Amps. M.C.B. should be used for a motor drawing 7.8 Amps. At full load. Rating of M.C.B.’s generally available are C 0.5,1,1.6,2.3,4,5,6,10,16,20,25,32,40,50 and 63 Amp. 

Page 36: Electrical for ALL

MOULDED CASE CIRCUIT BREAKER (MCCB) 

M.C.C.B.’s are used to provide safely to electrical equipments, cables, transformer & Generating sets against overheating arising out of excess currents due to sustained overloads or short circuits. MCCB: SELECTION & PROTECTIONTRANSFORMER PROTECTION Primary sideFor the protection of transformer with a circuit breaker connected to the primary side (LT primary) the no load inrush current wave to the transformer often reaches 10-15 times the rated current and they sometimes reach as high as 20-25 times. However, the transient decays very quickly (in a few m.sec.). Thus the MCCB selected should have a magnetic setting which will not be actuated by the momentary inrush current. Secondary side MCCB’s can be used for protection of transformer on the LT side (secondary side) as an outgoing protective device.

SELECTION TABLE FOR TRANSFORMER PROTECTIONMCCB RATING IN AMPERES

Transformer Rating (KVA)

10 kA 16 kA 25 kA 25 kA 25 kA 35 kA 40 kA 50 kA 50 kA

16 25 25 25 25 25 25      25 40 40 40 40 40 40      63 100 100 100 100 100 100      100       160 160 160 160 160  160       250 250 250 250 250  200             315 315  250             400 400  315             500 500  400             630 630  500             800 800  630                 1000750                 1200

 GENERATOR SET PROTECTION MCCBs can be used for the effective protection and control of Diesel Generating set againstover and short circuits. Selection table for DG Set Protection

DG Set Rating (KVA) MCCB Rating (amperes)26 2525 4063 100100 160160 250200 315250 400315 500400 630630 1000750 1200

 

Page 37: Electrical for ALL

 

POWER FACTOR & ITS IMPROVEMENT Power Factor (P.F.) indicates parts of apparent power (KVA) converted into real power (KW) i.e. ratio of apparent power and real power. Power surces (Gen sets, Transformers) are rated in KVA loads are specified in KW. Capacity of Gen.  sets and Transformers are determined by load in KW and its P.F. In case of lower P.F. higher rating of transformer is required. Electricity Boards (Power suppliers) insist on their industrial consumers for maintaining a minimum P.F. of 0.8. Consumers having P.F. below 0.8 are penalized. Reason for penalty is made clear from following illustration.                 To find capacity of transformer to feed a load of                 10 KW (i) at P.F. 0.8. & (ii) at P.F. 0.4                                                                                 KW                                                                         10                                                 KVA            =       --------------------            (i)   KVA                =    ----------------------   = 12.5                                                                                P.F.                                                                         0.8                                                                                                                                                                 10

(ii)           KVA       =      ------------------ = 250.4

 In this above illustration in both cases load is 10 KW but due to variation in P.F. loading on transformer is 12.5 & 25 KVA. In second capacity of cable is also doubled. Power Factor can be improved by installing suitable size of power capacitors. 

MEASURMENT OF POWER FACTOR    

Power factor at a particular point in a circuit or installation is most easily obtained by means of power factor meter. Where such an instrument is not available, one of the following methods may be used. 

(1)                 With Voltmeter, Ammeter and Wattmeter With reading from these three instruments, suitably connected, the power

Factor for a balanced three phase circuit may be calculated as follows:                                                                 Kilowatt X 1000                Power Factor     =       --------------------------------------      

1.73 x Volt x Amps.                                                 And for single phase                                                                 Kilowatt X 1000                Power Factor        =   -----------------------------------------                                                   

Volt x Amps 

(2)                 With KVA & KW metersWith readings from these two meters, suitably connected, the Power Factor for Single Phase & Three Phase may be calculated as follows: 

