ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753...

76
ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés Transformateurs monophasés E. MATAGNE E. MATAGNE ELEC 2753 Electrotechnique

Transcript of ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753...

Page 1: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

ELEC2753 - 2012 - Université catholique de Louvain

Transformateurs monophasésTransformateurs monophasés

E. MATAGNEE. MATAGNE

ELEC 2753 Electrotechnique

Page 2: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

2 ELEC2753 - 2012 - Université catholique de Louvain

Mise en situation

Exemple de problème

Exemple de mauvaise solutionExemple de mauvaise solution

Exemple de bonne solutionExemple de bonne solution

Page 3: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

3 ELEC2753 - 2012 - Université catholique de Louvain

Utilisation pour le transport d’énergie

Pour transporter l’énergie électrique sur de grandes distances, on a intérêt à le faire avec un courant faible pour obtenir un compromis plus favorable entre la section des conducteurs (moins de matière et donc moins de poids) ou réduire les pertes ohmique ( en R I2 ).

Le transformateur permet de réduire le courant transporté, au prix d’une élévation de la tension : c’est grâce au transformateur que l’on peut utiliser les lignes haute-tension.

Parce que le transformateur ne fonctionne qu’en courant alternatif, la distribution d’énergie électrique en courant alternatif s’est imposée.

Page 4: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

4 ELEC2753 - 2012 - Université catholique de Louvain

Structure des transformateurs

Bobines de fil électrique couplées magnétiquement.

La présence d’un noyau ferromagnétique permet d’obtenir un meilleur couplage.

Si deux bobines séparées, on a l’avantage supplémentaire de l’isolation galvanique (souvent important du point de vue sécurité des personnes).

Page 5: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

5 ELEC2753 - 2012 - Université catholique de Louvain

Dispositions constructives des transformateurs monophasés

A colonneA colonne A manteauA manteau

Le noyau est feuilleté pour gêner les courants de Foucault (voir physique T4).Le noyau est feuilleté pour gêner les courants de Foucault (voir physique T4).

Le noyau de fer se comporte approximativement comme un circuit Le noyau de fer se comporte approximativement comme un circuit magnétique…………………donc, nous allons revoir cette notion.magnétique…………………donc, nous allons revoir cette notion.

Page 6: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

6 ELEC2753 - 2012 - Université catholique de Louvain

Rappel de bac 1

Lorsqu ’on utilise un noyau formé d’un matériau ferromagnétique, il y a réfraction du champ magnétique (voir cours de bac 1) sur la surface extérieure de ce noyau.

Page 7: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

7 ELEC2753 - 2012 - Université catholique de Louvain

Canalisation du flux dans un circuit magnétique

Comme le champ Htangent est le même des deux côtés de la surface de séparation air-fer, mais que la perméabilité du noyau est bc plus grande, on a Bnoyau >> Bextérieur

bien que le champ H extérieur soit maintenant comparable au champ intérieur.

Négligeant le champ B extérieur, on a

constant le long du noyau (loi de Gauss du champ magnétique : div B = 0 ).

Ne pas se tromper sur la signification de S !!!!!!!

dSB

Dans un noyau ferromagnétique, le flux peut être canalisé même si la géométrie est dissymétrique : la réfraction du champ B fait que les lignes de flux tendent à devenir parallèles à la surface latérale du noyau.

Par analogie avec les circuits électriques (où le courant se conserve), on parle ici de circuit magnétique (où le flux se conserve). Le flux est une grandeur globale du circuit magnétique. Nous examinerons plus loin la liaison entre le flux et les tensions des enroulements (loi de Faraday).

Page 8: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

8 ELEC2753 - 2012 - Université catholique de Louvain

Lien entre le flux et les tensions Supposons dans un premier temps que

chaque bobinage qui encercle le circuit magnétique encercle un flux total valant

= n

(vrai si on néglige les flux de fuite)

On a alors

1 = n1

2 = n2

donc

1 = (n1/n2) 2

Or, les flux sont reliés aux tensions par

la loi de Faraday.

Si on néglige aussi la résistance des enroulements, on a donc

u1 = (n1/ n2 ) u2

)Ri(td

du

Page 9: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

9 ELEC2753 - 2012 - Université catholique de Louvain

F.m.m. d’un circuit magnétique Dans les circuits magnétiques, on définit une

seconde grandeur globale, duale du flux , à savoir la force magnétomotrice, par

dlH

Le circuit magnétique est caractérisé par une relation (appelée constitutive) entre et .

Cette relation est une conséquence de la caractéristique du matériau. On s ’en rend compte aisément dans le cas particulier où le flux se répartit uniformément sur toute la section S, ce qui entraîne B = / S , et où la section S est constante tout le long du circuit magnétique, ce qui entraîne que B est uniforme dans tout le noyau, donc aussi H. On a alors = S B et = L H .

Donc la relation B = f(H) entraîne l ’existence d ’une relation = g( ) .

Nous examinerons plus loin la liaison entre la force magnétomotrice et les courants des enroulements (loi d ’Ampère).

Page 10: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

10

ELEC2753 - 2012 - Université catholique de Louvain

Lien entre la f.m.m. et les courants

2211 inindlH

La loi d’Ampère fournitLa loi d’Ampère fournit

Page 11: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

11

ELEC2753 - 2012 - Université catholique de Louvain

Matériau ferromagnétique parfait

Commençons par faire l ’hypothèse simplificatrice la plus radicale.

Considérer le matériau ferromagnétique comme parfait consiste à admettre que H = 0 dans ce matériau.

Alors, on a puisque

tandis que peut circuler sans rencontrer de « réluctance » (mot analogue à la résistance d ’un circuit électrique) dans le circuit magnétique.

0

dlH

Page 12: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

12

ELEC2753 - 2012 - Université catholique de Louvain

Lien entre les courants dans le cas idéal

En négligeant les flux de fuite et la résistance des enroulements, on a obtenu

u1 = (n1 / n2 ) u2

Si on suppose en outre que le matériau est idéal (H = 0), on a en outre

0dlH

Or, par la loi d ’Ampère,

2211 inindlH

Donc i1 = - (n2 / n1) i2

Page 13: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

13

ELEC2753 - 2012 - Université catholique de Louvain

Remarque importante.La validité de l’hypothèse H = 0 dépend des conditions de fonctionnement du transformateur.

Lorsque le champ B augmente, le champ H augmente très vite, et on peut alors avoir un courant primaire i1 important même en l’absence de courant secondaire.

