Electrical and Electronics Engineering Materials_J. B. Gupta

download Electrical and Electronics Engineering Materials_J. B. Gupta

of 70

description

this books is contain electrical engineering concepts which will helpful for exams

Transcript of Electrical and Electronics Engineering Materials_J. B. Gupta

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    1/70

    Scilab Textbook Companion for

    Electrical And Electronics Engineering

    Materials

    by J. B. Gupta1

    Created byLalit kumar saini

    B.TechElectronics Engineering

    Uttarakhand Tech. university

    College TeacherArshad Khan

    Cross-Checked byLavitha Pereira

    March 19, 2014

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the Textbook Companion Projectsection at the website http://scilab.in

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    2/70

    Book Description

    Title: Electrical And Electronics Engineering Materials

    Author: J. B. Gupta

    Publisher: S.k. Katariya & Sons, New Delhi

    Edition: 3

    Year: 2010

    ISBN: 81-89757-13-x

    1

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    3/70

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa Example (Solved example)

    Eqn Equation (Particular equation of the above book)

    AP Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    4/70

    Contents

    List of Scilab Codes 4

    1 Crystal Stucture Of Materials 7

    2 Conductivity of metals 11

    3 Semiconductor 37

    4 Bipolar Junction And Field Effect Transistors 56

    5 Magnetic Properties Of Materials 63

    6 Dielectric Properties Of Materials 67

    3

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    5/70

    List of Scilab Codes

    Exa 1.3 Density Of Copper Crystal . . . . . . . . . . . . . . . 7Exa 1.4 Interplanar Distance in a crystal . . . . . . . . . . . . 8Exa 1.5 Wavelength of X rays . . . . . . . . . . . . . . . . . . 8Exa 1.6 Wavelength of X rays . . . . . . . . . . . . . . . . . . 9Exa 1.7 Angle of incidence . . . . . . . . . . . . . . . . . . . . 9Exa 2.1 Drift Velocity of Electrons. . . . . . . . . . . . . . . . 11Exa 2.2 Magnitude of current . . . . . . . . . . . . . . . . . . 11Exa 2.3 Relaxation time and resistivity . . . . . . . . . . . . . 12Exa 2.4 Valance electron and mobility of electron . . . . . . . 13Exa 2.5 Mobility and relaxation time . . . . . . . . . . . . . . 13Exa 2.6 Relaxation time . . . . . . . . . . . . . . . . . . . . . 14Exa 2.7 Relaxation time of conducting electrons . . . . . . . . 14Exa 2.8 Charge density current density and drift velocity . . . 15

    Exa 2.9 Drift velocity . . . . . . . . . . . . . . . . . . . . . . . 16Exa 2.10 Resistivity of silicon . . . . . . . . . . . . . . . . . . . 17Exa 2.11 Carrier density . . . . . . . . . . . . . . . . . . . . . . 17Exa 2.13 Temperature of coil . . . . . . . . . . . . . . . . . . . 18Exa 2.15 Resistance of the coil . . . . . . . . . . . . . . . . . . 18Exa 2.16 Temperature coefficient of resistance . . . . . . . . . . 19Exa 2.17 Temperature coefficient of resistance . . . . . . . . . . 19Exa 2.18 Resistance and temperature coefficient . . . . . . . . . 20Exa 2.19 Mean temperature rise. . . . . . . . . . . . . . . . . . 21Exa 2.20 Specific resistance and resistance temperature coefficient 22Exa 2.21 Resistivity of the wire material . . . . . . . . . . . . . 22

    Exa 2.22 Resistance of the wire . . . . . . . . . . . . . . . . . . 23Exa 2.23 Current flowing. . . . . . . . . . . . . . . . . . . . . . 23Exa 2.24 Resistance and temperature coefficient of combination 24Exa 2.25 Impurity percent . . . . . . . . . . . . . . . . . . . . . 25

    4

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    6/70

    Exa 2.26 Electronic contribution of thermal conductivity of alu-

    minium . . . . . . . . . . . . . . . . . . . . . . . . . . 25Exa 2.27 EMP developed per degree centigrade . . . . . . . . . 26Exa 2.28 EMF developed in couple . . . . . . . . . . . . . . . . 26Exa 2.29 Thermo electric emf generated . . . . . . . . . . . . . 27Exa 2.30 Thermo emf neutral temperature temperature of inver-

    sion and max possible thermo electric emf . . . . . . . 28Exa 2.31 Potential difference. . . . . . . . . . . . . . . . . . . . 29Exa 2.32 EMF for a copper iron thermo couple . . . . . . . . . 29Exa 2.34 Critical magnetic field . . . . . . . . . . . . . . . . . . 30Exa 2.35 Critical current . . . . . . . . . . . . . . . . . . . . . . 31Exa 2.36 Critical current density . . . . . . . . . . . . . . . . . 31

    Exa 2.37 Diameter of copper wire . . . . . . . . . . . . . . . . . 32Exa 2.38 Resistance of liquid resistor . . . . . . . . . . . . . . . 33Exa 2.39 Resistivity of dielectric in a cable . . . . . . . . . . . . 33Exa 2.40 Insulation resistance . . . . . . . . . . . . . . . . . . . 34Exa 2.41 Insulation resistance and resistance of copper conductor 35Exa 3.1 Velocity of electron. . . . . . . . . . . . . . . . . . . . 37Exa 3.2 Relaxation time resistivity of conductor and velocity of

    electron . . . . . . . . . . . . . . . . . . . . . . . . . . 37Exa 3.3 Electron and hole density . . . . . . . . . . . . . . . . 38Exa 3.4 Donar atom concentration mobile electron concentra-

    tion hole concentration and conductivity of doped sili-con sample . . . . . . . . . . . . . . . . . . . . . . . . 39Exa 3.5 Concentration of hole in si. . . . . . . . . . . . . . . . 40Exa 3.6 Conductivity and resitivity of an intrinsic semiconductor 41Exa 3.7 Density of electron and drift velocity of holes and elec-

    trons . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Exa 3.8 Conductivity of Si . . . . . . . . . . . . . . . . . . . . 42Exa 3.9 Find conductivity of intrinsic Ge . . . . . . . . . . . . 43Exa 3.10 Electron and hole drift velocity conductivity of intrinsic

    Ge and total current . . . . . . . . . . . . . . . . . . . 43Exa 3.11 Diffusion coefficient of electron and hole . . . . . . . . 44

    Exa 3.12 Hall effect in semiconductor . . . . . . . . . . . . . . . 45Exa 3.13 Current density. . . . . . . . . . . . . . . . . . . . . . 46Exa 3.14 Value of hall coefficient . . . . . . . . . . . . . . . . . 46Exa 3.15 Magnitude of Hall voltage . . . . . . . . . . . . . . . . 47Exa 3.16 Mobility of holes . . . . . . . . . . . . . . . . . . . . . 47

    5

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    7/70

    Exa 3.17 Hall voltage. . . . . . . . . . . . . . . . . . . . . . . . 48

    Exa 3.18 Hall voltage. . . . . . . . . . . . . . . . . . . . . . . . 49Exa 3.19 Density and mobility of carrier . . . . . . . . . . . . . 49Exa 3.20 Hll angle . . . . . . . . . . . . . . . . . . . . . . . . . 50Exa 3.21 New position of fermi level . . . . . . . . . . . . . . . 50Exa 3.22 Potential barrier . . . . . . . . . . . . . . . . . . . . . 51Exa 3.23 Resistance level. . . . . . . . . . . . . . . . . . . . . . 51Exa 3.24 Fraction of the total number of electron . . . . . . . . 52Exa 3.25 Current flowing. . . . . . . . . . . . . . . . . . . . . . 52Exa 3.26 Forward voltage . . . . . . . . . . . . . . . . . . . . . 53Exa 3.27 Reverse saturation current density . . . . . . . . . . . 54Exa 3.28 Junction width . . . . . . . . . . . . . . . . . . . . . . 54

    Exa 4.1 Resistance between gate and source . . . . . . . . . . 56Exa 4.2 AC drain resistance of the JFET . . . . . . . . . . . . 56Exa 4.3 Transconductance . . . . . . . . . . . . . . . . . . . . 57Exa 4.4 AC drain resistance transconductance and amplification

    factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Exa 4.5 Transconductance . . . . . . . . . . . . . . . . . . . . 58Exa 4.6 Calculate VGS . . . . . . . . . . . . . . . . . . . . . . 59Exa 4.7 Minimum value of VDS . . . . . . . . . . . . . . . . . 59Exa 4.8 ID gmo and gm. . . . . . . . . . . . . . . . . . . . . . 60Exa 4.9 Id and gm. . . . . . . . . . . . . . . . . . . . . . . . . 60

    Exa 4.10 gm at IDS . . . . . . . . . . . . . . . . . . . . . . . . 61Exa 4.11 Drain current . . . . . . . . . . . . . . . . . . . . . . . 62Exa 5.1 Hysteresis loss . . . . . . . . . . . . . . . . . . . . . . 63Exa 5.2 Hysteresis loss . . . . . . . . . . . . . . . . . . . . . . 64Exa 5.3 Loss of energy . . . . . . . . . . . . . . . . . . . . . . 64Exa 5.4 Loss per kg in a specimen . . . . . . . . . . . . . . . . 65Exa 5.5 Eddy current loss . . . . . . . . . . . . . . . . . . . . 66Exa 6.1 Element of parallel RC circuit. . . . . . . . . . . . . . 67Exa 6.2 Charge sensitivity . . . . . . . . . . . . . . . . . . . . 68Exa 6.3 Force required to develop a voltage . . . . . . . . . . . 68Exa 6.4 Charge and its capacitance . . . . . . . . . . . . . . . 69

    6

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    8/70

    Chapter 1

    Crystal Stucture Of Materials

    Scilab code Exa 1.3 Density Of Copper Crystal

    1 //Exa32 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 // a t o mi c r a d i u s

    7 r = 1 . 2 7 8 ; // in Angstrum8 / / a t o m ic w e i g ht9 a w = 6 3 . 5 ;

    10 // Avogadro s number11 a n = 6 . 0 2 3 * 1 0 ^ 2 3 ;

    12 / / c o pp e r h as FCC s t r u c t u r e f o r w hi ch13 a = ( 4 * r ) / sqrt ( 2 ) ; / / i n A ng st ru m14 a = a * 1 0 ^ - 1 0 ; / / i n m15 / / Mass o f o ne atom16 m = a w / a n ; // in gm

    17 m = m * 1 0 ^ - 3 ; / / i n k g18 // v olume o f on e u n i t c e l l o f c op pe r c r y s t a l ,19 V = a ^ 3 ; / / i n m et er c ub e20 / /Number o f a to ms p r e s e n t i n o ne u n i t c e l l o f Cu (FCC

    S t r u c t u r e ) ,

    7

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    9/70

    21 n = 4 ;

    22 // D en s it y o f c r y s t a l23 r h o = ( m * n ) / V ; // in kg/m324 disp ( D e n s i t y o f c r y s t a l i s : + string ( r h o ) + kg/m3

    ) ;

    Scilab code Exa 1.4 Interplanar Distance in a crystal

    1 //Exa4

    2 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 // w av e l e ng t h7 l a m d a = 1 . 5 3 9 ; // i n A ngst rum8 / / a n g l e9 t h e t a = 2 2 . 5 ; // i n d e g r ee

    10 n = 1 ; // ( f i r s t or de r )11

    12 / / F or mu la n lamda=2ds i n ( t h e t a ) , s o

    13 / / i n t e r p l a n e r d i st a nc e ,14 d = l a m d a / ( 2 * sin ( t h e t a * % p i / 1 8 0 ) ) ;

    15 disp ( I n t e r p l a n e r d i s t a n ce i s : + string ( d ) + Angstrum )

    Scilab code Exa 1.5 Wavelength of X rays

    1 //Exa5

    2 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 n = 2 ;

    8

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    10/70

    7 d = 0 . 4 ; / / i n n en om et er

    8 d = d * 1 0 ^ - 9 ; // i n m et er9 t h e t a = 1 6 . 8 / 2 ; // i n d e g re e10 / / u s i n g Br ag g s e q u a t i o n we h av e n lamda=2ds i n (

    t h e t a ) , s o11 l a m d a = ( 2 * d * sin ( 8 . 4 * % p i / 1 8 0 ) ) / n ;

    12 disp ( W a ve le ng th o f Xr a y s u s e d i s : + string ( l a m d a* 1 0 ^ 1 0 ) + A ngstr um ) ;

    Scilab code Exa 1.6 Wavelength of X rays

    1 //Exa62 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 a = 3 . 1 5 ; // in Angstrum7 a = a * 1 0 ^ - 1 0 ; / / i n m e te r8 / / a n g l e9 t h e t a = 2 0 . 2 ; / / i n d e g r e e

    10 n = 1 ; // ( f i r s t or de r )11 / / f o r BCC c r y s t a l12 d 1 1 0 = a / sqrt ( 2 ) ; / / i n m e te r13 / / F o rm u la n lamda=2ds i n ( t h e t a )14 l a m d a = ( 2 * d 1 1 0 * sin ( t h e t a * % p i / 1 8 0 ) ) / n ; / / i n m e te r15 disp ( Wa velen gth i s : + string ( l a m d a * 1 0 ^ 1 0 ) +