Page 38: Electrical for ALL

                                                KWPower Factor        =        -------------------                                                KVA

 

PUMPS

Definitions 

LIFT: SUCTION LIFT exists when the source of supply is below rhe center line of the pump. STATIC SUCTION FIFT   is the vertical distance in feet from the center line of the pump to the free level of the liquid to be pumped. TOTAL SUCTION Is Static Suction Lift plus Velocity Head and all friction losses in the suction line including values and fitting.  HEAD: SUCTION HEAD Exists when the source of supply is above the center line of the pump, or when the liquid to be pumped flows to the pumps under pressure. DISCHARGE HEAD exists when the point of discharge or the free level of liquid at the point of discharge is above the center line of the pump (including pumping against pressure such as in pneumatic tank installations). STATIC SUCTION HEAD Is the vertical distance in feet from the center line of the pump to the free level of the liquid above the pump. STATIC SUCTION HEAD is the vertical distance in feet from the center line of the pump to the point of discharge or the free level of liquid at the point of discharge. (When pumping against pressure this pressure, translated into feet head, must be included). TOTAL SUCTION HEAD is static Suction Head minus Velocity Head and all friction looses in the suction line including values and fittings. TOTAL DISCHARGED HEAD is static Discharge Head plus Velocity Head and all friction looses in the discharge line including valves and fittings. TOTAL STATIC HEAD is the vertical distance in feet between the free level of the source of supply and the point of free discharge or to the level of the freed surgace of discharge liquid (includes tank or other pressure if any). TOTAL HEAD Total Static Head plus Velocity Head and all function losses. Velocity Head is the equivalent head in feet through which the liquid would have to fall to acquire the same velocity.  -------------------------------------------------------------------------------------------------------------------------------------------------------------------   Note:  Total Head should be used for” Head in feet” Formulae for determining horsepower            Required, etc.

Page 39: Electrical for ALL

PVC INSULATED FLEXIBALE SINGLE ANDMULTI CORE CABLE

             P VC insulated Flexible Single and Multicore Cables, manufactured with bright annealed bare copper conductor for flexible use, insulated with electric grade PVC Compound and/or PVC Sheathed.            Impervious to Oil, water, petrol, acid and greases generally as per latest is specification ISI: 694/1977, for working voltage up to and including 1100 Volts. 

TECHENICAL DATA – FLEXIBLE CABLESCOLOUR CODING

 Type

Colours :Core Sheath

Single Core Unsheathed (SC UNCH) Red; Yellow; Blue; Black;  Single Core Sheathed (SC SH) Black WhiteTwin Twisted Red & Black  Twin Parallel White; Grey  Twin Flat Sheathed (TF SH) Red & Black Black & gray2 Core Round Sheathed (2Cr Rd) Red & Black Black & Gray  3 Core Round Sheathed (3Cr Rd) Red; Black & Yellow/ Green for earth Black & gray4 Core Round Sheathed (4Cr Rd) Red; Blue; Yellow; & Yellow; Green for earth Black & gray

 SINGLE CORE, UNSHEATHED CABLES IN VOLTAGE

GRADE 650/1100V.Type: PVC insulated single core cables with copper conductor. 250/440V. Sheathed and unsheathed. High conductivity bright annealed bare Copper conductors bunched Together, insulated with electric grade compound. Nominal

area   of

Conductor      

Number / NomDia.

Of wire(Nom.)

   

Thickness overall

Diameter     

Approx.Overall

Diameter     

Current carrying Capacity 2 cables, single phase

Resistance     (max.)   Per Km.   At 200 C    

In conduict/  Trunking    

 Unenciosed-clipped      directly to asurface oron a cable

Tray

 Sq. mm.

 

 mm.

 mm.

 mm.

     

      Amps.

 Amps.

   Ohms. 