Cela se produit lorsque le flux devient grand.

Par exemple, si on applique au transformateur une tension primaire (permanente ou transitoire) telle que le flux 1 prenne une valeur élevée. On peut alors avoir surcharge du transformateur ou déclenchement des protection même si on ne consomme aucun courant au secondaire.

Page 14: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

14

ELEC2753 - 2012 - Université catholique de Louvain

Transformateur idéal

Avec beaucoup d ’hypothèses simplificatrices, on a obtenu à la dia précédente deux équations qui sont celles d ’un transformateur idéal de rapport

k = n1 / n2

à savoir u1 = k u2

et i1 = - (1/k) i2

Le transformateur idéal est un élément fondamental de la théorie des circuits. Nous le représenterons dans ce cours par le symbole

Page 15: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

15

ELEC2753 - 2012 - Université catholique de Louvain

Prise en compte des imperfections Le champ B n ’est pas parfaitement nul

en dehors du noyau. On admet que chaque enroulement encercle un

« flux de fuite » en plus du flux principal. En faisant l ’hypothèse que ce flux de fuite qui ne dépend que du courant qui traverse cet enroulement, et en admettant la linéarité de ce flux (qui traverse surtout de l ’air), on a

1 = n1 + l1 i1 et 2 = n2 + l2 i2

ce qui correspond, avec i1 = - (1 / k ) i2 , au

circuit équivalent ci-contre.

Rappel Rappel : : une inductance linéaire est un rapport entre un flux et une inductance linéaire est un rapport entre un flux et un courantun courant

Page 16: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

16

ELEC2753 - 2012 - Université catholique de Louvain

Imperfections (suite)Les enroulements ne sont pas parfaitement conducteurs.Si on tient compte de la résistance ohmique des enroulements, on a

111

1 iRdt

du

22

22 iR

dt

du

Donc, en tenant compte de l ’expression des flux introduite plus haut et de la définition du rapport de transformation k .

111

11

1 iRdt

idl

dt

)n(du

222

21

2 iRdt

idl

dt

)n(d

k

1u

Ces équations correspondent,

avec i1 = - (1 / k ) i2 , au

circuit équivalent ci-contre.

Page 17: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

17

ELEC2753 - 2012 - Université catholique de Louvain

Imperfections (suite) Le champ H dans le noyau n ’est pas nul. Donc

0inin 2211

in

ik

1i

définition1

21ou

Par ailleurs, on peut définir

= n1

et remplacer la relation

par

= ( i ) .

En introduisant ces définitions dans l ’équation des tensions de la dia précédente, on obtient le circuit équivalent ci-contre.

)(

L’élément parallèle tient compte essentiellement de L’élément parallèle tient compte essentiellement de la caractéristique B-H du matériau dans le noyau.la caractéristique B-H du matériau dans le noyau.

Page 18: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

18

ELEC2753 - 2012 - Université catholique de Louvain

Relation constitutive dans le cas linéaire

Considérons maintenant le cas d ’une relation linéaire pour le matériau, à savoir

B = H = r o H

On doit alors avoir aussi une relation linéaire entre et , soit

où le coefficient porte le nom de (coefficient de) réluctance. Avec les hypothèses simplificatrices ci-dessus, on a simplement, puisque = L H et = S B ,

S

L

Le circuit magnétique peut comporter plusieurs tronçons différents par S, L ou . On peut alors combiner les réluctances en série ou en parallèle exactement comme les résistances dans les circuits électriques.

Page 19: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

19

ELEC2753 - 2012 - Université catholique de Louvain

Cas linéaire (suite)

in définition

1

1nL 2

1

Puisque Puisque = n1 et que ,

lorsque l’on a une relation linéaire entre le flux et la force magnétomotrice,

il est clair que l’on a aussi une relation linéaire entre il est clair que l’on a aussi une relation linéaire entre et i et i . On . On

peut donc définir l’inductance « de magnétisation »peut donc définir l’inductance « de magnétisation »

iL

On a évidemmentOn a évidemment

Page 20: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

20

ELEC2753 - 2012 - Université catholique de Louvain

Modèle à inductances couplées 0n préfère parfois modéliser le transformateur à l’aide d’inductances couplées plutôt qu’à

l’aide d’un transformateur idéal. Par exemple parce que certains programmes d’analyse de circuit ne permettent pas l ’utilisation de transformateurs idéaux.

Si on néglige la saturation et les pertes magnétiques, l ’élément parallèle du circuit équivalent est une inductance idéale (linéaire et sans pertes, donc ni saturation ni pertes magnétiques), le circuit équivalent obtenu (figure de gauche ci-dessous) est équivalent à un circuit sans transformateur idéal mais comportant une inductance couplée (figure de droite) avec

M = L / k , L1 = L + l1 et L2 = L / k2 + l2 La transformation inverse aussi est utile.

Page 21: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

21

ELEC2753 - 2012 - Université catholique de Louvain

Utilisation des phaseurs

X1 = l1

X2 = l2

X = L

Si toutes les grandeurs varient sinusoïdalement en fonction du temps et à la même fréquence, on peut les remplacer par des phaseurs.

Dans beaucoup de cas, le transformateur fonctionne à fréquence fixe. Les mesures électriques que l’on réalise permettent de déterminer les impédances des éléments. Il est inutile d’en déduire la valeur des inductances si tous les fonctionnements qui seront étudiés se font à la même fréquence. On détermine alors non pas les inductances mais leur produit par , à savoir

Page 22: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

22

ELEC2753 - 2012 - Université catholique de Louvain

relation constitutive avec saturation

Le cas d ’un matériau magnétique linéaire est rare en pratique.

Si on considère la saturation (non-linéarité du matériau), on a

Page 23: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

23

ELEC2753 - 2012 - Université catholique de Louvain

Introduction de la non-linéaritéLa non-linéarité du noyau magnétique La non-linéarité du noyau magnétique est prise en compte dans le modèle est prise en compte dans le modèle physique vu plus haut.physique vu plus haut.

L’utilisation des phaseurs n’est plus L’utilisation des phaseurs n’est plus rigoureuse dans ce cas puisque toutes rigoureuse dans ce cas puisque toutes les grandeurs ne peuvent pas être les grandeurs ne peuvent pas être sinusoïdales en même temps. sinusoïdales en même temps.

On se permet On se permet cependant souvent cependant souvent d’utiliser le modèle d’utiliser le modèle phasoriel avec une phasoriel avec une réactance Xréactance X dont la dont la

valeur est fonction du valeur est fonction du module de sa tension E module de sa tension E et de la fréquence.et de la fréquence.

