Ekkad's-Gas turbine cooling

download Ekkad's-Gas turbine cooling

of 36

Transcript of Ekkad's-Gas turbine cooling

  • 8/10/2019 Ekkad's-Gas turbine cooling

    1/36

    AdvancedInternalCooling

    WithandWithoutEffectofRotation

    SrinathV.Ekkad

    MechanicalEngineering

    VirginiaTech

    [email protected]

    Collaborators:Dr.DigantaNarzary,JustinLamont,Preston

    Stoakes,andDr.MaryAnneAlvin(NETL)

  • 8/10/2019 Ekkad's-Gas turbine cooling

    2/36

    Pro rammaticRelevance

    IGCCplantsplayakeyroleinthefutureofDOEsCleancoalinitiativebyfacilitatingprecombustionCO2capturefromsyngas

    GasturbinesusedinIGCCaresubjectedtohighthermalloadsandhightemperaturesalongwithresidualparticulateandvaporcontaminantswhichcouldpotentiallyalterthelifeofprecisionengineeredvanesandbladesinthehotgas

    path Theproposedresearchaimstodevelopphysicsbased

    modelingtoolstodevelopandpredictnewcoolingstrategiesforhotcomponentsandprovideeffectivecooling

    sc emesw owcoo an usagew rec mpac onoverallefficiency

    Workshoulddirectlyimpactmaterialsdevelopmentandcoat ngsa so

  • 8/10/2019 Ekkad's-Gas turbine cooling

    3/36

    Doublewallcoolin usesathin a betweentwo

    wallstoenhanceheattransferfromthesurfaceofturbineblades

    Doublewallcoolingincreasesareaforheat

    transferbetweencoolingfluidandmetal

    Impingementjetsandmodifiedsurfacescanbe

    usedtoincreaseheattransferontheouterwall

    Nothingnewaboutthisconcept hasbeen

    aroundforseveraldecades

  • 8/10/2019 Ekkad's-Gas turbine cooling

    4/36

    PatentsbyBunkeretal.,Ishburg andLee, Jacksonetal.,Liang,Melvinetal.

  • 8/10/2019 Ekkad's-Gas turbine cooling

    5/36

    Othercoolin o tionsincludin doublewall

    Networkoforificesconnected

    bysmallpassagestocreate

    impingementareasand

    Coolairisforceinto double

    wallareathroughsmallpassagesandimpingesonthe

    outerwall

    practiceusedByRRinNorth

    America(maturetechnology)

  • 8/10/2019 Ekkad's-Gas turbine cooling

    6/36

    ribsusedtoincreaseturbulenceandheat

    transfer

    Coolinggasexhaustedthroughtrailingedgeof

    blade

    Designdoesnotuseimpingementcooling

    LiangG,inventor;2004Oct.26.Coolingsystemforaturbinebladehavinga

    doubleouterwall.UnitedStatesPatent

    US 6 808 367.

  • 8/10/2019 Ekkad's-Gas turbine cooling

    7/36

    Motivation&Objectives Gasturbinebladesneedtobeeffectivelycooledtoincrease

    componentlifeandreducemaintenancecosts.Thelevelofcoolingisalwaysoffsetbytheamountofcoolantused.Increasedamountofcoolantusagedirectlyimpactstheoveralle c encyo eeng ne.

    Usageofdoublewallcoolingschemescanreduceoverallcoolantusagebypushingcoolantclosertotheinsideofthewallexposedtohotgaspath.

    een ance eattrans ertot ecoo antt roug t et nwa andalsoduetohighperformanceschemessuchasimpingementwillgreatlybenefitoverallandthermalefficiency

    ofthesystem.

    todevelopanoptimizationmethodologytodeterminethemosteffectivedoublewall/nearwallschemeforturbineairfoilcooling.Thesecoolinggeometrieswillbeoptimized

    pressuredropwithoptimizationsoftwareandCFD.