    Angstrum )

    Scilab code Exa 1.7 Angle of incidence

    1 //Exa72 clc ;

    3 clear ;

    9

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    11/70

    4 close ;

    5 / / g i v e n d at a :6 l a m b d a = 0 . 8 4 2 ; // in Angstrum7 l a m b d a = l a m b d a * 1 0 ^ - 1 0 ; // i n m et er8 / / t h e t a =8 d e g r e e 3 5 m i n u t e s9 t h e t a = 8 + 3 5 / 6 0 ; / / i n d e g r e e

    10 n = 1 ; // ( f i r s t or de r )11 / / F o rm u la n lamda=2ds i n ( t h e t a )12 d = n * l a m b d a / ( 2 * s i n d ( t h e t a ) )

    13 // For t h i r d Order r e f l e c t i o n :14 / / F o rm u la n lamda=2ds i n ( t h e t a )15 n = 3 ; / / o r d e r

    16 t h e t a = a s i n d ( n * l a m b d a / ( 2 * d ) ) ;17 disp ( round ( t h e t a ) , Angl e o f i n c i d e n c e f o r t h i r d

    o rd e r r e f l e c t i o n i n d e g r e e : ) ;

    10

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    12/70

    Chapter 2

    Conductivity of metals

    Scilab code Exa 2.1 Drift Velocity of Electrons

    1 // Exa2 . 12 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 J = 2 . 4 ; // i n A/mm2

    7 J = 2 . 4 * 1 0 ^ 6 ; // i n A/m28 n = 5 * 1 0 ^ 2 8 ; // u n i t l e s s9 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n c ou lo mb

    10 / / F o r mu l a : J=e nv11 v = J / ( e * n ) ; // i n m/ s12 disp ( D r i f t v e l o c i t y i s : + string ( v ) + m/ s o r +

    string ( v * 1 0 ^ 3 ) + mm/s )

    Scilab code Exa 2.2 Magnitude of current

    1 //Exa22 clc ;

    11

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    13/70

    3 clear ;

    4 close ;5 / / g i v e n d at a :6 / / E l e c t r o n d e n s i t y7 n = 1 * 1 0 ^ 2 4 ; // u n it l e s s8 / / E l e c t r o n c h a r g e9 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n c ou lo mb

    10 // D r i f t v e l o c i t y11 v = 1 . 5 * 1 0 ^ - 2 ; // i n m et er p er s ec on d12 / / c r o s s s e c t i o n a l a re a13 A = 1 ; // i n c e nt i me t er s q u ar e14 A = 1 * 1 0 ^ - 4 ; // i n m et er s q ua r e

    15 I = e * n * v * A ; / / i n a mpere16 disp ( Mag ni tud e o f c u r r e nt i s : + string ( I ) + A )

    Scilab code Exa 2.3 Relaxation time and resistivity

    1 // Exa2 . 32 clc ;

    3 clear ;

    4 close ;5 / / g i v e n d at a :6 m i u _ e = 7 . 0 4 * 1 0 ^ - 3 ; // in m2/Vs7 n = 5 .8 * 10 ^ 28 ; // i n /m 38 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n c ou lo mb9 m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g

    10 / / ( i ) R e l a x a t i o n t im e ,11 t a u = m i u _ e / e * m ;

    12 disp ( R el ax at io n t i m e i s : + string ( t a u ) + s ec on d ) ;13 s i g m a = ( n * e * m i u _ e ) ;

    14 // ( i i ) R e s i s t i v i t y o f c on du ct or ,15 r h o = 1 / s i g m a ;16 disp ( R e s i s t i v i t y o f c o nd u ct o r i s : + string ( r h o ) +

    ohmm e t e r ) ;

    12

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    14/70

    Scilab code Exa 2.4 Valance electron and mobility of electron

    1 //Exa42 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 r h o = 1 . 7 3 * 1 0 ^ - 8 ; // in ohmme t e r7 t o h = 2 . 4 2* 1 0^ - 1 4 ; / / i n s e c on d8 e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n C9 m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g

    10 s i g m a = 1 / r h o ;

    11 // ( i ) Number o f f r e e e l e c t r o n s p er m312 n = ( m * s i g m a ) / ( e ^ 2 * t o h ) ;

    13 disp ( Number o f f r e e e l e c t r o n s p er cube me t e r i s : + string ( n ) ) ;

    14 // ( i i ) M o b il i t y o f e l e c t r o n s ,15 m i u _ e = ( e * t o h ) / m ;

    16 disp ( M o bi li ty o f e l e c t r o n s i s : + string ( m i u _ e ) + m

    2/Vs ) ;17 / / No te : Answer i n t h e bo ok i s wrong

    Scilab code Exa 2.5 Mobility and relaxation time

    1 //Exa52 clc ;

    3 clear ;

    4 close ;5 / / g i v e n d at a :6 r h o = 1 . 5 4 * 1 0 ^ - 8 ; // in ohmme t e r7 / / s i n c e s i g ma =1/ r o h8 s i g m a = 1 / r h o ;

    13

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    15/70

    9 n = 5 .8 * 10 ^ 28 ; // u n it l e s s

    10 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n C ( e l e c t r o n c h a rg e )11 m = 9 . 1 * 1 0 ^ - 3 1 ; // i n kg ( m ass o f e l e c t r o n )12 / / ( i ) R e l a x a t i on t im e13 t o h = ( s i g m a * m ) / ( n * e ^ 2 ) ;

    14 disp ( ( i ) R el ax at io n t i m e o f e l e c t r o n s i s : + string( t o h ) + s ec on ds ) ;

    15 // ( i i ) M o b il i t y o f e l e c t r o n s ,16 m i u _ e = ( e * t o h ) / m ;

    17 disp ( ( i i ) M o bi li ty o f e l e c t r o n s i s : + string ( m i u _ e) + m2/Vs ) ;

    Scilab code Exa 2.6 Relaxation time

    1 // Exa2 . 62 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 r h o = 1 . 7 * 1 0 ^ - 8 ; // in ohmme t e r

    7 / / s i n c e s i g ma =1/ r o h8 s i g m a = 1 / r h o ;

    9 n = 8 .5 * 10 ^ 28 ; // u n it l e s s10 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n C ( e l e c t r o n c h a rg e )11 m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g12 / / R e l ax a t io n t im e13 t o h = ( s i g m a * m ) / ( n * e ^ 2 ) ;

    14 disp ( R e l a xa ti o n t i m e o f e l e c t r o n s i s : + string (t o h ) + s e c on ds ) ;

    Scilab code Exa 2.7 Relaxation time of conducting electrons

    1 // Exa2 . 7

    14

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    16/70

    2 clc ;

    3 clear ;4 close ;

    5 format ( v ,11);6 / / g i v e n d at a :7 E = 1 0 0 ; // in V/m8 r h o = 1 . 5 * 1 0 ^ - 8 ; // in ohmme t e r9 / / s i n c e s i g ma =1/ r o h

    10 s i g m a = 1 / r h o ;

    11 n = 6 *1 0 ^2 8 ; // u n it l e s s12 e = 1 . 6 0 1 * 1 0 ^ - 1 9 ; / / i n C13 m = 9 . 1 0 7 * 1 0 ^ - 3 1 ; / / i n k g

    14 / / R e l ax a t io n t im e15 t o h = ( s i g m a * m ) / ( n * e ^ 2 ) ;

    16 disp ( ( i ) R el ax at io n t i m e o f e l e c t r o n s i s : + string( t o h ) + s ec on ds ) ;

    17 // D r i f t v e l o c i t y18 v = ( e * E * t o h ) / m ;

    19 disp ( ( i i ) D r i f t v e l o c i t y i s : + string ( v ) + m / s ) ;

    Scilab code Exa 2.8 Charge density current density and drift velocity

    1 // Exa2 . 82 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 / / D ia me te r o f c o pp e r w i r e7 d = 2 ; // i n m i l i m e t e r8 d = . 0 0 2 ; / / i n m e te r

    9 // c o n d u c t i v i t y o f c op pe r10 n i t a = 5 . 8 * 1 0 ^ 7 ; // i n s e co n d p e r m et er11 / / E l e c t r o n m o b i l i t y12 m i u _ e = . 0 0 3 2 ; // i n m et er s q ua r e p er v o lt s e c o n d13 // Ap pl ie d e l e c t r i c f i e l d

    15

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    17/70

    14 E = 2 0 ; // i n mV/m

    15 E = . 0 2 ; // i n V/m16 e = 1 . 6 * 1 0 ^ - 1 9 ;17 / / ( i ) From e q . ( 2 . 1 3 )18 / / c h a rg e d e n s i t y19 n = n i t a / ( e * m i u _ e ) ; // i n p e r m et er c ub e20 disp ( ( i ) Charge d e ns i t y i s : + string ( n ) + / m e t e r

    c u b e ) ;21 / / ( i i ) f ro m eq . ( 2 . 9 )22 / / c u r r e n t d e n s i t y23 J = n i t a * E ; // i n A/m224 disp ( ( i i ) C u r r e n t d e n s i t y i s : + string ( J ) + A/m2

    ) ;25 // ( i i i ) C ur re nt f l o w i n g i n t he w i re I=J Area o f x

    s e c t i o n o f w i re26 / / A rea o f xs e c t i o n o f w ir e= ( %pid 2) /427 I = ( J * % p i * d ^ 2 ) / 4 ;

    28 disp ( ( i i i ) C u rr e n t f l ow i ng i n t h e w ir e i s : +string ( I ) + A ) ;

    29 / / ( i v ) f or m e q . 2 . 1 430 // E l e c t r o n d r i f t v e l o c i t y31 v = m i u _ e * E ;

    32 disp ( ( i v ) E l e ct ro n d r i f t v e l o c i t y i s :

    + string ( v ) +m / s ) ;

    Scilab code Exa 2.9 Drift velocity

    1 // Exa2 . 92 clc ;

    3 clear ;

    4 close ;5 / / g i v e n d a ta6 r h o = 0 . 5 ; / / i n ohmme t e r7 J = 1 0 0 ; // i n A/m28 m i u _ e = 0 . 4 ; // in m2/Vs

    16

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    18/70

    9 E = J * r h o ; // s i n c e E=J / s i g m a

    10 / / F o rm u la v=m i u e

    E11 v = m i u _ e * E ;12 disp ( E l e c t r o n d r i f t v e l o c i t y i s : + string ( v ) + m/

    s ) ;13 disp ( Time t ak en by t he e l e c t r o n t o t r a v e l 10106

    m i n c r y s t a l )14 / / l e t Time t a ke n by t h e e l e c t r o n t o t r a v e l 10106

    m i n c r y s t a l = t15 t = ( 1 0 * 1 0 ^ - 6 ) / v ;

    16 disp ( string ( t ) + s ec on d ) ;

    Scilab code Exa 2.10 Resistivity of silicon

    1 //Exa102 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 m i u _ e = 0 . 1 7 ; // in m2/Vs

    7 m i u _ h = 0 . 0 3 5 ; // in m2/Vs8 n i t a _ i = 1 . 1 * 1 0 ^ 1 6 ; // in /m39 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n C ( e l e c t r o n c ha rg e )

    10 // I n t r i n s i c c on d u c t i v i t y ,11 s i g m a _ i = ( n i t a _ i * e ) * ( m i u _ e + m i u _ h ) ;

    12 I n t r i n s i c R e s i s t i v i t y = 1 / s i g m a _ i ;

    13 disp ( I n t r i n s i c r e s i s t i v i t y i s : + string (I n t r i n s i c R e s i s t i v i t y ) + ohmm e t e r ) ;

    Scilab code Exa 2.11 Carrier density

    1 //Exa112 clc ;

    17

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    19/70

    3 clear ;

    4 close ;5 / / g i v e n d a ta6 r h o _ i = 2 * 1 0 ^ - 3 ; // in ohmm ( t he re i s m i s s p ri nt ed i n

    t h i s l i n e i n t h e b ook )7 s i g m a _ i = 1 / r h o _ i ;

    8 m i u _ e = 0 . 3 ; / / i n m 2 /Vs9 m i u _ h = 0 . 1 ; // i n m2/Vs

    10 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n C11 // Formula s i g m a i= n i t a i e ( miu e+miu h )12 n i t a _ i = s i g m a _ i / ( e * ( m i u _ e + m i u _ h ) ) ;

    13 disp ( C a r r i e r d e n s i t y i s : + string ( n i t a _ i ) + /m3 )

    ;

    Scilab code Exa 2.13 Temperature of coil

    1 //Exa2 .1 32 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 R _ 1 5 = 2 5 0 ; / / i n ohm7 R _ t2 = 3 00 ; / / i n ohm8 a l p h a = 0 . 0 0 3 9 ; // i n d e g re e C9 t 1 = 1 5 ;

    10 / / Fo rm ul a R t 2 = R 15 [ 1 + a l p h a 1 ( t 2 t1 ) ]11 t 2 = ( ( R _ t 2 / R _ 1 5 ) - 1 ) / a l p h a + t 1 ;

    12 disp ( T em per at ur e when i t s r e s i s t a n c e i s 3 00 ohms i s: + string ( t 2 ) + d e gr e e C ) ;