Page 24: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

24

ELEC2753 - 2012 - Université catholique de Louvain

Relation constitutive avec hystérèse

Souvent, la caractéristique magnétique des matériaux n ’est pas univoque. La relation B-H dépend de l ’évolution passée des champs. Si la vitesse d ’évolution n ’intervient pas, le phénomène porte le nom d ’hystérésis. En pratique, le cycle s’élargit lorsque la fréquence augmente, de sorte qu’il ne s’agit pas d’hystérésis pur.

Page 25: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

25

ELEC2753 - 2012 - Université catholique de Louvain

Pertes par courants de Foucault

En présence de champs magnétiques variables, il apparaît dans le fer du noyau En présence de champs magnétiques variables, il apparaît dans le fer du noyau des courants de Foucault, et ceux-ci produisent des pertes par effet Joule.des courants de Foucault, et ceux-ci produisent des pertes par effet Joule.

On réduit ces pertes en feuilletant les tôles du noyau, ceci afin d’empêcher les On réduit ces pertes en feuilletant les tôles du noyau, ceci afin d’empêcher les courants de Foucault de circuler à grande échelle.courants de Foucault de circuler à grande échelle.

Il subsiste cependant des courants de Foucault à petite échelle. Ils circulent à Il subsiste cependant des courants de Foucault à petite échelle. Ils circulent à l’intérieur de tôles (on peut les réduire en utilisant des tôles plus minces et l’intérieur de tôles (on peut les réduire en utilisant des tôles plus minces et moins conductrices, notamment par alliage à du silicium).moins conductrices, notamment par alliage à du silicium).

Les pertes dues aux courants de Foucault à petite échelle sont liées à la valeur Les pertes dues aux courants de Foucault à petite échelle sont liées à la valeur du champ magnétique. Elles sont difficiles à distinguer des pertes par du champ magnétique. Elles sont difficiles à distinguer des pertes par hystérésis. On les considère donc comme des pertes «magnétiques ».hystérésis. On les considère donc comme des pertes «magnétiques ».

Page 26: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

26

ELEC2753 - 2012 - Université catholique de Louvain

Modifications du circuit équivalent liées à la fréquence

Les pertes par hystérésis et par courants de Foucault sont liées à la fréquence.

Avec l’augmentation de la fréquence, les flux de fuites donnent également lieu à des pertes et la répartition du courant dans les conducteurs n’est plus uniforme.

On peut tenir compte de tous ces effets en ajoutant des résistances en parallèle sur les inductances et une inductance supplémentaire en série avec R1 et R2 . Le circuit obtenu est trop compliqué pour être utilisé en pratique.

Page 27: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

27

ELEC2753 - 2012 - Université catholique de Louvain

Circuit équivalent de référence

On peut revenir à un circuit plus simple en utilisant l’équivalence entre modèles parallèle et série des impédances, et en regroupant les éléments obtenus. On simplifie ainsi le circuit qui devient celui représenté ci-dessous, mais il faut noter que la valeur des éléments de ce circuit dépend de la fréquence.

Ce circuit sera utilisé par la suite pour discuter l’importance des erreurs commises lors de diverses simplifications de calcul.

Il sera appelé « circuit équivalent de référence » ou « circuit en T ».

Page 28: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

28

ELEC2753 - 2012 - Université catholique de Louvain

En pratique

Les éléments de ce circuit ne sont pas associés de façon stricte à un seul phénomène physique. Ainsi, le champ de fuite est responsable de pertes d ’énergie (par courants de Foucault et hystérésis), de sorte qu ’il contribue non seulement à X1 et X2 , mais aussi à R1 et R2 qui deviennent fonction de la fréquence.

De même, les pertes modélisées par Rpm ne se produisent pas uniquement dans le noyau.

Même k n ’est pas exactement le rapport des nombres de spires !

En pratique, on détermine souvent les paramètres du circuit équivalent expérimentalement. Le vocabulaire fait souvent référence à l ’interprétation physique simple présentée plus haut, même si elle n ’est pas tout à fait rigoureuse.

Page 29: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

29

ELEC2753 - 2012 - Université catholique de Louvain

Analyse : introduction

Un transformateur est normalement prévu pour transmettre de la puissance d ’un système (le générateur) vers un autre (la charge).

On distingue un enroulement primaire (entrée) et un enroulement secondaire (sortie).

On change le sens de référence du courant secondaire pour que les deux puissances P1 et P2 soient positives en fonctionnement normal.

Page 30: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

30

ELEC2753 - 2012 - Université catholique de Louvain

Analyse détaillée

On peut tracer le diagramme phasoriel facilement si on part de la charge, c-à-d. si on suppose connus 22 'Iet'U

En pratique, c ’est U1 qui est connu.

On pourrait faire une règle ce trois (cas linéaire) ou itérer (cas non linéaire) pour obtenir la valeur correcte de 22 'Iet'U

Page 31: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

31

ELEC2753 - 2012 - Université catholique de Louvain

Problème : comment déterminer directement (sans faire de règle de trois) la Problème : comment déterminer directement (sans faire de règle de trois) la tension et le courant secondaire ?tension et le courant secondaire ?

On peut y arriver directement en manipulant le circuit équivalent pour On peut y arriver directement en manipulant le circuit équivalent pour obtenir un circuit équivalent simplifié.obtenir un circuit équivalent simplifié.

Page 32: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

32

ELEC2753 - 2012 - Université catholique de Louvain

Modification du circuit équivalent : motivation

Pouvoir rendre compte des phénomènes physiques internes au dispositif n’est pas la seule qualité requise d ’un modèle : il faut aussi tenir compte de la possibilité de l ’utiliser pour déterminer son comportement extérieur, et surtout de la possibilité de déterminer ses paramètres.

Or, le circuit équivalent de référence conduit à analyser des circuits à deux mailles.

Pire, sa détermination nécessite celle de 7 paramètres. C ’est impossible dans le cas linéaire (et donc difficile en pratique). En effet, le comportement extérieur d ’un dispositif linéaire à 2 accès électriques est entièrement décrit par une matrice d ’impédance, soit (en tenant compte du changement de sens de référence de i2 ) :

2

1

2221

1211

2

1

I

I

ZZ

ZZ

U

U

La matrice est symétrique et n ’a donc que trois composantes différentes. A fréquence fixée, ces composantes sont des nombres complexes : on a donc 3 x 2 = 6 degrés de liberté seulement. Il est impossible de fixer la valeur de 7 paramètres dans ces conditions.