    tostudytheeffectofrotationondoublewallcoolinggeometriestoensureapplicabilitytorotatingblades

    Typicalturbinebladeinternal

    convectioncoolingconfiguration(Han

    et.al.(1986).

    workingwithOEMstocomparecoolingeffectivenessof

    double

    wall

    geometries

    compared

    to

    current

    cooling

    schemes

  • 8/10/2019 Ekkad's-Gas turbine cooling

    8/36

    Objective: Exploretheuseofdoublewallcoolinginturbineblades,using

    impingementcoolingandcombiningwithotherstandardheattransferenhancementtechniques

    Developdesignmethodologiesforoptimizeddoublewall

    Procedure:

    UseCFDtoexploretheeffectivenessofimpingementcoolingin

    UseCFDtooptimizedesignpatternofimpingementholesinchannelflow

    configurationincomparisontocurrentstandarddesigns

    Alsoexperimentallystudyeffectofrotationondoublewallcoolin desi nswithintentiontoo timizewithrotationaleffects

  • 8/10/2019 Ekkad's-Gas turbine cooling

    9/36

    StationaryOptimizationStudy

  • 8/10/2019 Ekkad's-Gas turbine cooling

    10/36

    ar w a mp e eome ry

    channelwithanimpingementchannel

    Mainchannelmeasures1x1foralltest

    Impingementchanneldimensionsandlength

    o testsect onvar es etweent ecases

  • 8/10/2019 Ekkad's-Gas turbine cooling

    11/36

    2xN,Nvariesintheoptimizationstudy

    Impingementchannel

    confinesthespentcoolanttoexitopening

    oppositeinlet

  • 8/10/2019 Ekkad's-Gas turbine cooling

    12/36

    Dynamics(CFD)

    foundinliterature

    builtforexperiments

    includeconductioneffects

  • 8/10/2019 Ekkad's-Gas turbine cooling

    13/36

    eachonheattransferandpumpingpower

    JettoJetSpacingRatio(L/D)

    Numberofrowsofholes(N)

    r owratevar e w t an toma nta najetReynoldsNumberof10,000

  • 8/10/2019 Ekkad's-Gas turbine cooling

    14/36

    sectiondesignswereconsideredbychoosing

    Range

    fourdesignpointsfor

    eachparameter D

    1/32 1/4

    (0.794mm) (6.35 mm)

    Totallength,LT, held

    constantwhenNis

    L/D 2 5

    H/D 0.5 4

    N 5 11

    in1/11 DLDL

  • 8/10/2019 Ekkad's-Gas turbine cooling

    15/36

    transfercoefficientalongtheimpingement

    , , , P

    Thetwoparametersarecombinedtoforma

    , ,

    comparethetestsectiondesigns

    0,

    0

    PP PPhhPer

    Alltestsectionscomparedtobaselinedesign

  • 8/10/2019 Ekkad's-Gas turbine cooling

    16/36

    , ,

    spacingratio,H/D,appeartohavethelargest

    JettoJetspacingratio,L/D,appearstohave

    parameter

    etop per orm ng es gnswere u ttovalidateCFDstudy

  • 8/10/2019 Ekkad's-Gas turbine cooling

    17/36

    Rank D (in) L/D H/D N Per

    1 0.125 5 2 5 51.7

    2 0.125 2 1 5 51.6

    . .