    Scilab code Exa 2.15 Resistance of the coil

    1 //Exa2 .1 5

    18

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    20/70

    2 clc ;

    3 clear ;4 close ;

    5 / / g i v e n d a ta6 a l p h a 0 = 0 . 0 0 3 8 ; / / i n ohm/ ohm / d e g r e e C7 t 1 = 2 0 ; // i n d e g r e e C8 a l p h a 2 0 = 1 / ( 1 / a l p h a 0 + t 1 ) ;

    9 R 1 = 4 0 0 ; // in ohm10 / / Formu la R2=R1 [ 1+ al p ha2 0 ( t2t1 ) ]11 R 2 = R 1 * [ 1 + a l p h a 2 0 * ( 8 0 - 2 0 ) ] ;

    12 disp ( R e s i s t a n c e o f w ir e a t 80 d eg re e C s i : +string ( R 2 ) + ohm )

    Scilab code Exa 2.16 Temperature coefficient of resistance

    1 //Exa2 .1 62 clc ;

    3 clear ;

    4 close ;

    5 disp ( L e t t h e t e m p e ra t u r e c o e f f i c i e n t o f r e s i s t a n c e

    o f m a t e r i a l a t 0 d eg re e C be a lp ha 0 ) ;6 disp ( R e s i s t a n ce a t 25 d e g re e C , R1 = R0 (1+25

    a l p h a 0 ) ( i ) ) ;7 disp ( R e s i s t a n ce a t 70 d e g re e C , R2 = R0 (1+70

    a l p h a 0 ) ( i i ) ) ;8 disp ( D i v i d i n g Eq . ( i i ) by Eq . ( i ) , we g e t ) ;9 disp ( R2/R1= (1+70al ph a0 ) /(1+25a l p h a 0 ) ) ;

    10 disp ( o r 5 7. 2 /5 0 = (1+70al ph a0 ) /(1+25a l p h a 0 ) ) ;11 disp ( o r a l p h a 0 = 0 . 0 0 3 4 8 ohm/ohm/ d e g r e e C ) ;

    Scilab code Exa 2.17 Temperature coefficient of resistance

    1 //Exa2 .1 7

    19

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    21/70

    2 clc ;

    3 clear ;4 close ;

    5 disp ( L e t t h e t e m p e ra t u r e c o e f f i c i e n t o f r e s i s t a n c eo f m a t e r i a l c o i l a t 0 d e gr e e C be al pha 0 , t h en ) ;

    6 disp ( R e s i s t a n ce a t 25 d e g re e C , R1 = R0 (1+25a l p h a 0 ) ( i ) ) ;

    7 disp ( R e s i s t a n ce a t 75 d e g re e C , R2 = R0 (1+75a l p h a 0 ) ( i i ) ) ;

    8 disp ( D i v i d i n g Eq . ( i i ) by Eq . ( i ) , we g e t ) ;9 disp ( R2/R1= (1+75al ph a0 ) /(1+25a l p h a 0 ) ) ;

    10 disp ( o r 4 9/ 45 = (1+75al ph a0 ) /(1+25a l p h a 0 ) ) ;

    11 disp ( o r a l p h a 0 = 0 . 0 0 7 3 6 ohm/ohm/ d e g r e e C ) ;

    Scilab code Exa 2.18 Resistance and temperature coefficient

    1 //Exa2 .1 82 clc ;

    3 clear ;

    4 close ;

    5 disp ( L e t t h e t e m p e ra t u r e c o e f f i c i e n t o f r e s i s t a n c eo f p la ti nu m a t 0 d e gr e e C b e a lp ha 0 andr e s i s t a n c e o f p la ti nu m c o i l a t 0 d eg re e C be R0 ,t h e n ) ;

    6 disp ( R e s i s t a n ce a t 40 d e g re e C , R1 = R0 (1+40a l p h a 0 ) ( i ) ) ;

    7 disp ( R e s i s t a n ce a t 10 0 d e gr e e C , R2 = R0 (1+100a l p h a 0 ) ( i i ) ) ;

    8 disp ( D i v i d i n g Eq . ( i i ) by Eq . ( i ) , we h a ve ) ;9 disp ( R2/R1= (1+1 00al ph a0 ) /(1+40a l p h a 0 ) ) ;

    10 disp ( o r 3 . 7 67 / 3 . 14 6 = (1+100

    al ph a0 ) /(1+40

    a l p h a 0 ) ) ;11 disp ( o r a l p h a 0 = 0 . 0 0 3 7 9 ohm/ohm/ d e g r e e C ) ;12 a l p h a 0 = 0 . 0 0 3 7 9 ; / / i n ohm /ohm/ d e g r e e C13 disp ( T e m p er a tu r e c o e f f i c i e n t o f r e s i s t a n c e a t 4 0

    20

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    22/70

    d e g r e e C , )

    14 a l p h a 4 0 = 1 / ( 1 / a l p h a 0 + 4 0 ) ;15 disp ( a l p h a 4 0 ) ;

    16 disp ( S u b s t i t u t i n g R1 =3 .1 46 and a l p h a 0 = 0. 0 03 7 9 i n Eq. ( i ) we h av e )

    17 R 1 = 3 . 1 4 6 ; // in ohm18 //F or mul a R1 = R0 (1+40a l p h a 0 )19 R 0 = R 1 / ( 1 + 4 0 * a l p h a 0 ) ;

    20 disp ( R e s i st a nc e o f p la ti n um c o i l a t 0 d eg re e C i s : + string ( R 0 ) + o h m ) ;

    Scilab code Exa 2.19 Mean temperature rise

    1 //Exa2 .1 92 clc ;

    3 clear ;

    4 close ;

    5 disp ( Le t R0 be t h e r e s i s t a n c e o f t h e c o i l a t 0d e gr e e C and a l ph a0 be i t s t em pe ra t ur ec o e f f i c i e n t o f r e s i s t a n c e a t 0 d e g r e e C ) ;

    6 disp ( R e s i s t a n ce a t 20 d e g re e C , 18 = R0 (1+20a l p h a 0 ) ( i ) ) ;

    7 disp ( R e s i s t a n ce a t 50 d e g re e C , 20 = R0 (1+50a l p h a 0 ) ( i i ) ) ;

    8 disp ( D i v i d i n g Eq . ( i i ) by Eq . ( i ) , we h a ve ) ;9 disp ( 20/18= ( 1+50al ph a0 ) /(1+20a l p h a 0 ) ) ;

    10 disp ( o r a l p h a 0 = 1 / 2 5 0 =0 . 0 0 4 ohm/ ohm / d e g r e e C ) ;11 disp ( I f t d eg r e e C i s t h e t em pe ra tu re o f c o i l when

    i t s r e s i s t a n c e i s 21 ohm , t h e n ) ;12 disp ( 21=R0 ( 1 + 0 . 0 0 4t ) ) ;

    13 disp ( D i v i d i n g Eq . ( i i i ) by Eq . ( i i ) , we h a ve ) ;14 disp ( 2 1 / 2 0 = ( 1 + 0 . 0 0 4t ) /( 1+ 50 0 . 0 0 4 ) ) ;15 disp ( o r t =65 d e g r e e C ) ;16 disp ( T em pe ra tu re r i s e = ts u r r o un d i n g t e mp e ra t u re =

    65 15 = 50 d e g re e C ) ;

    21

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    23/70

    Scilab code Exa 2.20 Specific resistance and resistance temperature coef-ficient

    1 //Exa2 .2 02 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta

    6 a l p h a 2 0 = 1 / 2 5 4 . 5 ; / / i n ohm/ ohm / d e g r e e C7 t 2 = 6 0 ; / / d e g r e e C8 t 1 = 2 0 ; / / d e g r e e C9 r h o 0 = 1 . 6 * 1 0 ^ - 6 ;

    10 a l p h a 6 0 = 1 / ( 1 / a l p h a 2 0 + ( t 2 - t 1 ) ) ;

    11 disp ( T e m p er a tu r e c o e f f i c i e n t o f r e s i s t a n c e a t 6 0d e g r e e C i s : + string ( a l p h a 6 0 ) + ohm/ohm/ de gr eeC ) ;

    12 / / f r o m a l p h a 2 0 = 1/ ( 1/ a l p h a 0 + 20 )13 alpha0 =1/(1/ alpha20 -20);

    14 / / F o r mu l a r h o 6 0=r h o 0 ( 1 + a l p h a 0 t )15 r h o 6 0 = r h o 0 * ( 1 + a l p h a 0 * t 2 ) ;

    16 disp ( S p e c i f i c r e s i s t a n c e a t 60 d e g r e e C i s : +string ( r h o 6 0 ) + ohmcm )

    Scilab code Exa 2.21 Resistivity of the wire material

    1 //Exa2 .2 12 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 R = 9 5 . 5 ; // in ohm

    22

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    24/70

    7 l = 1 ; / / i n m e te r

    8 d = 0 . 0 8 ; // i n mm9 d = d * 1 0 ^ - 3 ; / / i n m e te r10 a = ( % p i * d ^ 2 ) / 4 ;

    11 // Formula R=rho l / a12 r h o = R * a / l ;

    13 disp ( R e s i s t a n c e o f t h e w i re m a t e r i a l i s : + string (r h o ) + ohmm e t e r )

    Scilab code Exa 2.22 Resistance of the wire

    1 //Exa2 .2 22 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 R = 4 ; // in ohm7 d = 0 . 0 2 7 4 ; // i n cm8 d = 0 . 0 0 0 2 7 4 ; / / i n m e te r9 r h o = 1 0 . 3 ; // i n miu ohmcm

    10 r h o = 1 0 . 3 * 1 0 ^ - 8 ; // in ohmm11 a = ( % p i * d ^ 2 ) / 4 ;

    12

    13 // Formula R=rho l / a14 l = R * a / r h o ;

    15 disp ( Le nght o f w i re i s : + string ( l ) + m et er s )

    Scilab code Exa 2.23 Current flowing

    1 //Exa2 .2 32 clc ;

    3 clear ;

    4 close ;

    23

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    25/70

    5 / / g i v e n d a ta

    6 V = 2 2 0 ; // i n V7 W = 1 0 0 ; / / i n w a tt8 R 1 0 0 = V ^ 2 / W ; // in ohm9 a l p h a 2 0 = 0 . 0 0 5 ;

    10 t 1 = 2 0 ;

    11 t 2 = 2 0 0 0 ;

    12 / / s i n c e R1 00=R20 [ 1+ al p ha2 0 ( t2t 1 ) ]13 R 2 0 = R 1 00 / ( 1 + a l p h a 20 * ( t2 - t 1 ) ) ;

    14 I 2 0 = V / R 2 0 ;

    15 disp ( C u r r en t f l ow i n g a t t he i n s t a n t o f s w i t ch i ng ona 100 W m e t a l f i l a m e n t lamp i s : + string ( I 2 0 ) +

    A )

    Scilab code Exa 2.24 Resistance and temperature coefficient of combina-tion

    1 //Exa2 .2 42 clc ;

    3 clear ;

    4 close ;5 / / g i v e n d a ta6 t 2 = 5 0 ; // i n d eg re e C7 t 1 = 2 0 ; // i n d eg r e e C8 R 1 = 6 0 0 ; / / i n ohm9 R 2 = 3 0 0 ; / / i n ohm

    10

    11 / / Le t r e s i s t a n c e o f 600 ohm r e s i s t a n c e a t 5 0 d eg r e eC = R 6 00

    12 R _ 6 0 0 = R 1 * ( 1 + ( t 2 - t 1 ) * . 0 0 1 ) ; / / i n ohm

    13 / / Le t r e s i s t a n c e o f 300 ohm r e s i s t a n c e a t 5 0 d eg r e eC = R 3 0014 R _ 3 0 0 = R 2 * ( 1 + ( t 2 - t 1 ) * . 0 0 4 ) ; / / i n ohm15 R _ 5 0 = R _ 6 0 0 + R _ 3 0 0 ; / / i n ohm16 disp ( R e s is t a nc e o f c om bi na ti on a t 50 d e g r e e C i s :

    24

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    26/70

    + string ( R _ 5 0 ) + ohm )

    17 R _ 2 0 = R 1 + R 2 ; / / i n ohm18 a l p h a _ 2 0 = ( R _ 5 0 / R _ 2 0 - 1 ) / ( t 2 - t 1 ) ;19 a l p h a _ 5 0 = 1 / ( 1 / ( a l p h a _ 2 0 ) + ( t 2 - t 1 ) ) ;

    20 disp ( E f f e c t i v e t e m p e r a t u r e c o e f f i c i e n t o f c om bi na ti on a t 50 d eg re e C i s : + string ( a l p h a _ 5 0) + o r 1 /53 0 p e r d e gr ee C )

    Scilab code Exa 2.25 Impurity percent

    1 //Exa2 .2 52 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 t o h = 1 . 7 3 / / i n m i cr oohmcm7 t o h D e s h = 1 . 7 4 ; / / i n m i cr oohmcm8 s i g m a = 1 / t o h ; // c o n d u c t i v i t i e s o f p ur e m e t a l9 s i g m a D e s h = 1 / t o h D e s h ; // c o n d u c t i v i t i e s m et al w it h

    i m p u r i t y

    10 P e r c e n t I m p u r i t y = ( ( s i g m a - s i g m a D e s h ) / s i g m a ) * 1 0 0 ;11 disp ( P e r c e n t i mp ur i ty i n t h e r o d i s : + string (