Page 33: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

33

ELEC2753 - 2012 - Université catholique de Louvain

Modification du circuit équivalentLa théorie des circuits montre que, dans le cas linéaire, la partie de gauche du circuit équivalent peut être remplacée par un circuit où les éléments parallèles sont en tête

L ’équivalence peut être exacte à condition de modifier la valeur des éléments

oZ ZZ1

sk kZ

ZZ1

11 ZZ

ZZ

1'Z

Attention : un transformateur idéal avec un rapport Attention : un transformateur idéal avec un rapport complexe ne conserve pas la puissance.complexe ne conserve pas la puissance.

Page 34: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

34

ELEC2753 - 2012 - Université catholique de Louvain

Circuit équivalent simplifiéIl reste à regrouper les éléments série, après passage à travers le transformateur idéal, pour obtenir le circuit équivalent simplifé.

Avec

ainsi que Ce circuit n ’a que 6 paramètres.

22s

1e Z

k

'ZZ

s

1o2 k

UU

Page 35: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

35

ELEC2753 - 2012 - Université catholique de Louvain

Circuit équivalent simplifié (autre forme)On peut aussi regrouper les éléments série du côté du primaire.

Avec

ainsi que Ce circuit n ’a que 6 paramètres.

22

s1e Zk'Z'Z

s

1o2 k

UU

Page 36: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

36

ELEC2753 - 2012 - Université catholique de Louvain

Caractéristique externeOn cherche la relation entre U2 et I2 pour U1 fixé.

Les phases de ne nous intéressent pas séparément. Leur écart de phase est imposé par la charge.

22 IetU

U1 étant supposé connu, on prend comme modèle un équivalent de Thévenin (rigoureux seulement si le circuit équivalent est linéaire).

Ne pas confondre Ne pas confondre Re avec R2 , ni Xe avec X2 .

Page 37: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

37

ELEC2753 - 2012 - Université catholique de Louvain

Caractéristique externe (suite)

On pose et .

La solution peut prendre la forme du diagramme ci-dessous, qui est construit en prenant le courant secondaire comme référence de phase (diagramme de Kapp).

2e

2ee XRZ

e

ee R

Xarctg

22e2e2e2

22

2o2 )IZ()cos(IZU2UU

Page 38: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

38

ELEC2753 - 2012 - Université catholique de Louvain

Caractéristique externe (suite)2

2e2e2e222

2o2 )IZ()cos(IZU2UU On pose I2cc = U2o / Ze , ce qui permet

d ’écrire cette caractéristique sous la forme2

cc2

22e

cc2

2

o2

22

o2

2 )I

I()cos(

I

I

U

U2)

U

U(1

C ’est l ’équation d ’ellipses qui coupent les axes en x = 1 et y = 1 .

Figure tracée pour Figure tracée pour ee 58° 58°

Page 39: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

39

ELEC2753 - 2012 - Université catholique de Louvain

2

cc2

22e

cc2

2

o2

22

o2

2 )I

I()cos(

I

I

U

U2)

U

U(1

Pour une valeur donnée de IPour une valeur donnée de I22 et de et de 22 , que vaut U , que vaut U22 ? ?

]1)I

I[()]cos(

I

I[)cos(

I

I

U

U 2

cc2

222e

cc2

22e

cc2

2

o2

2

)cos(I

I)]sin(

I

I[1

U

U2e

cc2

222e

cc2

2

o2

2

Remarque :Remarque : en présence de non linéarités, il faudrait en principe itérer en en présence de non linéarités, il faudrait en principe itérer en analysant le fonctionnement avec la valeur de Uanalysant le fonctionnement avec la valeur de U22 trouvée (cf. graphique vu trouvée (cf. graphique vu

précédemment), en en déduisant la valeur de E, donc une nouvelle valeur précédemment), en en déduisant la valeur de E, donc une nouvelle valeur de l’impédance de magnétisation et finalement de nouvelles valeurs de Ede l’impédance de magnétisation et finalement de nouvelles valeurs de E2020 , ,

RRee et X et Xee . En pratique, si Z . En pratique, si Zee << Z << Z , la correction n’est pas significative. , la correction n’est pas significative.

Page 40: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

40

ELEC2753 - 2012 - Université catholique de Louvain

Formules approchées

Comme signalé lors du cours précédent, on souhaite souvent que Comme signalé lors du cours précédent, on souhaite souvent que le transformateur se comporte de façon proche d’un le transformateur se comporte de façon proche d’un transformateur idéal.transformateur idéal.

Si on suppose que l’effet des éléments série et l’effet des éléments Si on suppose que l’effet des éléments série et l’effet des éléments parallèle sont tous deux petits, il est possible de les étudier parallèle sont tous deux petits, il est possible de les étudier séparément. On pourra alors négliger les termes du « second séparément. On pourra alors négliger les termes du « second ordre » et obtenir des expressions approchées plus simples.ordre » et obtenir des expressions approchées plus simples.

Page 41: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

41

ELEC2753 - 2012 - Université catholique de Louvain

Comportement de base : transformateur idéal

A quelles conditions le transformateur « réel » peut-il être étudié comme un transformateur idéal + des corrections faites séparément ?

Il faut que les effets des autres éléments du circuit équivalent soient « petits ». On peut examiner cette condition sur chaque type d’éléments séparément.

21 UkU k

II 2

1

Donc, conservation de la puissance active et réactive

)IU(Re)IU(Re 2211

)IUIm()IUIm( 2211

On a aussi une relation entre les « impédances »2

22

1

1

I

Uk

I

U

Page 42: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

42

ELEC2753 - 2012 - Université catholique de Louvain

Effet des éléments parallèle On néglige les éléments série pour examiner l ’effet des éléments parallèle.

L ’effet est faible si I << I ’2 , ou de façon équivalente

soit

et

2

22

I

UkZ

2

22

I

UkX

2

22pm I

UkR

Correction par rapport au cas idéal : I

k

II 2

1

Page 43: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

43

ELEC2753 - 2012 - Université catholique de Louvain

Effet des éléments série On néglige les éléments parallèle pour cette discussion.

On peut déplacer le transformateur idéal

Page 44: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

44

ELEC2753 - 2012 - Université catholique de Louvain

Effet des éléments série (suite) On a encore, en regroupant les éléments en série

(Re et Xe ont été définis plus précisément précédemment).

