EL 402

24
EL 402 Xavier Neyt

description

EL 402. Xavier Neyt. Regulation. Why? Stabilize unstable systems e.g. inverted pendulum Modify the dynamic behaviour e.g. car suspension, B747 Increase the “drive precision” e.g. static error (lift). Regulation. How? Combine two systems the actual system S(p) the control system R(p) - PowerPoint PPT Presentation

Transcript of EL 402

Page 1: EL 402

EL 402Xavier Neyt

Page 2: EL 402

24/1/01 EL 402 2

Regulation Why?

– Stabilize unstable systems e.g. inverted pendulum

– Modify the dynamic behaviour e.g. car suspension, B747

– Increase the “drive precision” e.g. static error (lift)

Page 3: EL 402

24/1/01 EL 402 3

Regulation How?

– Combine two systems the actual system S(p) the control system R(p)

– Such that the new system has the desired behaviour

poles at a convenient position

Page 4: EL 402

24/1/01 EL 402 4

Combination of systems

Serial combination– : F(p) = R(p) S(p)– does not move the poles of S(p)– ! Zeroes of R(p) should NOT cover unstable

poles of S(p)

R(p) S(p)U(p) Y(p)

Page 5: EL 402

24/1/01 EL 402 5

Combination of systems

Parallel combination–: F(p) = R(p) + S(p)–does not move the poles of S(p)

R(p)

S(p)

U(p) Y(p)+

Page 6: EL 402

24/1/01 EL 402 6

Combination of systems

Feedback combination–: F(p) = RS/( 1 + RS)– poles of F = zeros of 1+RS

R(p) S(p)U(p) Y(p)

+-

+

Page 7: EL 402

24/1/01 EL 402 7

Example

S(p): First order system:–: S(p) = 1/( pT - 1)– pole in p = 1/T unstable

R(p): Proportional (constant)–: R(p) = K

F(p) = K/(pT -1 + K)–pole in p = (K-1)/T

Page 8: EL 402

24/1/01 EL 402 8

Example

Page 9: EL 402

24/1/01 EL 402 9

Example

Page 10: EL 402

24/1/01 EL 402 10

Nyquist diagram

Plot of RS(p) in parametric form–: x = Re( RS(p) )–: y = Im( RS(p) )–for p Nyquist contour

Can be deduced from the Bode plot–in the simple cases...

Page 11: EL 402

24/1/01 EL 402 11

Bode diagram

Page 12: EL 402

24/1/01 EL 402 12

Nyquist diagram

Page 13: EL 402

24/1/01 EL 402 13

Stability Aim of the Nyquist theorem

– determine the stability of the closed-loop system

– knowing the stability of the open-loop system

Page 14: EL 402

24/1/01 EL 402 14

Stability How does it work?

– Need to know the zeros of 1+RS(p)– These zeros need to be located p < 0– 1+RS(p) has the same poles as RS(p)

P1+RS = PRS

– Principle of the argument: T0 = N - P

T-1 = N1+RS - P1+RS = N1+RS - PRS = PF - PRS

Page 15: EL 402

24/1/01 EL 402 15

Stability Nyquist theorem

– :T-1 = PF - PRS

– La boucle fermee sera stable ssi le contour de Nyquist enlace (ds le sens negatif) autant de fois le point (-1,0) que le systeme en boucle ouverte possede de poles instables

– De gesloten lus zal stabiel zijn als en slechts als het aantal toeren (in negatieve zin) die de Nyquist kromme rond het punt (-1,0) doet gelijk is aan het aantal onstabiele polen van de open lus.

Page 16: EL 402

24/1/01 EL 402 16

Example: unstable 1st order sys.

Page 17: EL 402

24/1/01 EL 402 17

Stability Nyquist theorem

– particular case: the open-loop system is stable PRS = 0 T-1 = 0 If the open-loop system is stable, the closed-loop

system will be stable iff the Nyquist curve does not go round the point (-1,0)

Page 18: EL 402

24/1/01 EL 402 18

Example: stable 4th order sys.

Page 19: EL 402

24/1/01 EL 402 19

Robustness

Introduces the notion of stability margins– define some kind of distance between the point

(-1,0) and the Nyquist curve.– Most often used distances

gain margin phase margin

Page 20: EL 402

24/1/01 EL 402 20

Robustness

Most often used distances– gain margin

– Distance to the point having a phase = -180º– Maximum gain allowed in R without compromising the system

stability

maximum & minimum gain

– phase margin– Angle to the first point having unit gain (0dB gain)– How much phase rotation is R allowed to introduce without

compromising the system stability

max phase lag & max phase lead

Page 21: EL 402

24/1/01 EL 402 21

Gain/Phase margins

Unit Gain circle

Phase margin

Gain margin

Page 22: EL 402

24/1/01 EL 402 22

Gain/Phase margins

Unit Gain circle

Phase margin

Gain margin

Page 23: EL 402

24/1/01 EL 402 23

Gain/Phase margins

-180°

Gain margin

Phase margin

Page 24: EL 402

24/1/01 EL 402 24

Drive Precision