1.0 14/.3 0.7 2.8 11 12 18.101.5 22/.3 0.7 3.1 13 16 12.102.5 36/.3 0.8 3.8 18 22 7.414.0 56/.3 0.8 4.4 24 29 4.956.0 85/.3 0.8 5.2 31 37 3.30

 

Page 40: Electrical for ALL

READY RECOKONAR FOR SELECTIONOF CORRESPONDING CONTACTOR STARTER,

BACK-UP HRC FUSE RATING, SIZE OF AL. CABLES FOR3 PHASE A.C.415V 50HZ SQUIRREL CAGE MOTOR

 H.P 3 Phase

415v.50 HZ A.C.

K.W.415V

50 HZ

Approx Full Load

Current Amps

Phase Current

Amp

Contactor Riting D.O.L. String Amp

Contactor Rating(Star

Delt Starting)

Amp

Backup HRC Fuse (DOL

Starting) Amp

Backup HRC

Fuse(Star Delta

Starting) Amp

Cable Size Sq.mm

Aluminium

0.50 0.40 1.2 - 16 10 6 - 1.5/2.50.75 0.55 1.6 - 16 10 6 - 1.5/2.51.00 0.75 1.8 - 16 10 10 - 1.5/2.51.50 1.10 2.6 - 16 10 10 - 1.5/2.52.00 1.50 3.5 - 16 10 15 - 1.5/2.53.00 2.25 5.0 2.88 16 10 20 10 1.5/2.55.00 3.75 7.5 4.32 16 10 25 20 2.57.50 5.50 11.0 6.34 16 10 25 25 410.00 7.50 14.0 8.10 16 16 35 25 412.5 9.30 18.0 10.02 32 16 50 35 615.0 11.00 21.0 12.10 32 16 50 50 620.0 15.00 28.0 16.00 32 32 63 63 1025.0 18.50 35.0 20.20 40 32 80 63 1630.0 22.00 40.0 23.00 40 32 100 100 2535.0 26.00 47.0 27.00 63 32 125 100 2540 30.00 55.0 30.30 63 40 125 100 2545 33.5 60.0 34.46 63 40 160 125 3050 27.00 66.0 35.00 125 40 160 125 3560 44.00 80.0 45.00 125 63 160 125 5075 55.00 100.0 57.50 125 63 200 160 7090 67.50 120.0 69.00 125 125 250 200 95100 75.00 135.0 78.00 300 125 250 200 95125 90.00 165.0 95.00 300 125 300 250 120150 110.00 300.0 115.00 300 125 350 250 185175 132.00 230.0 133.00 300 300 400 300 225200 150.00 275.0 159.00 300 300 500 350 300/400250 187.50 323.0 185.00 - 300 600 400 400275 204.00 360.0 206.00 - 300 - 400 500300 225.00 385.0 222.00 - 300 - 500 500400 300.00 500.0 300.00 - 300 - 700 625

Page 41: Electrical for ALL

INSTRUCTIONS FOR INSTALLATION,OPERATIONS AND MAINTENANE OF

WATER PUMPS To ensure long and trouble free service it is advisable to follow the instructions below  :INSTALLATION 1.                        Install the pumpset near source of water rigid platform with proper foundation bolts, providing

adequate pipe supports. The foundation should be rigid enough to absorb all vibrations. Maximum possible suction is 8.5 mtrs. But it is preferable to keep suction around 6-7 mtrs. The total vertical height of the suction pipe should be restricted accordingly.

2.                        The suction / delivery pipe should be of minimum length, and minimum number of bends and airtight joints should be used to minimize fictional lossed.

3.                        It is advisable to fit a strainer on suction pipe to prevent entry of foreign material.4.                        Maintain sufficient clearance between the suction pipe and the bottom and sides of the tank. The

clearance should not be less than 5 cm.5.                        Delivery and suction pipe lines should be properly supported, so that weight of pipe does not cause

misalignment and undue stresses on the pump.6.                        Fit a non-return valve on delivery side. It is very much needed if water is stored at higher head. OPERATION1.                  Connect motor with correct size of table on terminals properly (avoid loose connections)2.                  Fill the casing of the pump with water at the time  of first starting of the pump set.3.                  Check for the direction of rotation of the motor by switching on the supply. It should be Anti-clockwise

looking from the Drive inside of the motor. If the direction is reverse, change the connection of motor leads.