Correction par rapport au cas idéal : 2ee1

2 I)jXR(k

UU

La correction est petite si soit R1 et X1 << k2 U2 / I2

et R2 et X2 << U2 / I2

2

2e I

UZ

Page 45: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

45

ELEC2753 - 2012 - Université catholique de Louvain

Synthèse des conditions permettant d’utiliser les expressions approchées Synthèse des conditions permettant d’utiliser les expressions approchées pour les éléments du circuit équivalent simplifié.pour les éléments du circuit équivalent simplifié.

Zk

1

I

UZ

22

2eouou Z

I

U'Z

1

1e

)cos(I

I1

U

U2e

cc2

2

o2

2 Ces relations entraînent ICes relations entraînent I22 << I << I2cc2cc , ,

de sorte que l’expression de la de sorte que l’expression de la tension secondaire devienttension secondaire devient

soitsoit )cos(IZUU 2e2eo22

On a alors pour les relations entre circuit équivalent de référence et circuit On a alors pour les relations entre circuit équivalent de référence et circuit équivalent simplifié :équivalent simplifié :

ZZo kks 22

1e11 Z

k

ZZdoncZ'Z

Page 46: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

46

ELEC2753 - 2012 - Université catholique de Louvain

Valeurs nominalesValeurs nominales = ce qui est inscrit sur la plaquette signalétiqueValeurs nominales = ce qui est inscrit sur la plaquette signalétique

Tensions et courants nominaux sont toujours en valeur efficace.

Les valeurs nominales correspondent à un fonctionnement normal du dispositif.

Les caractéristiques sont spécifiées pour un fonctionnement aux grandeurs nominales.

Tension primaire et fréquence nominalesTension primaire et fréquence nominales

Souvent, U1N = 230 V fN = 50 Hz car cela correspond au réseau européen.

Il faut absolument éviter une tension nettement supérieure à la tension nominale car le champ B dans le noyau dépend de la tension : U1 n1 S B .

Un champ B trop grand entraîne une forte saturation magnétique, donc un échauffement du noyau par pertes magnétiques, mais surtout un courant magnétisant beaucoup trop grand, donc un courant primaire I1 grand (même si I2 faible), donc un échauffement du bobinage primaire dangereux.

Le choix du rapport U1nom / n1 dépend du mode de fonctionnement prévu (continu, intermittent…), de la durée de vie et de considérations économiques (prix de revient, économies d ’énergie…).

Page 47: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

47

ELEC2753 - 2012 - Université catholique de Louvain

Valeurs nominales (suite)

Tension secondaire nominaleTension secondaire nominale

Elle ne peut pas être choisie : les normes imposent que U2N soit la tension secondaire à vide, c ’est-à-dire lorsque I2 est nul et que U1 = U1N .

Il ne faut pas confondre U2N et U2 utile cette dernière, utilisée surtout pour de très petits transformateurs, étant la tension à courant nominal sur charge résistive.

Courant ou puissance secondaireCourant ou puissance secondaire

Il ne faut pas dépasser pendant un temps trop long I2N car le courant I2 (et I1 qui croît avec I2 ) entraîne des pertes « par effet Joule » dans R1 et R2 , donc une montée de la température (avec un certain retard dû à l ’inertie thermique) et une réduction de la durée de vie. Les pertes Joule sont proportionnelles au carré du courant !

On spécifie souvent la puissance nominale au lieu du courant nominal.

S2N = U2 N I2 N est une puissance apparente car ne peut préjuger du facteur de puissance ( cos dans le cas sinusoïdal) de la charge.

S2N est spécifié en VA (et non en W). On peut en déduire I2N .

Page 48: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

48

ELEC2753 - 2012 - Université catholique de Louvain

Valeurs nominales (suite)

ZI

U'Z

N1

N1e

Courant ou puissance primaireCourant ou puissance primaire

On ne les spécifie ordinairement pas. En effet, le comportement du transformateur étant proche du transformateur idéal, on considère habituellement que S1N = S2N = SN .

Le courant primaire vaut alors I1N = SN / U1N .

Pour que l’on puisse procéder ainsi, il faut évidemment que

I0 << I1N

et

Ze I2N << U2N

Ces relations peuvent s’écrire

2N2

N2e k

Z

I

UZ ouou

Page 49: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

49

ELEC2753 - 2012 - Université catholique de Louvain

Notion de courant de court-circuit nominal

Le courant de court-circuit nominal d’un enroulement est le courant qui y Le courant de court-circuit nominal d’un enroulement est le courant qui y circulerait dans cet enroulement si on le court-circuitait tout en appliquant à circulerait dans cet enroulement si on le court-circuitait tout en appliquant à l’autre enroulement sa tension nominale.l’autre enroulement sa tension nominale.

Le courant de court-circuit est habituellement beaucoup plus grand que le Le courant de court-circuit est habituellement beaucoup plus grand que le courant nominal : on ne peut donc pas le mesurer sans mettre en danger le courant nominal : on ne peut donc pas le mesurer sans mettre en danger le transformateur.transformateur.

En fait, la donnée du courant de court-circuit revient à spécifier En fait, la donnée du courant de court-circuit revient à spécifier l’impédance série. On a (en négligeant les éléments parallèles)l’impédance série. On a (en négligeant les éléments parallèles)

ZZee = U = U2Nom2Nom / I / I2cc Nom2cc Nom Z’ Z’ee = U = U1Nom1Nom / I / I1cc Nom1cc Nom

Page 50: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

50

ELEC2753 - 2012 - Université catholique de Louvain

Notion de tension de court-circuit nominale

On définit la tension de court-circuit nominale d’un enroulement comme la On définit la tension de court-circuit nominale d’un enroulement comme la tension qu’il faut lui appliquer pour y faire circuler son courant nominal tension qu’il faut lui appliquer pour y faire circuler son courant nominal LORSQUE L’AUTRE ENROULEMENT EST COURT-CIRCUITE.LORSQUE L’AUTRE ENROULEMENT EST COURT-CIRCUITE.

On a normalementOn a normalement

UUcc Nomcc Nom << U << UNomNom

Contrairement au courant de court-circuit, qui est normalement inaccessible Contrairement au courant de court-circuit, qui est normalement inaccessible sans mettre en danger le transformateur, la tension de court-circuit peut être sans mettre en danger le transformateur, la tension de court-circuit peut être appliquée sans danger.appliquée sans danger.