    4 0.0625 2 1 5 50.2

    5 0.25 2 2 5 50.26 0.125 2 2 5 49.9

    7 0.25 3 2 5 49.3

    8 0.125 3 2 5 48.9

    9 0.0625 4 1 5 48.9

    10 0.0625 3 1 5 48.8

  • 8/10/2019 Ekkad's-Gas turbine cooling

    18/36

    highervelocitythroughlastrowofholes

    Finaljetisdeflectedby

    cross

    flow

    of

    exhaust

    gas

    Contoursofvelocityatplaneintersecting

    impingementjets

    Hig estNusse t num er

    valuesoccurunder

    Exhaustgasappearsto

    exitintwostreamsinline

    ContoursofNusselt Numberon

    impingementsurface

    withimpingementjets

  • 8/10/2019 Ekkad's-Gas turbine cooling

    19/36

    Experimentsarebeingconductedtovalidate

    CFD

    simulations

    on

    initial

    test

    section Turbulators canbeaddedtotheimpingement

    channeltodisruptflowofexhaustgases

    Theflowdisru tionshouldallowforamoreeven

    heattransferdistribution,aswellasreducejet

    deflectionduetocrossflow

    Pinfinturbulators willincreaseamountof

    conductionintothemainchannelandfurther

    increasearea orconvective eattrans er

  • 8/10/2019 Ekkad's-Gas turbine cooling

    20/36

    cases

    gascrossflowwhenjettowallspacingratiois

    below1

    InitialCFDstudybaseonjettojetspacing

    ratio

    Comparedinlineandstaggeredarrangement

  • 8/10/2019 Ekkad's-Gas turbine cooling

    21/36

    Multi le

    Arra

    Im in ement

    for

    Low

    H/d

    double

    wall

    cases

    beincreasedbythewalljetdownstreamofthe

    impingementjetand

    not

    by

    the

    impingement

    e

    Undevelopedcorejet

    increaseheattransfer

  • 8/10/2019 Ekkad's-Gas turbine cooling

    22/36

    MultipleArrayImpingementforLowH/ddoublewall

    cases

    2

    ofjetsperformedbetteratalljettojetspacing 1.6

    1.8

    eter

    ratios

    Higherjettojetspacing

    1.4

    nc

    ePara

    ratioappearsto

    increaseperformance1

    Perform

    Futurestudywill 0.6

    .

    1.5 2.5 3.5 4.5

    Staggered Inline

    spacing

    ratios

    L/D

  • 8/10/2019 Ekkad's-Gas turbine cooling

    23/36

  • 8/10/2019 Ekkad's-Gas turbine cooling

    24/36

    Asimplifiedgeometrywastestedtodeterminetheeffectsof

    rotationonbladeinternalcoolantchannelflow

    Atypicalcoolantpassagefrom

    turbinebladeismodeledinthisLeadingSide(Suction)

    geometry.TrailingSide(Pressure)

    Typicalturbinebladeinternalconvectioncooling

    configuration(Hanet.al.(1986).

  • 8/10/2019 Ekkad's-Gas turbine cooling

    25/36

    Therotatingrigspinsinterchangeabletestsectionsatdesired

    speedswhilelowtemperatureairisinjected

    NitrogenGasisventedintotheairpathbeforetestingto

    chillcomponents. Thisdropsthetemperatureoftheair

    before

    reaching

    the

    test

    section

    during

    a

    test.

    Acameraismountedtothetestsectiontoviewthecolor

    . ,

    sothemotorrotationdirectionisreversedwhenfilming

    eithertheleadingortrailingside.

  • 8/10/2019 Ekkad's-Gas turbine cooling

    26/36

    Theeffectofribtypeinrotationaltwopasschannelswas

    exploredusingatransientliquidcrystaltechnique

    Smoothwall,90Ribbed,andWshaperibbedwallswereexplored

    inthestudy.

    Eachcasewasheldata

    Smooth Wall

    ,

    of250rpm

    (Rotationnumber=0.08).

    Inletdensityratio=0.10

    90 Ribs

    Resultsarereportedforthe

    trailingside,leadingSide,and

    W-shape Ribs

    .

    comparedtothestationarycase.45

    Pitch-to-rib height ratio (P/e)=8

    =

  • 8/10/2019 Ekkad's-Gas turbine cooling

    27/36

    Thehuefromtheliquidcrystaliscalibratedwithtemperatureto

    calculatetheheattransferonthesurfacesVideo

    Calibration Curve

    Typical Temperature response

    A

    curve

    fit

    generates

    an

    algebraicexpressionfor

    temperaturewithrespectto

    uew c sapp e o e

    restofthesurface

  • 8/10/2019 Ekkad's-Gas turbine cooling

    28/36

    Asemiinfinitemodelisusedtodeterminethelocal

    Atransientliquidcrystaltechniqueisusedtodeterminetheheattransfer.