    P e r c e n t I m p u r i t y ) + %)

    Scilab code Exa 2.26 Electronic contribution of thermal conductivity ofaluminium

    1 //Exa2 .2 6

    2 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 E l e c t r i c a l R e s i s t i v i t y = 2 . 8 6 * 1 0 ^ - 6 ; // in ohmcm

    25

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    27/70

    7 s i g m a = 1 / E l e c t r i c a l R e s i s t i v i t y ;

    8 T = 2 7 3 + 2 0 ; / / i n K e l v i n ( T e mp e ra t ur e )9 //F or mul a K/( s i gma T ) = 2. 4410810 disp ( Thermal c o n d u c t i v i t y o f Al )11 K = ( 2 . 4 4 * 1 0 ^ - 8 * T * s i g m a ) ;

    12 disp ( K ) ;

    Scilab code Exa 2.27 EMP developed per degree centigrade

    1 //Exa2 .2 72 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 E _ A C = 1 6 * 1 0 ^ - 6 ; // i n V p er d e gr e e C7 E _ B C = - 3 4 * 1 0 ^ - 6 ; // i n V p er d e g re e C8 //By l aw o f s u c c e s s i v e c o nt a ct ( o r i n t e r m e di a t e

    m e t a l s )9 E _ A B = E _ A C - E _ B C ; / / i n V/ d e g r e e C

    10 E _ A B = E _ A B * 1 0 ^ 6 ; // i n miu V/ d e g r ee C

    11 disp ( EMF of i r o n w i th r e s p e c t t o c on st an ta n i s : +string ( E _ A B ) + m i cr o V/ d e g r e e C )

    Scilab code Exa 2.28 EMF developed in couple

    1 //Exa2 .2 82 clc ;

    3 clear ;

    4 close ;5 / / g i v e n d a ta6 E _ A C = 7 . 4 ; // i n miu V p e r d e g r e e C7 E _ B C = - 3 4 . 4 ; / / i n miu V p e r d e g r e e C

    26

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    28/70

    8 //By l aw o f s u c c e s s i v e c o nt a ct ( o r i n t e r m e di a t e

    m e t a l s )9 E _ A B = E _ A C - E _ B C ; / / i n miu V/ d e g r e e C10 E _ A B = E _ A B * 1 0 ^ - 6 ; // i n V/ d eg re e C11 // Le t Ther moemf f o r a t em pe ra tu re d i f f e r e n c e o f

    2 5 0 d e g r e e C = EMF 25012 E M F _ 2 5 0 = E _ A B * 2 5 0 ; // i n V13 E M F _ 2 5 0 = E M F _ 2 5 0 * 1 0 ^ 3 ; // i n mV14 disp ( Termoemf f o r a t em pe r at ur e d i f f e r e n c e o f 250

    d eg re e C i s + string ( E M F _ 2 5 0 ) + mV) ;

    Scilab code Exa 2.29 Thermo electric emf generated

    1 //Exa2 .2 92 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 // Take i r o n a s m et al A and c op pe r a s m et al B w it h

    r e s pe c t t o l e a d

    7 / / F or m e ta l A :8 p _ A = 1 6 . 2 ;

    9 q _ A = - 0 . 0 2 ;

    10 / / F or m e ta l B :11 p _ B = 2 . 7 8 ;

    12 q _ B = + 0 . 0 0 9 ;

    13 p _ A B = p _ A - p _ B ;

    14 q _ A B = q _ A - q _ B ;

    15 T 2 = 2 1 0 ; // i n d e g r e e C16 T 1 = 1 0 ; // i n d eg re e C

    17 E = p _ A B * ( T 2 - T 1 ) + q _ A B / 2 * ( T 2 ^ 2 - T 1 ^ 2 ) ;18 disp ( Thermoe l e c t r i c e mf i s : + string ( E ) + m ic r o V ) ;

    19 T n = - p _ A B / q _ A B ;

    20 disp ( N e u tr al t em pe ra tu re i s : + string ( T n ) + d e g r ee

    27

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    29/70

    C ) ;

    Scilab code Exa 2.30 Thermo emf neutral temperature temperature of in-version and max possible thermo electric emf

    1 //Exa2 .3 02 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 p _ A = 1 7 . 3 4 ;

    7 q _ A = - 0 . 0 4 8 7 ;

    8 p _ B = 1 . 3 6 ;

    9 q _ B = + 0 . 0 0 9 5 ;

    10 p _ A B = p _ A - p _ B ;

    11 q _ A B = q _ A - q _ B ;

    12 T 2 = 2 1 0 ; // i n d e g r e e C13 T 1 = 1 0 ; // i n d eg re e C14 E = p _ A B * ( T 2 - T 1 ) + q _ A B / 2 * ( T 2 ^ 2 - T 1 ^ 2 ) ; / / i n miu V15 E = E * 1 0 ^ - 3 ; / / i n m V

    16 disp ( Thermoe l e c t r i c e mf i s : + string ( ceil ( E ) ) + mV ) ;

    17 T n = - p _ A B / q _ A B ;

    18 disp ( N e u tr al t em pe ra tu re i s : + string ( ceil ( T n ) ) + d e g r e e C ) ;

    19 T c = 1 0 ; // i n d eg re e C20 T i = T n + ( T n - T c ) ;

    21 disp ( Te mper at ur e o f i n v e r s i o n i s : + string ( ceil ( Ti) ) + d e gr e e C ) ;

    22 E _ m a x = 1 5 . 9 8 * ( 2 7 5 - 1 0 ) - 1 / 2 * 0 . 0 5 82 * [ 2 7 5 ^ 2 - 1 0 ^ 2 ] ; // in

    mi u V23 E _ m a x = E _ m a x * 1 0 ^ - 3 ; / / i n mV24 disp ( Maximum p o s s i b l e t he rm oe l e c t r i c emf at

    n e u t r al t em pe ra tu re t ha t i s a t 2 75 d eg re e C i s : + string ( E _ m a x ) + mV) ;

    28

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    30/70

    Scilab code Exa 2.31 Potential difference

    1 //Exa2 .3 12 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 r h o = 1 4 6 * 1 0 ^ - 6 / / i n ohmcm

    7 a = 1 ; // in cm28 l = 1 ; // i n cm9 / / l e t c ur r e nt = i

    10 i = 0 . 0 6 ; // in amp11 R = r h o * l / a ; // in ohm12 // Le t p o t e n t i a l d i f f e r e n c e p e r d eg re e c e nt i g ra d e =

    P13 P = i * R ; // By Ohm s law14 disp ( P o t en t i al d i f f e r e n c e p er d eg r e e c e nt i g r a d e i s

    : + string ( P ) + v o l t ) ;

    Scilab code Exa 2.32 EMF for a copper iron thermo couple

    1 //Exa2 .3 22 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 T _ l o w e r = 1 0 ;

    // i n d eg re e C7 T _ u p p e r = 1 5 0 ; // i n d eg r e e C8

    9 // Thermoe l e c t r i c p ow er f o r i r o n a t a ny t e m p e r a tu r eT d e gr e e C w. r . t . l e a d i s g i v en by ( 17 . 34 0 . 0 4 8 7

    29

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    31/70

    T) 10 6 a nd t ha t f o r c op pe r b y ( 1. 36 . 0 0 9 5 T )

    10

    61011 // Thermoe l e c t r i c pow er , P=dE/dT12 // or dE=PdT13 // Thermoemf f o r c o pp e r b et we en t e m pe r a tu r e 1 0

    d e gr e e C a nd 1 50 d e gr e e C ,14 E _ c = i n t e g r a t e ( ( 1. 36 0 . 0 0 9 5T) 10 6 , T ,T_low er ,

    T _ u p p e r ) ;

    15

    16 // Thermoemf f o r i r o n b et we en t em p er a tu re 10 d e g re eC and 15 0 d e g re e C ,

    17 E _ i = i n t e g r a t e ( ( 1 7 . 3 4 0 . 0 4 8 7T) 10 6 , T ,T_lowe r ,T _ u p p e r ) ;

    18

    19 // Thermoemp f o r c o pp eri r o n t her moc o u p l e20 E = E _ i - E _ c ;

    21

    22 disp ( Thermoemf f o r i r o n b et we en t em pe ra t ur e 10d eg re e C and 150 d eg re e C i s : + string ( E * 1 0 ^ 6 ) +

    m i c r o V ) ;

    Scilab code Exa 2.34 Critical magnetic field

    1 //Exa2 .3 42 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 H c _ 0 = 8 * 1 0 ^ 5 ; // i n A/m

    7 T c = 7 . 2 6 ; / / i n K8 T = 4 ; / / i n K9 H c _ T = H c _ 0 * [ 1 - ( T / T c ) ^ 2 ] ;

    10 disp ( The c r i t i c a l v a l u e o f m a g n e t i c f i e l d a t T=4 Ki s : + string ( H c _ T ) + A/m ) ;

    30

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    32/70

    Scilab code Exa 2.35 Critical current

    1 //Exa2 .3 52 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 H c = 7 9 0 0 ; // in A/m

    7 d = 1 ; // i n mm8 r = d / 2 ; // i n mm9 r = r * 1 0 ^ - 3 ; / / i n m

    10 I c = 2 * % p i * r * H c ;

    11 disp ( C r i t i c a l c ur re nt i s : + string ( I c ) + A ) ;

    Scilab code Exa 2.36 Critical current density

    1 //Exa2 .3 62 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d a ta6 H c _ 0 = 8 * 1 0 ^ 4 ; // i n A/m7 T c = 7 . 2 ; / / i n K8 T = 4 . 5 ; / / i n K9 d = 1 ; // i n mm

    10 r = d / 2 ; // i n mm11 r = r * 1 0 ^ - 3 ; / / i n m

    12 H c = H c _ 0 * [ 1 - ( T / T c ) ^ 2 ] ;13 disp ( The c r i t i c a l f i e l d a t T= 4. 5 K i s : + string ( Hc

    ) + A/m ) ;14 I c = 2 * % p i * r * H c ;

    15 disp ( C r i t i c a l c ur re nt i s : + string ( I c ) + A ) ;

    31

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    33/70

    Scilab code Exa 2.37 Diameter of copper wire

    1 //Exa2 .3 72 clc ;

    3 clear ;

    4 close ;

    5 format ( v ,5)6 // Formula R=rho l / a

    7 / / p u t ti n g v a lu e f o r c op pe r w i re8 R = 2 ; / / i n ohm9 l = 1 0 0 ; / / i n m e te r

    10 r h o = 1 . 7 * 1 0 ^ - 8 ; // ( f o r c o pp e r )11 a = r h o * l / R ; / / i n m e te r12 a = a * 1 0 ^ 6 ; / / i n mm13 // F or mul a a=%pi /4d 214 d _ c o p p e r = sqrt ( a * 4 / % p i ) ; // ( d co pp er i s d ia me te r

    f o r c o pp e r )15

    16 // Formula R=rho l / a17 / / p u t t i n g v a l u e f o r Aluminium w i r e18 R = 2 ; / / i n ohm19 l = 1 0 0 ; / / i n m e te r20 r h o = 2 . 8 * 1 0 ^ - 8 ; / / ( f o r a l um i ni u m )21 a = r h o * l / R ; / / i n m e te r22 a = a * 1 0 ^ 6 ; / / i n mm23 // F or mul a a=%pi /4d 224 d _ a l u m i n i u m = sqrt ( a * 4 / % p i ) ; // ( d al umi ni u m i s

    d i a m e t e r f o r a lu mi ni um )25 D i a R a t i o = d _ a l u m i n i u m / d _ c o p p e r ; // ( D ia Ra ti o i s

    r a t i o o f d i am e te r o f a lu mi ni um and c op pe r )26 disp ( The d i am et er o f t he al umi niu m w i re i s + string

    ( D i a R a t i o ) + t im es t ha t o f c op pe r w ir e ) ;

    32

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    34/70

    Scilab code Exa 2.38 Resistance of liquid resistor

    1 //Exa2 .3 82 clc ;

    3 clear ;

    4 close ;

    5 format ( v ,7)6 / / g i v e n d a ta7 l = 6 0 ; // i n cm8 l = l * 1 0 ^ - 2 ; / / i n m e te r9 d = 2 0 ; // i n cm

    10 d = d * 1 0 ^ - 2 ; / / i n m e te r11 D = 3 5 ; // i n cm ;12 D = D * 1 0 ^ - 2 ; / / i n m e te r13 r 1 = d / 2 ;

    14 r 2 = D / 2 ;

    15 r h o = 8 0 0 0 ; / / i n ohmcm16 r h o = 8 0 ; / / i n ohmm17 // L et I n s u l a t i o n r e s i s t a n c e o f t h e l i q u i d r e s i s t o r

    = I r18 I r = [ r h o / ( 2 * % p i * l ) ] * log ( r 2 / r 1 ) ;

    19 disp ( I n s u l a t i o n r e s i s t a n c e o f t he l i q u i d r e s i s t o ri s : + string ( I r ) + ohm)

    Scilab code Exa 2.39 Resistivity of dielectric in a cable

    1 //Exa2 .3 9

    2 clc ;3 clear ;