La donnée de la tension de court-circuit est une façon de spécifier La donnée de la tension de court-circuit est une façon de spécifier l’impédance série, car on a par exemple (en négligeant les éléments parallèle)l’impédance série, car on a par exemple (en négligeant les éléments parallèle)

ZZee = U = U2cc Nom2cc Nom / I / I2Nom2Nom

Page 51: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

51

ELEC2753 - 2012 - Université catholique de Louvain

PertesOn distingue deux types de pertes (sous-entendu d ’énergie)

Les pertes « magnétiques »Les pertes « magnétiques »

(sous-entendu, par unité de temps)

Elles sont pratiquement constantes : on les appelle aussi « pertes fixes »

Les pertes « par effet Joule »Les pertes « par effet Joule »

R1 I12 + R2 I2

2 Re I22 avec Re R1/k2 + R2

Elles dépendent du carré du courant de charge : on les appelle aussi « pertes dues à la charge »

p

21

p

2

R

U

R

E

Note pour les nuls : Note pour les nuls : il ne faut pas confondreil ne faut pas confondre

• pertes (d’énergie)pertes (d’énergie)

• fuites (de flux)fuites (de flux)

Page 52: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

52

ELEC2753 - 2012 - Université catholique de Louvain

Rendement

22e.magn222

222

2

2

1

2

IRpcosIU

cosIU

pertesP

P

P

P

Si U1 est fixé, donc aussi approximativement U2 , le rendement est maximum pour cos 2 = 1

)IRp((...)

cosU

I0 2

2e.magn222

2

Le rendement est donc maximum pour un courant I2 tel que les pertes « dues à la charge » soient égales aux « pertes fixes ». La position de cet optimum peut se fixer par construction.

En pratique, ce courant est proche du courant nominal.

Il est parfois plus faible (intéressant si fonctionnement prévu souvent à vide ou à faible charge).

Page 53: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

53

ELEC2753 - 2012 - Université catholique de Louvain

Détermination expérimentale des paramètres

Pour une détermination convenable, il faut prévoir

• des essais où Rp et X jouent un rôle dominant (courants faibles pour avoir peu d ’influence des éléments série, mais tensions significatives),

• des essais où Re et Xe jouent un rôle dominant (tensions faibles pour avoir peu d ’effet des éléments parallèles, mais courants significatifs).Il y a deux approches possiblesIl y a deux approches possibles

soit on effectue de nombreux essais et on utilise une méthode informatisée pour déterminer les valeurs des paramètres qui permettent de reproduire au mieux les résultats par calcul ;

soit un effectue un nombre minimum d ’essai d ’où l ’on déduit les paramètres par calcul direct….c ’est la méthode que nous allons suivre dans ce cours.

On effectuera donc essentiellement un On effectuera donc essentiellement un essai en court-circuitessai en court-circuit et un et un essai à videessai à vide..

Avantages : ces essais ne nécessitent qu ’une puissance réduite et leur interprétation ne nécessite que des calculs faisables « à la main ».

Page 54: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

54

ELEC2753 - 2012 - Université catholique de Louvain

Essai en court-circuitOn alimente un enroulement via des appareils de mesure, l ’autre étant court-circuité.

Des normes imposent 0.25 Inom I Inom . On doit utiliser une U << Unom pour limiter le courant.

On peut faire l ’essai par le primaire ou par le secondaire (cela dépend de la disponibilité d ’une alimentation, des appareils de mesure….).

Si on fait l ’essai par le secondaire, on « voit » Re et Xe (et pas Rpm ni X ).

L ’essai fournit donc une information sur les éléments série

2

2e I

UZ

22

2e IU

Pcos

En utilisant le circuit équivalent série d ’une impédance,

on obtient Re = Ze cos e et Xe = Ze sin e

Page 55: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

55

ELEC2753 - 2012 - Université catholique de Louvain

Essai en court-circuit (suite)Les éléments série sont linéaires (ils ne dépendent pas du niveau de courant auquel on les détermine).

2

N22cc2 I

IUU

On peut donc facilement retrouver par calcul la valeur de la tension que l ’on aurait si l ’essai était fait à courant nominal. C ’est cette tension que l ’on appelle la tension de court-circuit.

De même, on peut calculer le courant qui existerait si l ’essai était fait à tension nominale. C ’est ce courant que l ’on appelle le courant de court-circuit Icc . Icc est normalement bc plus grand que IN et donc inaccessible à l ’expérience.

Les pertes « dues à la charge » sont proportionnelles au carré du courant. A courant nominal, elles vaudraient donc

N22

N22cc2 I

U

UII

On définit encore la puissance de court-circuit S2cc = I2cc U2N >> S2N

2

mesuré2

N2mesurée2 I

IP

Page 56: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

56

ELEC2753 - 2012 - Université catholique de Louvain

Essai en court-circuit (variante)L ’essai en court-circuit peut aussi se faire par le primaire (question de facilité).

Si on suppose Xp0 et Rp0 grands vis à vis de Re ’ et Xe ’ , c ’est Re  ’ et Xe ’ que l ’on « voit ».

1

1e I

U'Z

11

1ee IU

P'coscos

En utilisant le circuit équivalent série d ’une impédance, on obtient Re ’ = Ze ’ cos e et Xe ’ = Ze ’ sin e . Pour rappel, on a

donc Re ’ k2 Re et Xe ’ k2 Xe . e

2se Zk'Z

Page 57: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

57

ELEC2753 - 2012 - Université catholique de Louvain

Essai à videOn alimente un enroulement via des appareils de mesure, l ’autre étant en circuit ouvert. Des normes imposent

d ’effectuer l ’essai à vide standard à la tension nominale (raison : non-linéarités) !

On peut faire l ’essai par le primaire ou par le secondaire (cela dépend de la disponibilité d ’une alimentation, des appareils de mesure….).

Si on fait l ’essai par le primaire, on « voit » Rp0 et Xp0 (et pas Re ni Xe ). L ’essai fournit donc une information sur les éléments parallèle. On mesure aussi la tension de l ’enroulement non alimenté.

o2

1s U

U|k|k

o1

10 I

UZ

o11

o10 IU

Pcos

Equivalent parallèle d ’une impédance

0

00p cos

ZR

0

00p sin

ZX

Page 58: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

58

ELEC2753 - 2012 - Université catholique de Louvain

Retour au circuit de référenceEn partant du circuit équivalent simplifié, on peut construire un circuit équivalent en T. Cela n’a de sens du point du vue précision que si le circuit simplifié a été déterminé sans faire les approximations de calcul.