4.                  Care must be taken that non-return valve is opened before starting the pump, if provided. MAINTENANCE1.                  Daily running of the pump set should be ensures for few minutes to maintain the freeness of pumpset.2.                  If the pumpset is idle for a very long duration, the casing should be filled adequately with water, before

starting.3.                  The joints in the suction pipe and casing should be checked for air tightness.4.                  Clogging should not take place in the strainer. The strainer should be cleaned periodically. SERVICINGIf the pump is dismantled, it should always be ensure that the components are refitted in correct-sequence and position.If is always advisable that a suitable mark by paint and sequence numbering on the component should be done prior to dismantling, this will help at the time of refitting. Any error in location will  effect the performance of pump substantially. -------------------------------------------------------------------------------------------------------------------------------------------------------------------Note: A starter if appropriate rating is suggested for frequent voltage fluctuations and other abnormal conditions. 

Page 42: Electrical for ALL

SELECTION, INSTALLATION AND MAINTENANCE OF SUBSCRIBE PUMPSETS (A)              Selection : 1.0       The selection of subscribe pump set depends upon the following factor

a.       Yield of the bore well.b.      Depth to low water level of bore.c.       Height and length to which water is to be pumped.d.      Water requirement.

1.1              Yield of the bore well :The continuous unsubscribe flow through a bore is called yield of the bore well. The yield of the bore well depends upona.       nature of sourceb.      no. of veins (source) tappedc.       subsoil water level

 A well drilled in summer normally shows a low yield which is likely to improve in the monsoon. Similarly a well drilled in October may even become dry in summer.It is good practice to select a pump such that is does not exceed the maximum yield of the well. Thus ensure that

a.       The pump does not run dry in the bore thereby enhancing the pumps lifeb.      Water of the bore does not become saline.Normally the driller of the well is supported to provide the accurate information regarding.a.       No. of veins and distance from ground level at which these veins have been tappedb.      The maximum yield of the well.

The yield of the well is expressed by many dealers in terms of height over a V notch.(Table 1) give describe in LPM to corresponding heights over V notch. Table 1: Discharge over V Notch

   

     

         

Height over V notch Yield in LPMIn Inches over 45 0 V over 900 V

1.01.251.51.752.02.53.04.05.06.07.08.09.010.0

3.96.71.615.521.537.558.5120.0209.0328.0480.0670.0897.01165.0

9.416.225.637.451.990.5142.0290.0505.0794.01159.01620.02166.02813.0

Page 43: Electrical for ALL

SWITCHGEAR SELECTION CHART TYPE 2 CO-ORDINATION (Direct On Line Feed)

Motor          KW / HP 415V,3ph,

50Hz

Motor Current

(I L )