    4 close ;

    5 format ( v ,11)6 / / g i v e n d a ta

    33

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    35/70

    7 R _ d e s h = 1 8 2 0 ; / / i n M ohm

    8 R _ d e s h = R _ d e s h * 1 0 ^ 6 ; / / i n ohm9 d 1 = 1 . 5 ; // i n cm10 d 1 = d 1 * 1 0 ^ - 2 ; // i n m et er11 d 2 = 5 ; // i n cm12 d 2 = d 2 * 1 0 ^ - 2 ; // i n m et er13 l = 3 0 0 0 ; // i n m et er14 r 1 = d 1 / 2 ;

    15 r 2 = d 2 / 2 ;

    16

    17 r h o = ( 2* % p i * l * R _ d es h ) / log ( r 2 / r 1 ) ;

    18 disp ( R e s i s t i v i t y o f d i e l e c t r i c i s : + string ( r h o ) +

    ohm me t e r )

    Scilab code Exa 2.40 Insulation resistance

    1 //Exa2 .4 02 clc ;

    3 clear ;

    4 close ;

    5 format ( v ,9)6 / / g i ve n d at a7 // F i r s t Case :8 r 1 = 1 . 5 / 2 ; // i n cm9 / / l e t r ad i u s t h i c k n e s s o f i n s u l a t i o n = r 1 t

    10 r 1 _ t = 1 . 5 ; // i n cm11 r 2 = r 1 + r 1 _ t ;

    12 R _ d e s h = 5 0 0 ; / / i n M ohm13 R _ d e s h = R _ d e s h * 1 0 ^ 6 ; / / i n ohm14 / / S ec on d c a s e :

    15 r 1 _ d e s h = r 1 ; // i n cm ( a s b e f o r e )16 / / l e t r ad i u s t h i c k n e s s o f i n s u l a t i o n = r 2 t17 r 2 _ t = 2 . 5 ; // i n cm18 r 2 _ d e s h = r 1 + r 2 _ t ;

    19 / / s i n c e I n s u l a t i o n r e s i s t a n c e , R desh= si gm a / (2

    34

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    36/70

    %p il ) l o g ( r 2 / r 1 ) a nd

    20 // R 1 de sh= si g ma / ( 2

    %p il ) l o g ( r 2 d e s h / r 1 d e s h )21 / / D i v i d i n g R 1 d es h by R1 , We g e t22 / / R 1 d e sh / R d e sh = l o g ( r 2 d e s h / r 1 d e s h ) / l o g ( r 2 / r 1 )23 / / L e t R = R 1 d e sh / R de sh , Now24 R = log ( r 2 _ d e s h / r 1 _ d e s h ) / log ( r 2 / r 1 ) ;

    25 R 1 _ d e s h = R * R _ d e s h ;

    26 disp ( New i n s u l a t i o n r e s i s t a n c e i s : + string (R 1 _ d e s h * 1 0 ^ - 6 ) + M ohm ) ;

    Scilab code Exa 2.41 Insulation resistance and resistance of copper con-ductor

    1 //Exa2 .4 12 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 t 1 = 2 0 ; // i n d eg re e C

    7 t 2 = 3 6 ; // i n d eg re e C8 a l p h a _ 2 0 = 0 . 0 0 4 3 ; // i n p er d e g re e C ( T em pe ra tu re

    C o e f f i c i e n t )9 I n s u l a t i o n R e s i s t a n c e = 4 8 0 * 1 0 ^ 6 ; / / i n ohm

    10 c o p p e r _ c o n d _ r e s = 0 . 7 ; // i n ohm ( c op pe r c on d uc to rr e s i s t a n c e )

    11 l = 5 0 0 * 1 0 ^ - 3 ; // i n k i l o me t e r ( l e ng t h )12 R 1 _ d e sh = I n s u l at i o n R es i s t a nc e * l ; / / i n ohm13

    14 // From F or mul a l o g ( R 2 de sh )= l o g ( R 1 de shK ( t2t 1 ) )

    15 // K= 1/ ( t2

    t 1 )

    l o g ( R 1 d e s h / R 2 d e s h )16 / / s i n c e when t2t 1 =10 d e g r e e C a nd R 1 d es h / R 2 d e sh=2

    17

    18 K = 1 / 1 0 * log ( 2 ) ;

    35

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    37/70

    19

    20 // ( i ) I n s u l a t i o n r e s i s t a n c e a t any t em pe ra tu re t2 ,R2 d es h i s g i v e n by21 l o g R 2 _ d e s h = log ( R 1 _ d e s h ) - ( t 2 - t 1 ) / 1 0 * log ( 2 ) ;

    22 R 2 _ de s h = % e ^ l o g R 2_ d e s h

    23

    24 disp ( ( i ) I n s u l a t i o n r e s i s t a n c e a t any t em pe ra tu re: + string ( R 2 _ d e s h * 1 0 ^ - 6 ) + Mega ohm ) ;

    25

    26 / / ( i i )27 R _ 20 = c o p p er _ c o nd _ r e s / l ; / / i n ohm28 R _ 3 6 = R _ 2 0 * [ 1 + a l p h a _ 2 0 * ( t 2 - t 1 ) ] ;

    2930 disp ( R e s i st a n c e a t 36 d eg re e C i s : + string (

    R _ 3 6 ) + ohm )

    36

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    38/70

    Chapter 3

    Semiconductor

    Scilab code Exa 3.1 Velocity of electron

    1 // Exa3 . 12 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 E = 2 . 1 ; / / i n eV

    7 E = E * 1 . 6 0 2 * 1 0 ^ - 1 9 ; // i n J8 m = 9 . 1 0 7 * 1 0 ^ - 3 1 ; // i n kg ( mass o f e l e c t r o n )9 // F or mul a E =1/2mv 2

    10 v = sqrt ( 2 * E / m ) ;

    11 disp ( V e lo c i t y o f e l e c t r o n a t F ermi l e v e l i s : +string ( v ) + m/ s )

    Scilab code Exa 3.2 Relaxation time resistivity of conductor and velocity

    of electron

    1 // Exa3 . 22 clc ;

    37

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    39/70

    3 clear ;

    4 close ;5 / / g i ve n d at a6 E = 5 . 5 ; / / i n eV ; ( F erm i e n er g y )7 E = E * 1 . 6 * 1 0 ^ - 1 9 ; // i n J8 m i u _ e = 7 . 0 4 * 1 0 ^ - 3 ; // in m2/Vs ( M ob il it y o f

    e l e c t r o n s )9 n = 5 .8 * 10 ^ 28 ; // i n /m3 ( Number o f c o nd u ct i on

    e l e c t r o n s /m 3 )10 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n c ou lo mb11 m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g12 / / ( i ) R e l a x a t i o n t im e ,

    13 t a u = m i u _ e / e * m ;14 disp ( ( i ) R el ax at io n t i m e i s : + string ( t a u ) +

    s e c o n d ) ;15 s i g m a = ( n * e * m i u _ e ) ;

    16 // ( i i ) R e s i s t i v i t y o f c on du ct or ,17 r h o = 1 / s i g m a ;

    18 disp ( ( i i ) R e s i s t i v i t y o f c o nd u ct o r i s : + string (r h o ) + ohmm e t e r ) ;

    19 // ( i i i ) L et V e l o ci t y o f e l e c t r o n s w i th f e rm i e ne rg y= v

    20 v = sqrt ( 2 * E / m ) ;

    21 disp ( ( i i i ) V e l o c i t y o f e l e c t r o n w it h Fermi l e v e l i s: + string ( v ) + m/ s ) ;

    Scilab code Exa 3.3 Electron and hole density

    1 // Exa3 . 32 clc ;

    3 clear ;4 close ;

    5 / / g i ve n d at a6 n _ i = 2 . 5 * 1 0 ^ 1 3 ; / / i n /cm 37 r h o = 0 . 0 3 9 ; / / i n ohmcm

    38

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    40/70

    8 s i g m a _ n = 1 / r h o ;

    9 e = 1 . 6 0 2 * 1 0 ^ - 1 9 ; // i n C10 m i u _ e = 3 6 0 0 ; / / i n cm 2 /Vs11 // s i n c e s ig ma n = n e m iu e = N D e m i u e12 N _ D = s i g m a _ n / ( e * m i u _ e ) ;

    13 n = N _ D ; // ( appr ox )14 disp ( C on ce nt ra ti on o f e l e c t r o n s i s : + string ( n ) +

    /cm3 ) ;15 p = n _ i ^ 2 / n ;

    16 disp ( C on ce nt ra ti on o f h o l e s i s : + string ( p ) + / cm3 ) ;

    Scilab code Exa 3.4 Donar atom concentration mobile electron concentra-tion hole concentration and conductivity of doped silicon sample

    1 // Exa3 . 42 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a

    6 S i l i c o n A t o m = 5 * 1 0 ^ 2 2 ; // u n it l e s s ( Number o f s i l i c o natom)

    7 D o n o r I m p u r i t y = 1 / 1 0 ^ 6 ;

    8 n _ i = 1 . 4 5 * 1 0 ^ 1 0 ; / / i n cm39 e = 1 . 6 0 2 * 1 0 ^ - 1 9 ; // i n C

    10 m i u _ e = 1 3 0 0 ; // t a ki n g mi u e f o r S i a s 13 00 cm2/Vs11 / / ( i ) Don or atom c o n c e n t r a i o n12 / / F o rm u la N D= N umber o f s i l i c o n a t om s / cm 3 donor

    i m p u r i t y13 N _ D = S i l i c o n A t o m * D o n o r I m p u r i t y ;

    14 disp ( ( i ) Donor atom c o n c e n t r a t i o n i s : + string ( N _ D) + p e r cm 3 ) ;15

    16 // ( i i ) M ob il e e l e c t r o n c o n c e n t r a t i o n17 n = N _ D ; / / ( a p p r o x . )

    39

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    41/70

    18 disp ( ( i i ) M o b i l e e l e c t r o n c o nc e nt r at i o n i s : +

    string ( n ) + p e r cm 3 ) ;1920 / / ( i i i ) H ol e c o n c e n t r a t i o n21 p = n _ i ^ 2 / N _ D ;

    22 disp ( ( i i i ) H o le c o n c e n t r a t i o n i s : + string ( p ) + /cm3 ) ;

    23

    24 / / ( i v ) c o n d u c t i v i t y o f d op ed s i l i c o n s am pl e25 s i g m a = n * e * m i u _ e ;

    26 disp ( ( i v ) c o n d u ct i v i t y o f doped s i l i c o n sa mp le i s : + string ( s i g m a ) + S/cm) ;

    2728 r h o = 1 / s i g m a ;

    29 // ( v ) r e s i s t a n c e o f g i v en s em ic on du ct or30 l = 0 . 5 ; // i n cm31 a = ( 5 0 * 1 0 ^ - 4 ) ^ 2

    32 R = r h o * l / a ;

    33 disp ( R e s i st a nc e o f g i ve s em ic on du ct or i s : + string( R ) + ohm ) ;

    Scilab code Exa 3.5 Concentration of hole in si

    1 // Exa3 . 52 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 n _ i = 1 . 4 * 1 0 ^ 1 8 ; / / i n m 37 N _ D = 1 . 4 * 1 0 ^ 2 4 ; / / i n m 3

    8 n = N _ D ; // ( appr ox )9 p = n _ i ^ 2 / n ;10 / / l e t R a t i o o f e l e c t r o n t o h ol e c o n c e n t r a t i o n = r11 r = n / p ;

    12 disp ( R a t i o o f e l e c t r o n t o h ol e c o n c e n t r a t i o n i s :

    40

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    42/70

    + string ( r ) ) ;

    Scilab code Exa 3.6 Conductivity and resitivity of an intrinsic semicon-ductor

    1 // Exa3 . 62 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 n _ i = 2 . 5 * 1 0 ^ 1 3 ; / / i n cm 37 e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n c ou lo mb8 m i u _ h = 1 8 0 0 ; / / i n cm 2 /Vs9 m i u _ e = 3 8 0 0 ; / / i n cm 2 /Vs

    10 s i g m a _ i = n _ i * e * ( m i u _ e + m i u _ h ) ;

    11 disp ( I n t r i n s i c c o n d u c t i v i t y i s : + string ( s i g m a _ i ) + /ohmcm ) ;

    12 r h o _ i = 1 / s i g m a _ i ;

    13 disp ( I n t r i n s i c r e s i s t i v i r y i s : + string ( r h o _ i ) + ohmcm )

    Scilab code Exa 3.7 Density of electron and drift velocity of holes andelectrons

    1 // Exa3 . 72 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 r h o _ i = 0 . 4 7 ; / / i n ohmme t e r7 s i g m a _ i = 1 / r h o _ i ;

    8 m i u _ e = 0 . 3 9 ; / / i n m 2 /Vs9 m i u _ h = 0 . 1 9 ; / / i n m 2 /Vs

    41

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    43/70

    10 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n C

    1112 / / s i n c e s i gm a i=n i e ( miu e+miu h ) ;13 n _ i = s i g m a _ i / ( e * ( m i u _ e + m i u _ h ) ) ;

    14 / / s o D en si ty o f e l e c t r o n s = I n t r i n s i c C on ce n tr a ti on, n i