On mesure les résistances R1 DC et R2 DC en courant continu (avec un ohmmètre, un pont de mesure DC ou par la méthode volt-ampèremétrique)

On impose la condition X1 = X ’2 car on n ’a pas en général pas d ’information permettant de faire mieux. On aura donc

X1 X ’e / 2 et X ’2 X ’e / 2 (donc X2 Xe / 2 )

De même, on impose la condition (R1-R1DC) = k2 (R2-R2 DC) d ’où l ’on tire facilement )'(

2

12

2111 DCDCeDC RkRRRR

)1

(2

121222 DCDCeDC RR

kRRR

Page 59: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

59

ELEC2753 - 2012 - Université catholique de Louvain

Autres élémentsOn peut alors trouver la valeur des éléments parallèles et une valeur améliorée du rapport de transformation à mettre dans le circuit équivalent en utilisant

11o XjRZZ

o2

1

o U

U

Z

Zk

Dans le calculs ci-dessus, on a amélioré la valeur des éléments parallèle en utilisant celle des éléments série.

Par contre, l ’erreur à ne pas commettre est de vouloir améliorer

la valeur des éléments R1 R2 X1 X2 en utilisant la valeur des éléments parallèle tirée de l ’essai à vide standard. En effet, l ’essai en court-circuit s ’effectue à tension réduite, de sorte que la saturation des éléments parallèle est beaucoup plus faible que lors de l ’essai à vide standard. Comme quoi le mieux est parfois l ’ennemi du bien.

Page 60: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

60

ELEC2753 - 2012 - Université catholique de Louvain

Introduction d’un déphaseur dans le modèleJusqu’ici, nous nous sommes peu préoccupé du sens des enroulements.Jusqu’ici, nous nous sommes peu préoccupé du sens des enroulements.

Dans beaucoup de cas, on peut permuter les bornes de l’un des enroulements, ce qui a Dans beaucoup de cas, on peut permuter les bornes de l’un des enroulements, ce qui a pour effet de changer le signe du rapport de transformation.pour effet de changer le signe du rapport de transformation.

Si on raisonne en terme de phaseur, on peut voir les choses autrement et dire que l’on Si on raisonne en terme de phaseur, on peut voir les choses autrement et dire que l’on garde un rapport de transformation positif, mais que l’on adjoint au modèle du garde un rapport de transformation positif, mais que l’on adjoint au modèle du transformateur un déphaseur qui retarde simultanément la tension et le courant de 180°. Il transformateur un déphaseur qui retarde simultanément la tension et le courant de 180°. Il y a donc, une fois les sens de connexion choisis, y a donc, une fois les sens de connexion choisis, deux groupesdeux groupes de transformateurs selon de transformateurs selon que le déphaseur vaut 0° ou 180°. Comme le transformateur idéal, que le déphaseur vaut 0° ou 180°. Comme le transformateur idéal, le déphaseur peut le déphaseur peut être déplacéêtre déplacé à l’intérieur du circuit équivalent. Cette opération ne change pas la valeur à l’intérieur du circuit équivalent. Cette opération ne change pas la valeur des éléments.des éléments.

Page 61: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

61

ELEC2753 - 2012 - Université catholique de Louvain

Marche en parallèle de transformateurs

En associant un transformateur de 20 kVA et un transformateur de 10 kVA, obtient-on l ’équivalent d ’un transformateur de 30 kVA ?

Oui, mais seulement sous certaines conditions.

On examine le cas où les deux transformateurs ont les tensions nominales souhaitées, et sont donc connectés en parallèle.

Page 62: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

62

ELEC2753 - 2012 - Université catholique de Louvain

Marche en parallèle (suite)

Il faut aussi, idéalement,

• Mêmes tensions secondaires à vide (donc en pratique même tension nominale secondaire), soit kA = kB car, sinon, les transformateurs ont un courant au secondaire même à vide (en l ’absence de charge).

• U2ccA = U2cc B car c ’est la condition pour que les deux courant nominaux soient atteints simultanément. Il faut en effet pour cela que

ZeA I2ANom = ZeB I2BNom .

• e A = e B car les courants sont dans le

rapport . Leur différence de

phase est donc e A - e B . Or leur somme ne peut être faite en module que s ’ils ont la même phase.

eA

eB

B2

A2

Z

Z

I

I

B2A22 III

Il faut impérativement que les secondaires soient connectés dans le bon sens (que les deux transformateurs appartiennent au même groupe 0° ou 180°). Comment vérifier ?

Soit 4 conditions.Soit 4 conditions.

Page 63: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

63

ELEC2753 - 2012 - Université catholique de Louvain

Note sur mise en parallèle

On peut rattraper de petits déséquilibres à l ’aide d ’un transformateur d ’équilibrage qui impose aux courants de garder le bon rapport. Si le déséquilibre à compenser est faible, ce transformateur peut être de petite taille (par rapport aux deux transformateurs mis en parallèle).

Page 64: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

64

ELEC2753 - 2012 - Université catholique de Louvain

Transformateurs à prises multiples

Surdimensionnement car une partie de l ’enroulement soit est hors du circuit, soit est parcourue par un courant inférieur au courant maximum admissible !

Une autre façon, utilisable pour obtenir deux tensions nominales dans un rapport 2, consiste à utiliser deux demi-enroulements que l ’on connecte en série ou en parallèle.

Page 65: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

65

ELEC2753 - 2012 - Université catholique de Louvain

AutotransformateursPrimaire et secondaire peuvent avoir une partie commune

Le courant qui y passe vaut I = | I1 - I2 | < max (I1 , I2), donc économie sur le fil électrique, surtout si le rapport k est proche de 1.

Page 66: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

66

ELEC2753 - 2012 - Université catholique de Louvain

Difficulté d’utilisation des autotransformateurs

Dans le cas d’un transformateur normal, on peut toujours connecter une borne Dans le cas d’un transformateur normal, on peut toujours connecter une borne du secondaire à n’importe quel point d’un circuit sans provoquer le passage du secondaire à n’importe quel point d’un circuit sans provoquer le passage d’un courant. Ceci n’est pas vrai avec un autotransformateur. Certains d’un courant. Ceci n’est pas vrai avec un autotransformateur. Certains montages possibles avec un transformateur sont donc impossibles avec un montages possibles avec un transformateur sont donc impossibles avec un autotransformateur.autotransformateur.