Amp

Switch Fuse

Rating

Amp

HRC Fuse Amp Conductor Amp Bimetel Relay      Set-Range Amp

0.37/0.5 1 32 4 9 0.8-1.25

0.55/0.75 1.3 32 4 9 1-1.6

0.75/1 1.9 32 6 9 1.25-2

1.1/15 2.6 32 6 9 2-3.2

1.5/2 3.7 32 10 9 2.5-4

2.2/3 4.8 32 16 9 3.2-5

3.7/5 7.8 32 20 9 5-8

5.5/7.5 11.2 32 25 12 8-12.5

7.5/10 16 32 32 16 10-16

9.3/12.5 19 50 50 32 12.5-20

11/15 20.8 50 50 32 16-25

15/20 28 63 63 32 20-32

18.5/25 34 63 63 38 25-36

22/30 40 100 80 45 32-50

30/40 53 100 100 63 40-57

37/50 65 125 125 70 57-70

45/60 78 125 125 85 70-95

55/75 96 200 160 110 85-105

75/100 131 200 200 140 85-135

90/125 156 250 250 170 115-180

110/150 189 250 250 205 160-250

132/180 227 315 315 250 160-250

160/215 271 400 400 300 200-320

Page 44: Electrical for ALL

200/270 339 630 500 400 250-00

250/335 398 630 500 475 320-500

   SWITCHGEAR SELECTION CHART

TYPE 2 CO-ORDINATION

Star – Delta Feeder

Motor KW/HP 415V,3ph,50

HZ

Motor 

Switch Fuse

Rating Amp

HRC Fuse Amp

Cont. N/D Amp

Cont. Star Bi-Relay Set-Range Amp

    I L   Amp

I  phAmp

2.2/3 4.8 2.8 32 6 9 9 2-3.23.75/5 7.8 4.5 32 10 9 9 3.2-55.5/7.5 11.2 6.5 32 16 9 9 5-87.5/10 16 9.2 32 20 12 9 6.3-10

9.3/12.5 19 11 32 25 12 9 8-12.511/15 20.8 12 50 25 12 9 8-12.515/20 28 16.2 50 32 32 16 12.5-20

18.5/25 34 19.7 63 50 32 32 12.5-2022/30 40 23.2 63 50 32 32 16-2530/40 53 30.6 63 63 32 32 20-3237/50 65 37.5 100 80 38 32 32-4045/60 78 45 100 100 45 32 32-5055/75 96 55.4 100 100 63 32 40-5775/100 131 75.6 200 160 85 63 70-9590/125 158 90.1 200 160 110 63 70-95110/150 189 109 250 200 110 110 95-120132/180 227 131.1 250 250 140 110 115-180160/215 271 156.5 315 315 170 110 115-180200/270 339 195.7 400 400 205 170 160-250250/335 398 243.1 630 400 250 250 160-250

 

   

 

Page 45: Electrical for ALL

USEFUL3-PHASE FORMULAE CONVERTION TABLES

General Formulae :                                                                    KWKW= KVA x P.F.,                  KVA=   -----------                                                                    P.F.KVA = 3 X Phase Volts x Phase Amps / 1000KVA = 1.732 x Line Volts x Line Amps / 1000               H.P. X 746KW = ------------------                    1000

TO CONVERT                                         MULTIPLY BY

LINEAR EQUIVALENTSMills to Millimeters (1,000 mils-one inch) …..       0.0254Inches to Centimeters                                  …..         2.540Centimeters to inches                                  …..       0.3937Feet to Meters                                              …..      0.3048Metes to Feet                                               …..        3.281Yards to Meters                                           …..      0.9144Meters to Yards                                           …..      1.0936Miles to Kilometers                                     …..      1.6093Kilometers to Miles                                     …..     0.6214  

 In case of 3 Phase Motor :                                                    H.P. X 746Line Amps         =                 -------------------------------------                                              Line Volts x 1.732 x p.f. x eff.                                                       Kw x 1000Line Amps         =                -------------------------------------                                             Line Volts x 1.732 x p.f. x eff.    

AREA EQUIVALENTS 

Square inches to Circular Mills (Circ, Mils) ….. 1,273.240Square inches to Square Millimeters             …..     645.16Square Millimeters to Square Inches            …..    0.00155Square Yards to Square Meter                      …..      0.8361Square Meters to Square Yards                    …..        1.196Hectares to Acres                                          …..        2.471Acres to Hectares                                          …..      0.4047 

  In case of  3 Phase Generator :                                                      KVA X 1000Line Amps         =                 --------------------------                                                  Line Volts x 1.732                                                      Kw x 1000Line Amps         =                -------------------------------------                                             Line Volts x 1.732 x p.f.   