    15 disp ( D en si ty o f e l e c t o n s i s : + string ( n _ i ) + /m3 );

    16 E = 1 0 ^ 4 ; / / i n V/m17 v _ n = m i u _ e * E ;

    18 disp ( D r i f t v e l o c i t y o f e l e c t r o n s i s : + string ( v _ n )+ m / s ) ;

    19 v _ h = m i u _ h * E ;20 disp ( D r i f t v e l o c i t y o f h ol e s i s : + string ( v _ h ) + m

    / s ) ;

    Scilab code Exa 3.8 Conductivity of Si

    1 // Exa3 . 82 clc ;

    3 clear ;4 close ;

    5 / / g i ve n d at a6 n _ i = 1 . 5 * 1 0 ^ 1 0 ; / / i n /cm 37 m i u _ e = 1 3 0 0 ; / / i n cm 2 /Vs8 m i u _ h = 4 5 0 ; / / i n cm 2/Vs9 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n C ( c h ar g e o f e l e c t r o n s )

    10 s i g m a _ i = n _ i * e * ( m i u _ e + m i u _ h ) ;

    11 disp ( C o n d u c t i v i t y o f s i l i c o n ( i n t r i n s i c ) i s : +string ( s i g m a _ i ) + /ohmcm ) ;

    12 N _ A = 1 0 ^ 1 8 ; / / i n /cm 313 disp ( c o n d u c t i v i t y o f t he r e s u l t i n g Pt yp e s i l i c o ns e m i c o n d u c t o r )

    14 s i g m a _ p = e * N _ A * m i u _ h ;

    15 disp ( string ( s i g m a _ p ) + /ohmcm ) ;

    42

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    44/70

    Scilab code Exa 3.9 Find conductivity of intrinsic Ge

    1 // Exa3 . 92 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 n _ i = 2 . 5 * 1 0 ^ 1 3 ; / / i n /m 3

    7 m i u _ e = 3 8 0 0 ; / / i n cm 2 /Vs8 m i u _ h = 1 8 0 0 ; / / i n cm 2 /Vs9 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n C ( c h ar g e o f e l e c t r o n s )

    10 s i g m a _ i = n _ i * e * ( m i u _ e + m i u _ h ) ;

    11 disp ( I n t r i n s i c c o n d u c t i v i t y i s : + string ( s i g m a _ i ) + /ohmcm ) ;

    12 / / L e t Number o f g er ma ni um a to ms / cm 3 = n o g13 n o _ g = 4 . 4 1 * 1 0 ^ 2 2 ;

    14 // s i n c e Donor i m pu r it y = 1 d on or atom / 1 0 7ge rmani um at oms , so

    15 D o n o r I m p u r i t y = 1 0 ^ - 7 ;

    16 N _ D = n o _ g * D o n o r I m p u r i t y ;

    17 n = N _ D ; // ( appr ox )18 p = n _ i ^ 2 / N _ D ;

    19 / / s o20 s i g m a _ n = e * N _ D * m i u _ e ;

    21 disp ( c o n d u ct i v i t y i n Nt y p e g er ma ni um s e m i c o n d u c t o ri s : + string ( s i g m a _ n ) + /ohmcm ) ;

    Scilab code Exa 3.10 Electron and hole drift velocity conductivity of in-trinsic Ge and total current

    1 //Exa3 .1 0

    43

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    45/70

    2 clc ;

    3 clear ;4 close ;

    5 / / g i ve n d at a6 e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n C7 m i u _ e = . 3 8 ; / / i n m 2 /Vs8 m i u _ h = . 1 8 ; / / i n m 2 /Vs9 l = 2 5 ; / / i n mm ( l e n g t h )

    10 l = l * 1 0 ^ - 3 ; // i n m11 w = 4 ; // i n mm ( w i dt h )12 w = w * 1 0 ^ - 3 ; // i n m13 t = 1 . 5 ; / / i n mm ( t h i c k n e s s )

    14 t = t * 1 0 ^ - 3 ; // i n m15 V = 1 0 ; // i n V16 l = 2 5 ; / / i n mm17 l = l * 1 0 ^ - 3 ; / / i n m18 E = V / l ;

    19 // ( i )20 v _ e = m i u _ e * E ;

    21 v _ h = m i u _ h * E ;

    22 disp ( E le c tr on d r i f t v e l o c i t y i s : + string ( v _ e ) + m/ s ) ;

    23 disp ( Hol e d r i f t v e l o c i t y i s :

    + string ( v _ h ) + m / s

    )

    ;

    24 n _ i = 2 . 5 * 1 0 ^ 1 9 ; // in /m325 // ( i i )26 s i g m a _ i = n _ i * e * ( m i u _ e + m i u _ h ) ;

    27 disp ( I n t r i n s i c c o n d u c t i v i r y o f Ge i s : + string (s i g m a _ i ) + /ohmcm ) ;

    28 // ( i i i )29 a = w * t ;

    30 I = s i g m a _ i * E * a ; / / i n amp31 I = I * 1 0 ^ 3 ; // i n m A

    32 disp ( T o t a l c u r r en t i s : + string ( I ) + mA) ;

    44

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    46/70

    Scilab code Exa 3.11 Diffusion coefficient of electron and hole

    1 //Exa3 .1 12 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 k _ d e s h = 1 . 3 8 * 1 0 ^ - 2 3 ; // i n J d eg re e 17 e = 1 . 6 0 2 * 1 0 ^ - 1 9 ; // i n C8 m i u _ e = 3 6 0 0 ; / / i n cm 2 /Vs9 m i u _ h = 1 7 0 0 ; / / i n cm 2 /Vs

    10 T = 3 0 0 ; // i n K

    11 D _ e = m i u _ e * k _ d e s h * T / e ;12 disp ( D i f f u s i o n c on st an t o f e l e c t r o n s i s : + string (

    D _ e ) + cm2/ s ) ;13 D _ h = m i u _ h * k _ d e s h * T / e ;

    14 disp ( D i f f u s i o n c on st an t o f h o l e s i s : + string ( D _ h )+ cm2/ s ) ;

    Scilab code Exa 3.12 Hall effect in semiconductor

    1 //Exa3 .1 22 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n c ou lo mb7 R e s i s t i v i t y = 9 * 1 0 ^ - 3 ; / / i n ohmm8 R _ H = 3 . 6 * 1 0 ^ - 4 ; / / i n m 3 c ou lo mb 1 ( H a l l

    C o e f f i c i e n t )

    9 s i g m a = 1 / R e s i s t i v i t y ;10 r h o = 1 / R _ H ;

    11 n = r h o / e ;

    12 disp ( D e n s i t y o f c h a r g e c a r r i e r s i s : + string ( n ) + /m3 ) ;

    45

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    47/70

    13 m i u = s i g m a * R _ H ;

    14 disp ( M o bi li ty i s : + string ( m i u ) + m2/V

    s ) ;

    Scilab code Exa 3.13 Current density

    1 //Exa3 .1 32 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 E _ x = 1 0 0 ; / / i n V/m7 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n C8 R _ H = 0 . 0 1 4 5 ; / / i n m 3 / c o ul om b9 m i u _ n = 0 . 3 6 ; / / i n m 2 / v o l t s e c o n d

    10 // F or mul a R H =1/( n e )11 n = 1 / ( R _ H * e ) ;

    12 s i g m a = n * e * m i u _ n ;

    13 J = s i g m a * E _ x ;

    14 disp ( C u r r e n t d e n s i t y i s : + string ( J ) + A p e r m 2 );

    Scilab code Exa 3.14 Value of hall coefficient

    1 //Exa3 .1 42 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a

    6 R e s i s t i v i t y = 9 ; // i n m i l l i ohmm7 R e s i s t i v i t y = 9 * 1 0 ^ - 3 ; / / i n ohmm8 m i u = 0 . 0 3 ; / / i n m 2 /Vs9 s i g m a = 1 / R e s i s t i v i t y ;

    10 R _ H = m i u / s i g m a ;

    46

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    48/70

    11 disp ( H a l f c o e f f i c i e n t i s : + string ( R _ H ) + m3/C ) ;

    Scilab code Exa 3.15 Magnitude of Hall voltage

    1 //Exa3 .1 52 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a

    6 E _ x = 5 ; / / i n V/ cm7 m i u _ e = 3 8 0 0 ; / / i n cm 2 /Vs8 B _ z = 0 . 1 ; // i n Wb/m29 d = 4 ; / / i n mm

    10 d = d * 1 0 ^ - 3 ; // i n m11 v = m i u _ e * E _ x ; / / i n cm / s e c o n d12 v = v * 1 0 ^ - 2 ; / / i n m/ s e c o n d13 V _ H = B _ z * v * d ; // i n V14 V _ H = V _ H * 1 0 ^ 3 ; // i n m V15 disp ( H a l l v o lt ag e i s : + string ( V _ H ) + mV) ;

    Scilab code Exa 3.16 Mobility of holes

    1 //Exa3 .1 62 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 r h o = 2 0 0 ; // i n K i lo ohmcm

    7 r h o = r h o * 1 0 ^ - 2 ; // i n k i l o ohm m8 r h o = r h o * 1 0 ^ 3 ; / / i n ohm m et er9 s i g m a = 1 / r h o ;

    10 V _ H = 5 0 ; / / i n mV11 V _ H = V _ H * 1 0 ^ - 3 ; / / i n V

    47

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    49/70

    12 I = 1 0 ; // i n miu A

    13 I = I * 1 0 ^ - 6 ; / / i n A14 B _ z = 0 . 1 ; // i n Wb/m215 w = 3 ; // i n mm16 w = w * 1 0 ^ - 3 ; / / i n m e te r17 R _ H = V _ H * w / ( B _ z * I ) ;

    18 disp ( M ob i l i t y o f h o l e s i n pt y p e s i l i c o n b ar i s : )

    19 m i u _ h = s i g m a * R _ H ;

    20 disp ( string ( m i u _ h ) + m2/Vs ) ;

    Scilab code Exa 3.17 Hall voltage

    1 //Exa3 .1 72 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 N _ D = 1 * 1 0 ^ 2 1 ; / / i n /m 37 B _ Z = 0 . 2 ; // i n T

    8 J = 6 0 0 ; // i n A/m29 n = N _ D ;

    10 d = 4 ; // i n mm11 d = d * 1 0 ^ - 3 ; // i n m et er r12 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n C ( e l e c t r o n c ha rg e )13 / / Formula V Hw / ( B Z I ) = 1 / ( n e ) , h e n c e V H=B Z

    I /( n e w)14 / / w h er e I=Jwd15 / / p u t t i n g I=Jwd i n V H=B Z I /( n ew) , we g e t16 V _ H = B _ Z * J * d / ( n * e ) ; // i n V

    17 V _ H = V _ H * 1 0 ^ 3 ; / / i n mV18 disp ( H a ll V o l t a g e i s : + string ( V _ H ) + mV) ;

    48

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    50/70

    Scilab code Exa 3.18 Hall voltage

    1 //Exa3 .1 82 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 w = 0 . 1 ; / / i n mm7 B _ Z = 0 . 6 ; // i n T8 R _ H = 3 . 8 * 1 0 ^ - 4 ; / / i n m 3 /C9 I = 1 0 ; / / i n mA

    10 I = I * 1 0 ^ - 3 ; / / i n A

    11 V _ H = R _ H * B _ Z * I / w ; // i n V12 V _ H = V _ H * 1 0 ^ 6 ; // i n V13 disp ( H a l l v o lt ag e i s : + string ( V _ H ) + m ic ro v o l t )

    ;

    Scilab code Exa 3.19 Density and mobility of carrier

    1 //Exa3 .1 9

    2 clc ;3 clear ;

    4 close ;

    5 / / g i ve n d at a6 R e s i s t i v i t y = 9 . 2 3 * 1 0 ^ - 3 ; / / i n ohmm7 R _ H = 3 . 8 4 * 1 0 ^ - 4 ; // i n m3/C ( H a ll C o e f f i c i e n t )8 s i g m a = 1 / R e s i s t i v i t y ;

    9 r h o = 1 / R _ H ;

    10 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n C ( e l e c t r o n c ha rg e )11 n = r h o / e ;

    12 disp ( D e n s i t y o f c h a r g e c a r r i e r s i s : + string ( n ) + /m2 ) ;13 m i u = s i g m a * R _ H ;

    14 disp ( M o bi li ty i s : + string ( m i u ) + m2/Vs )

    49

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    51/70

    Scilab code Exa 3.20 Hll angle

    1 //Exa3 .2 02 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 B = 0 . 4 8 ; // i n Wb/m27 R _ H = 3 . 5 5 * 1 0 ^ - 4 ; / / i n m 3 /C8 R e s i s t i v i t y = . 0 0 9 1 2 ; / / i n ohm9 s i g m a = 1 / R e s i s t i v i t y ;

    10 t h e t a _ H = a t a n d ( s i g m a * B * R _ H ) ;

    11 disp ( H a l l a n g l e i s : + string ( t h e t a _ H ) + d e g r e e )

    Scilab code Exa 3.21 New position of fermi level

    1 //Exa3 .2 12 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 T = 2 7 ; // i n d eg r e e C7 T = T + 2 7 3 ; // i n K8 // L et E C E F =E CF9 E _ C F = 0 . 3 ; // i n eV