Page 67: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

67

ELEC2753 - 2012 - Université catholique de Louvain

Danger du réseau

Le réseau domestique est dangereux, même si on ne touche qu’un seul des Le réseau domestique est dangereux, même si on ne touche qu’un seul des conducteurs. En effet, il existe souvent un chemin possible pour le courant conducteurs. En effet, il existe souvent un chemin possible pour le courant entre d’autres conducteurs et la terre, de sorte qu’une personne en contact entre d’autres conducteurs et la terre, de sorte qu’une personne en contact avec le sol et qui touche un conducteur peut être traversée par un courant.avec le sol et qui touche un conducteur peut être traversée par un courant.

Même le conducteur neutre, à supposer qu’il existe et qu’il soit identifié, est Même le conducteur neutre, à supposer qu’il existe et qu’il soit identifié, est dangereux car son potentiel peut prendre des valeurs dangereuses en cas de dangereux car son potentiel peut prendre des valeurs dangereuses en cas de défaut (notamment coupure du fusible correspondant à ce conducteur)défaut (notamment coupure du fusible correspondant à ce conducteur)

Page 68: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

68

ELEC2753 - 2012 - Université catholique de Louvain

Sécurité apportée par un transformateur d’isolation

Quand on insère entre le réseau et l’utilisateur un transformateur Quand on insère entre le réseau et l’utilisateur un transformateur normal, avec une isolation de sécurité entre le primaire et le secondaire, normal, avec une isolation de sécurité entre le primaire et le secondaire, le danger est moindre car on peut toucher sans danger le danger est moindre car on peut toucher sans danger UNUN point point quelconque du circuit secondaire. De plus, il suffit d’ouvrir un quelconque du circuit secondaire. De plus, il suffit d’ouvrir un interrupteur simple au primaire pour que le secondaire ne présente plus interrupteur simple au primaire pour que le secondaire ne présente plus de danger.de danger.

Page 69: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

69

ELEC2753 - 2012 - Université catholique de Louvain

Danger des autotransformateursDans le cas des autotransformateurs, il n’y a pas d ’isolation galvanique entre le primaire et le secondaire. Si le primaire est relié au réseau, le secondaire présente les mêmes dangers que ce dernier• MEME SI LA TENSION SECONDAIRE EST NULLE (cas des autotransformateurs réglables)• MEME SI, SUITE A L’OUVERTURE D’UN INTERRUPTEUR, LA TENSION PRIMAIRE EST NULLE mais qu’il reste une borne du primaire connectée au réseau.Soyez prudents lors des séances de laboratoire !

Page 70: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

70

ELEC2753 - 2012 - Université catholique de Louvain

Compléments relatifs aux dispositions constructives

A colonneA colonne A manteauA manteau

Le noyau est feuilleté pour gêner les courants de Foucault (voir cours de bac ?).Le noyau est feuilleté pour gêner les courants de Foucault (voir cours de bac ?).

Page 71: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

71

ELEC2753 - 2012 - Université catholique de Louvain

Les deux enroulements ont à peu près le même volume (si l’un a plus de spires, il est fait de fil de section plus faible).

Ceci est moins vrai si l’un des deux enroulements est prévu pour une tension très élevée, car il contient alors beaucoup d’isolant.

Ce n’est pas toujours l’enroulement qui a la tension la plus élevée qui est bobiné au dessus de l’autre.

L’écart h entre les deux enroulements est d’autant plus grand que le niveau d’isolation est plus élevé.

Page 72: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

72

ELEC2753 - 2012 - Université catholique de Louvain

L’écart h entre les deux enroulements augmente le flux de fuite, donc aussi les inductances série.

On peut réduire ces inductances en allongeant la fenêtre, ou en partageant les enroulements en plusieurs parties intercalées.

Au contraire, si on bobine les deux enroulements sur des bobines séparées (pour faciliter la construction ou l’isolation), on augmente les flux de fuite.

On augmente parfois intentionnellement les flux de fuite (pourquoi?).

Page 73: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

73

ELEC2753 - 2012 - Université catholique de Louvain

Champ de fuite faibleChamp de fuite faible Champ de fuite fort Champ de fuite fort

(long chemin hors du noyau) (long chemin hors du noyau) (court chemin hors du noyau) (court chemin hors du noyau)

Page 74: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

74

ELEC2753 - 2012 - Université catholique de Louvain

Si on utilise du fil rond bobiné en couches, la fin de la première couche est proche du début de la première, ce qui pose un problème d’isolation.

Les enroulements HT sont souvent divisés en plusieurs galettes pour réduire les différences de potentiel entre spires voisines.

On utilise aussi du fil plat (construction plus aisée, meilleur remplissage, meilleur refroidissement).

Le fil (rond ou plat) est parfois subdivisé pour lutter contre l’effet de peau et les courants de Foucault induits par les champs de fuite.

Page 75: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

75

ELEC2753 - 2012 - Université catholique de Louvain

Isolation

Autour des fils : verni …

Séparation entre noyau de fer et bobines, entre bobines… : carton bakélisé, polyéthylène…

Le papier est hygroscopique : il doit être imprégné.

L’air peut servir pour l’isolation et le refroidissement. Moins bon isolant que les isolants solides : il faut surveiller la longueur des contournements possibles.

L’huile peut servir à la fois au refroidissement et à l’imprégnation. Le transformateur est enfermé dans une cuve, laquelle est reliée au conservateur d’huile (qui sert aussi de vase d’expansion).

L’askarel est ininflammable, mais n’est plus utilisé car il produit de la dioxine en cas d’accident.

Le gaz SF6 sous pression est un meilleur isolant que l’air.

Aux puissances petites et moyennes, le remplissage solide est aussi possible.

Page 76: ELEC2753 - 2012 - Université catholique de Louvain Transformateurs monophasés E. MATAGNE ELEC 2753 Electrotechnique.

76

ELEC2753 - 2012 - Université catholique de Louvain

Protection contre les défauts internes : signalons deux dispositifs intéressants-Protection différentielleOn compare I1 et I2 /k . La différence (courant magnétisant) doit être petite, sauf lors de la mise sous tension où il est normal qu’elle dépasse largement le courant nominal.

-Protection Buchholz

Cette protection consiste à détecter un dégagement gazeux (dû à la dégradation d’un isolant). Pour cela, on place entre la cuve du transformateur et son conservateur d’huile une tubulure horizontale avec le dispositif ci-contre.

Dégagement de gaz lent : accumulation dans la cloche, puis déclenchement d’une alarme.

Dégagement rapide : le flux d’huile repousse la palette et fait déclencher un disjoncteur.