VOLUME EQUIVALENTS Cubic Inches to Cubic Centimeters               …..     16.387Cubic Centimeters to Cubic Inches               …..     0.0610Cubic Yards to Cubic Meters                        …..     0.7645           Cubic Meters to Cubic

  In case of  Transformer  : 

Page 46: Electrical for ALL

                                                        KVA X 1000Primary Line Amps         =   ----------------------------------                                                 Primary  Line Volts x 1.732                                                      KVA  x 1000Secondary  Line Amps         =  ----------------------------------                                                Secondary Line Volts x 1.732 

Yards                        …..       1.308Gallons to Liters                                            …..       4.546Liters to

 WEIGHT EQUIVALENTS

 Pounds (lbs.) to kilogram                               …..      0.4536Kilograms to Pounds (lbs.)                             …..        2.205Tons (2240 lbs.) to kilograms                        …..     1016.02Kilograms to Tons (2240 lbs)                        …..     0.00098Ounces (Avoirdupois) to Grams                    …..         28.35Grams to Ounces (Avoirdupois)                    …..      0.0353Gains (Troy) to Grams                                   …..      0.0648Grams to Grains (Troy)                                  …..     15.432 

 ELECTRICALS UNITS

(THEIR EQUIVALENTS & FORMULAE)H.P. = 746 WATTS       =    0.746 k.w.                                       =    33,000 ft. lbs per min.                                       =    1,104 Metric H.P.Torque (Ft. lbs.)             =    (H.P. x 33,000) / (R.P.M. x 2)1 Electric Unit                =   1 Kilowatt hour (KWH)1 Kilowatt (K.W.)          =    738 ft. lb. per sec.                                       =    102 M kg. per sec.                                       =     1.341 horse power                                       =     1.360 Metric horse power1 Kilowatt hour (K.W.H.)=  3,413 B.Th.U.                                       =      860 Calories1 Foot Pound (ft. lb.)     =     0.1383 Mkg.1 B.Th.U.                       =     1778.3 ft. lb.                                        =    107.6 Mkg.                                       =     0.2520 calories1 Calories (cal)               =     3.088 foot pounds 

 ELECTRICAL UNIT EQUIVALENTS

 Horse Power to Foot pounds per minute        …..     33000Watts to Foot Pounds per minute                   …..      44.24Horse Power to Kilowatts                              …..      0.746Kilowatts to Horse Power                              …..        1.34Atmospheres to lbs. per square inch              …..      14.68 Miles per hour to Feet per minute                  …..       88.0 

  

TEMPERATURE EQUIVALENTS 

0 F to 0 C -- Subtract 32 and Multiply by           …..       5/90 C to 0 F - -Multiply by 9/5 and add                 …..        32

 

Page 47: Electrical for ALL

USEFUL CENTRIFUGAL PUMP DATA 

 EFFECT OF CHANGE OF PUMP SPEED1.               The capacity varies directly as the speed.2.               The head varies as the square of the speed.3.               The brake horsepower varies as the cube of the diameter. EFFECT OF CHANGE OF IMPELLR DIAMETER

1.                  The capacity varies directly as the diameter.2.                  The Head varies as a square of the diameter.3.                  The Brake horse power varies as the cube of the diameter.

 EFFECT OF SPECIFIC GRAVITYBrake Horsepower varies directly with specific gravity if the liquid has a specific  gravcity other than water (1.0) multiply the brake horsepower for water by the specific gravity of the liquid to be handled.The Centrifugal pump will always develop the same head in feet no matter what the specific gravity of the liquid pumped. However, the pressure (in pounds per square inch) will be increased or decrease in direct proportion to the specific gravity. EFFECT OF VISCOCITYViscous liquids tends to reduce pump capacity, head and efficiency and to increase pump brake horse power and pipe line friction. Consult the manufacturer/dealer for recommendation when pumping viscous liquids. EFFECT OF ALTITUDESuction lift data are based on values as sea level. Therefore, above sea level the total suction lift must be reduce approximately 1.2 feet for each 1000 feet altitude. EFFECT OF HOT LIQUIDSHot liquids vaporize at higher absolute pressure than cold liquids, therefore the suction lift must be reduced when handling hot liquids. When handling liquids with a high vapour pressure or at high temperatures the liquid must flow to the pump suction under pressure. Consult the manufacturer/dealer for net positive suction head requirements when handling hot liquids. 