    10 / / F or mu la E C E F = kTl o g ( n C / N D )11 // L et l o g ( n C /N D ) = L , s o

    12 L = E _ C F / T ;13 T _ d e s h = 5 5 ; // i n d eg r e e C14 T _ d e s h = T _ d e s h + 2 7 3 ; // i n K15 / / At t e m p e r at u r e T d es h16 n e w _ fe r m i _l e v e l = T _ de s h * L ; / / w h er e L= l o g ( n C / N D )

    50

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    52/70

    17 disp ( The new p o s i t i o n o f Fermi L ev el i s : + string (

    n e w _ f e r m i _ l e v e l ) + V ) ;

    Scilab code Exa 3.22 Potential barrier

    1 //Exa3 .2 22 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 N _ A = 8 * 1 0 ^ 1 4 ; / / i n /cm 37 N _ D = N _ A ;

    8 n _ i = 2 * 1 0 ^ 1 3 ; / / i n /cm 39 k = 8 . 6 1 * 1 0 ^ - 5 ; / / i n eV /K

    10 T = 3 0 0 ; // i n K11 V _ 0 = k * T * log ( N _ D * N _ A / n _ i ^ 2 ) ;

    12 disp ( P o t e n t i a l b a r r i e r i s : + string ( V _ 0 ) + V ) ;

    Scilab code Exa 3.23 Resistance level

    1 //Exa3 .2 32 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 / / ( i ) when7 I _ D = 2 ; / / i n mA8 I _ D = I _ D * 1 0 ^ - 3 ; // i n A

    9 V _ D = 0 . 5 ; // i n V10 R 1 = V _ D / I _ D ;

    11 disp ( R e s i st a c e i s : + string ( R 1 ) + ohm ) ;12 / / ( i i ) wh en13 I _ D = 2 0 ; / / i n mA

    51

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    53/70

    14 I _ D = I _ D * 1 0 ^ - 3 ; // i n A

    15 V _ D = 0 . 8 ; // i n V16 R 2 = V _ D / I _ D ;17 disp ( R e s i st a c e i s : + string ( R 2 ) + ohm ) ;18 / / ( i i ) wh en19 I _ D = - 1 ; // i n miu A20 I _ D = I _ D * 1 0 ^ - 6 ; // i n A21 V _ D = - 1 0 ; // i n V22 R 3 = V _ D / I _ D ; / / i n ohm23 R 3 = R 3 * 1 0 ^ - 6 ; / / i n M ohm24 disp ( R e s i st a c e i s : + string ( R 3 ) + M ohm ) ;

    Scilab code Exa 3.24 Fraction of the total number of electron

    1 //Exa3 .2 42 clc ;

    3 clear ;

    4 close ;

    5 format ( v ,12)6 / / g i ve n d at a

    7 E _ G = 0 . 7 2 ; // i n eV8 E _ F = E _ G / 2 ; // i n eV9 k = 8 . 6 1 * 1 0 ^ - 5 ; / / i n eV /K

    10 T = 3 0 0 ; // i n K11 / / F o rm u la n C / n = 1 /1+%e ( E GE F ) / kT12 // L et n C /n = N13 N = 1 / ( 1 + % e ^ ( ( E _ G - E _ F ) / ( k * T ) ) ) ;

    14

    15 disp ( F ra c t i o n o f t he t o t a l number o f e l e c t r o n s (c on du c t io n band a s w e l l a s v a l e n ce band ) : +string ( N ) ) ;

    Scilab code Exa 3.25 Current flowing

    52

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    54/70

    1 //Exa3 .2 5

    2 clc ;3 clear ;

    4 close ;

    5 format ( v ,3)6 / / g i ve n d at a7 I _ 0 = . 1 5 ; / / i n m ic ro amp8 I _ 0 = I _ 0 * 1 0 ^ - 6 ; // i n A9 V = 0 . 1 2 ; // i n V

    10 V _ T = 2 6 ; / / i n mV11 V _ T = V _ T * 1 0 ^ - 3 ; // i n V12 I = I _ 0 * ( % e ^ ( V / V _ T ) - 1 ) ; / / i n amp

    13 I = I * 1 0 ^ 6 ; // i n m ic ro amp14 disp ( La r g e r e v e r s e b i a s c ur r e nt i s : + string ( I ) +

    mi c r o amp) ;

    Scilab code Exa 3.26 Forward voltage

    1 //Exa3 .2 62 clc ;

    3 clear ;4 close ;

    5 format ( v ,5)6 / / g i ve n d at a7 I = . 0 1 ; // i n A8 I _ 0 = 2 . 5 * 1 0 ^ - 6 ; // i n amp9 n i t a = 2 ; // f o r s i l i c o n

    10 V _ T = 2 6 ; / / i n mV11 V _ T = V _ T * 1 0 ^ - 3 ; // i n V12 / / F or mu la I= I 0 ( %e ( V/( n i t a V T ) ) 1) ;

    13 V = n i t a * V _ T * log ( I / I _ 0 + 1 ) ;14 disp ( Forward v o l t a ge i s : + string ( V ) + V ) ;

    53

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    55/70

    Scilab code Exa 3.27 Reverse saturation current density

    1 //Exa3 .2 72 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 N _ D = 1 0 ^ 2 1 ; / / i n m37 N _ A = 1 0 ^ 2 2 ; / / i n m38 D _ e = 3 . 4 * 1 0 ^ - 3 ; / / i n m 2 / s9 D _ h = 1 . 2 * 1 0 ^ - 3 ; / / i n m 2 / s

    10 L _ e = 7 . 1 * 1 0 ^ - 4 ; // i n m

    11 L _ h = 3 . 5 * 1 0 ^ - 4 ; // i n m12 n _ i = 1 . 6 0 2 * 1 0 ^ 1 6 ; / / i n /m 313 e = 1 . 6 * 1 0 ^ - 1 9 ; // i n C ( e l e c t r o n c ha rg e )14 // F ormula I 0=a e [ D h / ( L hN D ) + D e / ( L e N A ) ]

    n i 215 //and16 // R ev er se s a t u r a t i o n c u r r e nt d e n si t y = I 0 / a = [ D h

    /( L hN D ) + D e / ( L e N A ) ] e n i 2 , So17 C u r r e n t De n s i ty = [ D _ h / ( L _h * N _ D ) + D _e / ( L _ e * N _A ) ] * e *

    n _ i ^ 2 ; // i n A18 C u r r e n t D e n s i t y = C u r r e n t D e n s i t y * 1 0 ^ 6 ;

    // i n m ic ro A19 disp ( R e v e r s e s a t u r at i o n c ur r e nt d e n s i t y i s : +string ( C u r r e n t D e n s i t y ) + m ic ro amp ) ;

    Scilab code Exa 3.28 Junction width

    1 //Exa3 .2 82 clc ;

    3 clear ;4 close ;

    5 / / g i v e n d at a 6 format ( v ,13)7 N _ D = 1 0 ^ 1 7 * 1 0 ^ 6 ; / / i n m3

    54

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    56/70

    8 N _ A = 0 . 5 * 1 0 ^ 1 6 * 1 0 ^ 6 ; / / i n a t om s /m 3

    9 e p s i l o n _ r = 1 0 ; / / i n F/m10 e p s i l o n _ o = 8 . 8 5 * 1 0 ^ - 1 2 ; / / i n F/m11 e p s i l o n = e p s i l o n _ r * e p s i l o n _ o ;

    12 e = 1 . 6 0 2 * 1 0 ^ - 1 9 ; // i n C ( e l e c t r o n c ha rg e )13 // ( i ) when no e x t e r n al v o l t a g e i s a p p l i e d i . e .14 V = 0 ;

    15 V _ B = 0 . 7 ; // i n V16 W = sqrt ( 2 * e p s i l o n * V _ B / e * ( 1 / N _ A + 1 / N _ D ) ) ;

    17 disp ( J un ct io n w i dt h i s : + string ( W ) + m) ;18 // ( i i ) when e x t e r n a l v o l t a g e o f 10 V i s a p pl i ed i .

    e .

    19 V = - 1 0 ; // i n V20 V _ o = 0 . 7 ; // i n V21 V _ B = V _ o - V ;

    22 W = sqrt ( 2 * e p s i l o n * V _ B / e * ( 1 / N _ A + 1 / N _ D ) ) ;

    23 disp ( J un ct io n w i dt h i s : + string ( W ) + m) ;24

    25 / / No te : Answer i n t h e b oo k i s wrong

    55

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    57/70

    Chapter 4

    Bipolar Junction And Field

    Effect Transistors

    Scilab code Exa 4.1 Resistance between gate and source

    1 / / Exa 4 . 12 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 format ( v ,11)7 V G S = 1 0 ; / / i n V o l t8 I G = 0 . 0 0 1 ; // in uAmpere9 I G = I G * 1 0 ^ - 6 ; // in Ampere

    10 R G S = V G S / I G ; // i n Ohm11 disp ( R G S * 1 0 ^ - 6 , R e s i s t a n c e b et we en g a t e and s o u r c e

    i n Mohm : ) ;

    Scilab code Exa 4.2 AC drain resistance of the JFET

    1 / / Exa 4 . 2

    56

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    58/70

    2 clc ;

    3 clear ;4 close ;

    5 / / g i v e n d at a :6 d e l V D S = 1 . 5 ; / / i n V o l t7 d e l I D = 1 2 0 ; // in uAmpere8 d e l I D = d e l I D * 1 0 ^ - 6 ; // in Ampere9 r d = d e l V D S / d e l I D ; // i n Ohm

    10 disp ( r d * 1 0 ^ - 3 , AC d r a i n R e s i s t a n c e o f JFET i n Kohm : ) ;

    Scilab code Exa 4.3 Transconductance

    1 / / Exa 4 . 32 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 I D 2 = 1 . 5 ; // i n mAmpere7 I D 1 = 1 . 2 ; // i n mAmpere

    8 d e l I D = I D 2 - I D 1 ; // in Ampere9 V G S 1 = - 4 . 2 5 ; / / i n V o l t

    10 V G S 2 = - 4 . 1 0 ; / / i n V o l t11 d e l V G S = V G S 2 - V G S 1 ; / / i n V o l t12 g m = d e l I D / d e l V G S ; // i n Ohm13 disp ( g m , T r a n s c o nd u c ta n c e i n mA/V : ) ;14 disp ( g m * 1 0 ^ 3 , T r an sc on du ct an ce i n uS : ) ;

    Scilab code Exa 4.4 AC drain resistance transconductance and amplifica-tion factor

    1 / / Exa 4 . 42 clc ;

    57

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    59/70

    3 clear ;

    4 close ;5 / / g i v e n d at a :6 V D S 1 = 5 ; / / i n V o l t7 V D S 2 = 1 2 ; / / i n V o l t8 V D S 3 = 1 2 ; / / i n V o l t9 V G S 1 = 0 ; / / i n V o l t

    10 V G S 2 = 0 ; / / i n V o l t11 V G S 3 = - 0 . 2 5 ; / / i n V o l t12 I D 1 = 8 ; // i n mAmpere13 I D 2 = 8 . 2 ; // i n mAmpere14 I D 3 = 7 . 5 ; // i n mAmpere

    15 / /AC d r a i n r e s i s t a n c e16 d e l V D S = V D S 2 - V D S 1 ; / / i n V o l t17 d e l I D = I D 2 - I D 1 ; // i n mAmpere18 r d = d e l V D S / d e l I D ; // i n Kohm19 disp ( r d , AC D ra in r e s i s t a n c e i n Kohm : ) ;20 / / T r a n s c o n d u c t a n c e21 d e l I D = I D 3 - I D 2 ; // i n mAmpere22 d e l V G S = V G S 3 - V G S 2 ; / / i n V o l t23 g m = d e l I D / d e l V G S ; // in mA/V or mS24 disp ( g m , T r a n s c o nd u c ta n c e i n mA/V : ) ;25

    / / A m p l i f i c a t i o n F a ct o r26 m e u = r d * 1 0 0 0 * g m * 1 0 ^ - 3 ; // u n i t l e s s27 disp ( m e u , A m p l i f i c a ti o n F ac to r : ) ;

    Scilab code Exa 4.5 Transconductance

    1 / / Exa 4 . 52 clc ;

    3 clear ;4 close ;

    5 / / g i v e n d at a :6 V P = - 4 . 5 ; / / i n V o l t7 I D S S = 1 0 ; // i n mAmpere

    58

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    60/70

    8 I D S = 2 . 5 ; // i n mAmpere

    9 // F or mul a : IDS=IDSS

    [1

    VGS/VP]210 V G S = V P * ( 1 - sqrt ( I D S / I D S S ) ) ; / / i n V o l t11 g m = ( - 2 * I D S S * 1 0 ^ - 3 ) * ( 1 - V G S / V P ) / V P ; // in mA/V or mS12 disp ( g m * 1 0 0 0 , T r a n s c o nd u c ta n c e i n mA/V : ) ;

    Scilab code Exa 4.6 Calculate VGS

    1 / / Exa 4 . 6

    2 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 g m = 1 0 ; // in mS7 g m = g m * 1 0 ^ - 3 ; / / i n S8 I D S S = 1 0 ; // in uAmpere9 I D S S = I D S S * 1 0 ^ - 6 ; // in Ampere