Page 48: Electrical for ALL

VOLTAGE DROP 

The size of every bare conductor or cable conductor shall be such that the drop in voltage from consumer’s terminals to any pint in the installation does not exceed 2.5 percent of the declared or nominal voltage when the conductors are carrying the full load current, but disregarding starting conditions. The approximate drop in average circuits such as lighting and domestic heating loads may be found as follows. Neglecting increased resistance due to temperature rise: D.C AND SINGLE PHASE A.C. TWO-WIRE CIRCUITSDrop   =    Current x total resistance of cables, lead and return = 2IR, where I = current and R =                   resistance of one conductor only (not lead and retum)As a rough correction for temperature add 15 per cent to the result for cables insulated with rubber, P.V.C. and polythene and 25 per cent for paper insulated cables, operating at maximum permissible temperature. THREE PHASE, CIRCUITS                                                I           =   Line current per phase and,

R    =   resistance of one core only               Drop = 1.73x IR where

 Note:    For large three core cables carrying heavy alternating current, allowance must be made for the              Increase in a.c. resistance due to skin effect.

VOLTAGE DROP IN PVC/XLPE CABLES(Voltage drop –Volts / Km Amps)

 Nominal        area of

Conductor     (Sq. mm)

P.V.C. Cables XLPE Cables

            Single           Phase

 ThreePhase

            Single           Phase

 ThreePhase

1.5 43.44 37.62 46.34 40.1325 29.04 25.15 30.98 26.834 17.78 15.40 18.98 16.446 11.06 9.58 11.80 10.2210 7.40 6.41 7.82 6.8216 4.58 3.97 4.9 4.2425 2.89 2.50 3.8 2.6735 2.10 1.80 2.25 1.9450 1.55 1.30 1.65 1.4470 1.10 0.94 1.15 1.0095 0.79 0.68 0.83 0.70120 0.63 0.55 0.66 0.56150 0.52 0.46 0.55 0.48185 0.42 0.37 0.35 0.30240 0.34 0.30 0.35 0.30300 0.28 0.26 0.30 0.26400 0.24 0.22 0.24 0.22500 0.23 0.20 0.23 0.20

Page 49: Electrical for ALL

630 0.20 0.18 0.21 0.18800 0.19 - 0.20 -1000 0.18 - 0.18 -

Above Voltage drope (volts/km/amps) ahall be multiplied with rated current & length of Cables in K.M. to calculate total voltage drop in particular length and size of cables. 

Water Requirements-Public BuildingsNumber of Fixtures

 Kind of Building   0-50 51-100 101-200 201-

400401-800

801-1200 Over 1200

Hotel and Clubs Gpm per FixtureMin.Capacity, GpmMax. Capacity Gpm

.652533

.553355

.456090

.35100140

.27150210

.27225300

.20300

-Hospitals Gpm per Fixture

Min.Capacity, GpmMax.Capacity Gpm

1.02530

.85580

.685120

.5125200

.4210320

.4330480

.4500

-Apartment Gpm per Fixture

Mix.Capasity,GpmMix.Capacity Gpm

.51625

.353035

.304060

.2865115

.25120200

.24210290

.24300

-Mercantile Gpm per Fixture

Mix.Capasity,GpmMix.Capacity Gpm

1.34065

.757075

.7080140

.60150240

.55250440

.50460600

.50620

-Office Gpm per Fixture

Mix.Capasity,GpmMix.Capacity Gpm

1.13555

.706070

.6080120

.50140200

.37210300

.30320460

.27380

-Schools Gpm per Fixture

Mix.Capasity,GpmMix.Capacity Gpm

1.02050

.605060

.5070100

.40110160

.40180320

.40340480

.40500

-                 

A.                 Tables are based on equal pdy mumber of men and women. If major number of occupants are women increase capacity ONLY 15%.