    10 //VGS( OFF) : VGS=VP11 // Formula : gm=gmo=2IDSS/VP=2IDSS /VG( Of f )12 V G S _ O F F = - 2 * I D S S / g m ; / / i n V o l t

    13 disp ( V G S _ O F F * 1 0 0 0 , VGS(OFF) in mV : ) ;

    Scilab code Exa 4.7 Minimum value of VDS

    1 / / Exa 4 . 72 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 V P = - 4 ; / / i n V o l t7 V G S = - 2 ; / / i n V o l t8 I D S S = 1 0 ; // i n mAmpere9 I D S S = I D S S * 1 0 ^ - 3 ; // in Ampere

    59

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    61/70

    10 // F or mul a : ID=IDSS[1VGS/VP]2

    11 I D = I D S S * [ 1 - V G S / V P ] ^ 2 ; // in Ampere12 disp ( I D * 1 0 0 0 , D ra in C ur re nt i n mA : ) ;13 disp ( The minimum v a l u e o f VDS f o r p i n cho f f r e g i o n

    i s e q u a l t o VP . Thus t h e minimum v a l u e o f VDS :VDS(min) = + string ( V P ) + V o l t ) ;

    Scilab code Exa 4.8 ID gmo and gm

    1 / / Exa 4 . 82 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 I D S S = 8 . 7 ; // i n mAmpere7 I D S S = I D S S * 1 0 ^ - 3 ; // in Ampere8 V P = - 3 ; / / i n V o l t9 V G S = - 1 ; / / i n V o l t

    10 //ID11 I D = I D S S * [ 1 - V G S / V P ] ^ 2

    12 disp ( I D * 1 0 0 0 , D ra in c u r r e nt ID i n mA : ) ;13 //gmo14 g m o = - 2 * I D S S / V P ; / / i n S15 disp ( g m o * 1 0 0 0 , T r an sc on duc t anc e f o r VGS=0V i n mA/V

    o r mS : ) ;16 //gm17 g m = g m o * ( 1 - V G S / V P ) ; / / i n S18 disp ( g m * 1 0 0 0 , T r a n s c o nd u c ta n c e i n mA/V o r mS : ) ;

    Scilab code Exa 4.9 Id and gm

    1 / / Exa 4 . 92 clc ;

    60

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    62/70

    3 clear ;

    4 close ;5 / / g i v e n d at a :6 I D S S = 8 . 4 ; // i n mAmpere7 I D S S = I D S S * 1 0 ^ - 3 ; // in Ampere8 V P = - 3 ; / / i n V o l t9 V G S = - 1 . 5 ; / / i n V o l t

    10 //ID11 I D = I D S S * [ 1 - V G S / V P ] ^ 2

    12 disp ( I D * 1 0 0 0 , D ra in c u r r e nt ID i n mA : ) ;13 //gmo14 g m o = - 2 * I D S S / V P ; / / i n S

    15 disp ( g m o * 1 0 0 0 , T r an sc on duc t anc e f o r VGS=0V i n mA/Vo r mS : ) ;

    16 g m = g m o * ( 1 - V G S / V P ) ; / / i n S17 disp ( g m * 1 0 0 0 , T r a n s c o nd u c ta n c e i n mA/V o r mS : ) ;

    Scilab code Exa 4.10 gm at IDS

    1 / / Exa 4 . 1 0

    2 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 V P = - 4 . 5 ; / / i n V o l t7 I D S S = 9 ; // i n mAmpere8 I D S S = I D S S * 1 0 ^ - 3 ; // in Ampere9 I D S = 3 ; // i n mAmpere

    10 I D S = I D S * 1 0 ^ - 3 ; // in Ampere11 // F or mul a : IDS=IDSS[1VGS/VP]2

    12 V G S = V P * ( 1 - sqrt ( I D S / I D S S ) ) ; / / i n V o l t13 disp ( V G S , ID=3mA at VGS i n V ol t : ) ;14 g m = ( - 2 * I D S S ) * ( 1 - V G S / V P ) / V P ; // i n mA/V or mS15 disp ( g m * 1 0 0 0 , T r a n s c o n d u c t a n ce i n mA/V o r mS : ) ;

    61

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    63/70

    Scilab code Exa 4.11 Drain current

    1 / / Exa 4 . 1 12 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 I D _ o n = 5 ; // i n mAmpere7 V G S _ o n = 8 ; / / i n V o l t8 V G S = 6 ; / / i n V o l t9 V G S T = 4 ; / / i n V o l t

    10 k = I D _ o n / ( V G S _ o n - V G S T ) ^ 2 ; // i n mA/V211 I D = k * ( V G S - V G S T ) ^ 2 ; // i n mA12 disp ( I D , D ra in c u r r e nt i n mA : ) ;

    62

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    64/70

    Chapter 5

    Magnetic Properties Of

    Materials

    Scilab code Exa 5.1 Hysteresis loss

    1 / / Exa 5 . 12 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 A r e a _ h y s t e r e s i s _ c u r v e = 9 . 3 ; // i n cm27 C o r d i n a t e 1 _ 1 c m = 1 0 0 0 ; // i n AT/m8 C o r d i n a t e 2 _ 1 c m = 0 . 2 ; / / i n T9 / / P a r t ( i )

    10 h y s t e r e s i s _ l o s s = A r e a _ h y s t e r e s i s _ c u r v e * C o r d i n a t e 1 _ 1 c m

    * C o r d i n a t e 2 _ 1 c m ; // i n J /m3/ c y c l e11 disp (hyst eresis_loss , H y s t e r e s i s l o s s /m 3/ c y c l e i n J

    /m 3 / c y c l e : ) ;12 / / P a r t ( i i )

    13 f = 5 0 ; / / i n Hz14 H _ L o s s P e r C u b i c M e t e r = h y s t e r e s i s _ l o s s * f ; // i n Watt s15 disp ( H _ L o s s P e r C u b i c M e t e r * 1 0 ^ - 3 , H y s t e r e s i s l o s s Per

    C ub i c M et er i n KWatts : ) ;

    63

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    65/70

    Scilab code Exa 5.2 Hysteresis loss

    1 / / Exa 5 . 22 clc ;

    3 clear ;

    4 close ;

    5 format ( v ,11)6 / / g i ve n d at a7 A r e a _ h y s t e r e s i s _ l o o p = 9 3 ; // in cm28 s c a l e 1 _ 1 c m = 0 . 1 ; // i n Wb/m29 s c a l e 2 _ 1 c m = 5 0 ; // i n AT/m

    10

    11 h y s t e r e s i s _ l o s s = A r e a _ h y s t e r e s i s _ l o o p * s c a l e 1 _ 1 c m *

    s c a l e 2 _ 1 c m ; // i n J /m3/ c y c l e12 disp (hyst eresis_loss , H y s t e r e s i s l o s s /m 3/ c y c l e i n J

    /m 3 / c y c l e : ) ;13

    14 f = 6 5 ; // u n it l e s s15 V = 1 5 0 0 * 1 0 ^ - 6 ; / / i n m 3

    16 P _ h = h y s t e r e s i s _ l o s s * f * V ;17 disp ( H y s t e r e s i s l o s s i s : + string ( P _ h ) + W ) ;

    Scilab code Exa 5.3 Loss of energy

    1 / / Exa 5 . 32 clc ;

    3 clear ;

    4 close ;5 format ( v , 11)6 / / g i ve n d at a7 n i t a = 6 2 8 ; / / i n J /m 38 B _ m a x = 1 . 3 ; // i n Wb/m2

    64

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    66/70

    9 f = 2 5 ; // i n Hz

    10 i r o n M a s s = 5 0 ; // i n kg11 d e n s i t y O f I r o n = 7 . 8 * 1 0 ^ 3 ; / / i n k g /m 312 V = i r o n M a s s / d e n s i t y O f I r o n ;

    13 x = 1 2 . 5 ; // in AT/m14 y = 0 . 1 ; // i n T15 // f or mu la H y s t e r e s i s l o s s / s ec on d = n i t a B max 1 . 6 f

    V16 H _ L o s s _ pe r _ s e co n d = n i ta * B _ m a x ^ 1 . 6* f * V ; / / i n J / s17 H _ L o s s _ p e r _ s e c o n d = floor ( H _ L o s s _ p e r _ s e c o n d ) ;

    18 H _ L o ss _ p e r_ h o u r = H _ L o ss _ p e r _s e c o nd * 6 0 *6 0 ; // i n J19 disp ( H y s t e r e s i s L o ss p er hour i s : + string (

    H _ L o s s _ p e r _ h o u r ) + J ) ;20 / / Le t H y s t e r e s i s L os s p er m3 p er c y c l e = H121 H 1 = n i t a * B _ m a x ^ 1 . 6 ;

    22 // f or mu la h y s t e r e s i s l o s s /m3/ c y c l e = xy a re a o f BH l o o p

    23 A r e a _ o f _ B _ H _ l o o p = H 1 / ( x * y ) ;

    24 A r e a _ o f _ B _ H _ l o o p = floor ( A r e a _ o f _ B _ H _ l o o p ) ;

    25 disp ( Area o f BH l o o p i s : + string (A r e a _ o f _ B _ H _ l o o p ) + c m 2 ) ;

    Scilab code Exa 5.4 Loss per kg in a specimen

    1 / / Exa 5 . 42 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 H _ L _ p e r _ M _ C u b e _ p e r _ C = 3 8 0 ; // i n WS

    7 f = 5 0 ; // u n it l e s s8 d e n s i t y = 7 8 0 0 ; / / i n k g /m 39 V = 1 / d e n s i t y ; / / i n m 3

    10 // f or mu la H y s t e r e s i s l o s s = H y s t e r e s i s l o s s /m3/c y c l e f V

    65

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    67/70

    11 P _ h = H _ L _p e r_ M _C u be _ pe r _C * f * V ;

    12 disp ( H y s t e r e s i s l o s s i s : + string ( P _ h ) + W ) ;

    Scilab code Exa 5.5 Eddy current loss

    1 / / Exa 5 . 52 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 P _ e 1 = 1 6 0 0 ; // i n w at ts7 B _ m a x 1 = 1 . 2 ; // i n T8 f 1 = 5 0 ; // i n Hz9 B _ m a x 2 = 1 . 5 ; // i n T

    10 f 2 = 6 0 ; // i n Hz11 // P e p r o p ot i o n a l t o B max 2f 2 , s o12 P _ e 2 = P _ e 1 * ( B _ m a x 2 / B _ m a x 1 ) ^ 2 * ( f 2 / f 1 ) ^ 2

    13 disp ( Eddy c u r r e n t l o s s i s : + string ( P _ e 2 ) + w at ts ) ;

    66

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    68/70

    Chapter 6

    Dielectric Properties Of

    Materials

    Scilab code Exa 6.1 Element of parallel RC circuit

    1 / / Exa 6 . 12 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 e p s i l o n _ r = 2 . 5 ;

    7 e p s i l o n _ o = 8 . 8 5 4 * 1 0 ^ - 1 2 ;

    8 d = . 2 * 1 0 ^ - 3 ; // i n m9 A = 2 0 * 1 0 ^ - 4 ; / / i n m 2

    10 o m e g a = 2 * % p i * 1 0 ^ 6 ; // i n r a d ia n s / s11 f = 1 0 ^ 6 ;

    12 t a n _ d e l t a = 4 * 1 0 ^ - 4 ;

    13 C = e p s i l o n _ o * e p s i l o n _ r * A / d ; // i n F14 disp ( C a p i c i t a n c e i s : + string ( C * 1 0 ^ 1 2 ) + m i u m i u F

    ) ;15 // F or mul a P=V2/R , so16 // R=V2/P and P= V22%pi f C t a n d e l t a ,

    p u t t i ng t he v al ue o f P , we g et17 R = 1 / ( 2 * % p i * f * C * t a n _ d e l t a ) ; / / i n ohm

    67

  • 7/13/2019 Electrical and Electronics Engineering Materials_J. B. Gupta

    69/70

    18 disp ( The e le m en t o f p a r a l l e l RC c i r c u i t i s : +

    string ( R * 1 0 ^ - 6 ) + M ohm ) ;

    Scilab code Exa 6.2 Charge sensitivity

    1 / / Exa 6 . 22 clc ;

    3 clear ;

    4 close ;

    5 / / g i ve n d at a6 g = 0 . 0 5 5 ; // i n Vm/N7 t = 2 * 1 0 ^ - 3 ; // i n m8 P = 1 . 2 5 * 1 0 ^ 6 ; // i n N/m29 e p s i l o n = 4 0 . 6 * 1 0 ^ - 1 2 ; / / i n F/m

    10 V _ o u t = g * t * P ;

    11 disp ( Output v o l t a ge i s : + string ( V _ o u t ) + V ) ;12 / / Fo rm ul a C ha rg e S e n s i v i t y =e p s i l o n o e p s i l o n r g=

    e p s i l o n g13 C h a r g e S e n s i v i t y = e p s i l o n * g ;

    14 disp ( Charge S e ns i v i t y i s : + string ( C h a r g e S e n s i v i t y

    ) + C/N) ;

    Scilab code Exa 6.3 Force required to d