B.                 Where laundry is operated in connection with building increase capacity by 10%.C.                 These estimates do not include water for special process work. The extra amount should be determined            And added to the calculated quantity. 

    

Page 50: Electrical for ALL

Water Requirements- Rural & Domestic Resistance – Rural      Each person per day, all Purposes                            …        …        …        …        …                    60 gal      Each horse, dry cow or beef animal per day             …        …        …        …        …                    12 gal      Each making cow per day                                        …        …        …        …        …                    35 gal      Each hog per day                                                     …        …        …        …        …                    4   gal      Each Sheep per day                                                 …        …        …        …        …                    2   gal      Each 100 chickens per day                          …        …        …        …        …                    6   gal  Resistance – Urban      Drinking fountain, continuously flowing                     …        …        50 to 100 gal. Per day      Each shower bath                                                     …        …           25 to 60 gal      To fill bathtub                                                         …        …           25 gal      To Flush Toilet                                                        …        …               3 to 7 gal      To sprinkle ¼” of water on each 100 square feet of lawn        …        …       160 gal      Dish Washing Machine-per load                               …        …      10 to 20 gal      Automatic washer-per load                         …        …           30 to 50 gal       Regeneration of Domestic Water Softener    …        …            50-150 gal    By Fixture      Shower                                                                  …        …          4 to 6 gpm       Bath Tub                                                                …        …          4 to 8 gpm       Toilet                                                                      …        …          4 to 5 gpm       Lavatory                                                                 …        …          1 to 4 gpm       Kitchen sink                                                           …        …          2 to 5 gph       ½” hose and nozzle                                      …        …          200 gph      ¾” horse and nozzle                                                …        …          360 gph      Lawn sprinkler                                                    …        …          3 to 7 gpm       Above requirements are average and consumption for use will cery with location, persons, animals and weather.

XLPE CABLES Cross- Linked Polyethylene Insulated Cables (XLPE) are insulated with superior grade high modular unfilled Polythene with a cross structure. XPLE Cables offer various advantages over PVC insulated cables of requiring lesser Maintenance and having excellent Electrical and Thermal properties. The Application of XLPE cables, therefore, has recently expanded rapidly both for low voltage and high voltage ranges. 

A.C. Current Rating of Aluminium Conductor Cables With XLPE insulation 

Normal Area of Conductor

 Single Core

 Multicore

 Sq. mm

 

In GroundAmp

In AirAmp

In GroundAmp

In AirAmp

25 99 115 95 9935 117 140 115 11050 138 170 140 135

Page 51: Electrical for ALL

70 168 210 170 17095 204 255 200 205120 230 300 225 240150 265 342 255 275185 295 385 285 315240 340 450 325 370300 390 519 370 430400 450 605 435 490

C. CURRENT RATING OF ALUMINIUM CONDUCTOR HT CABLE (XLPE) 

Nominal Cross

Sectional Area

(sq.mm.)

THREE CORE CABLE                     CABLE IN AIR CABLE IN GROUND

        3.3 kV 

6.6 kV to11 kV

2.2 kV to3.3 kV

Upto3.3 kV

6.6 kV to11 kV

2.2 kV to3.3 kV

25 97 100 - 93 93 -35 118 123 127 110 110 11050 150 150 154 130 130 12870 177 185 189 157 157 15895 218 220 229 191 187 186120 254 260 262 218 217 208150 291 290 295 243 243 238185 332 338 340 277 275 270240 391 396 400 320 312 316300 455 449 446 358 357 352400 526 519 518 409 401 400