    Forthegiventestsection,thesemiinfinitesolidmodelisvalidiftheexperimenttimesdoesnotexceed

    convectiveheattransferonthechannelwalls

    25minutes.

    Averagetesttimeislessthanaminute.Aftercalibratingtheliquidcrystalhuewithtemperature,walltemperaturesforeachpixelateachframe

    inthevideoiscalculated.

    Temperatureiscalculatedatthesurface(x=0)sothemathematicalmodelusedreducesto:

    ththTtT i 2

    ),0(

    kkTT i2

    Ti : istheinitialwalltemperatureT(0,t):isthewalltemperature

    : isthethermaldiffusivityoftheacrylic

    Weknowallparameters,soweareabletosolveforhnumerically

  • 8/10/2019 Ekkad's-Gas turbine cooling

    29/36

    The

    li uid

    cr stal

    creates

    a

    continuous

    lot

    of

    heat

    transfer

    on

    thesurfaceofthecoolantchannel

    Nu / Nu Nu / Nu

    StationarLeadin Trailin

    Nu / Nu

    TheWribscreatethehighestheattransferinthechannel. The

    smoothwallchannelhasthelowestheattransfer.

  • 8/10/2019 Ekkad's-Gas turbine cooling

    30/36

    Areaaveragesinheattransferalongthelengthofthechannel

    giveestimatestothepercentdifferences

    Smooth Wall 90 Ribs

    W-Shaped Ribs

    Smooth Wall 90 Ribs W Ribs

    Trailing Side 1st Pass 32 13 0.1

    2nd Pass -21 -7 -9.3

    Leading Side 1st Pass -19 -13 -3.3

    2nd Pass 3 24 17.2

  • 8/10/2019 Ekkad's-Gas turbine cooling

    31/36

    Theribtypesaredirectlycomparedforthestationary,trailingside,andleadingside

    Stationary Trailing Side

    Leading Side % Increases

    1st Pass 90 Ribs 104 71 116

    W-Ribs 260 190 325

    2nd Pass 90 Ribs 35 55 76

    W-Ribs 138 164 197

  • 8/10/2019 Ekkad's-Gas turbine cooling

    32/36

    JetImpingementcoolingisanalternativetoribroughenedwalls

    tocreatehighheattransfer

    Insteadofatwopasschannel,a

    radially outwardchannelwith

    LeadingSide(Suction)

    impingementisstudiedunder

    rotation

    Currentresultsshowimpingement

    Trailing

    Side

    (Pressure)

    channelheighttojetdiameter

    ratio(H/d) =2

    Pitchtojetdiameterratio

    Typicalturbinebladeinternalconvectioncooling

    configuration(Hanet.al.(1986).

    (P/d)=8

    Jetlengthtojetdiameterratio

    (b/d)=1

    Rotationalspeed=250rpm

  • 8/10/2019 Ekkad's-Gas turbine cooling

    33/36

    Preliminarystationaryresultsforjetimpingementcoolingwith

    crossflow effect

    Flowmovesfromrightto

    left. Thereisoneoutlet

    fortheair,sothelaterjets

    feeltheeffectsof

    crossflow.

    Crossflow bends

    the

    jets

    ,

    reducingtheeffectiveness.

    Theeffectsofcrossflow

    ,

    astheaverageheat

    transferreducesandthe

    maximumheattransferfor

    eachjetreducesasweget

    closer

    to

    the

    exit.

  • 8/10/2019 Ekkad's-Gas turbine cooling

    34/36

    Preliminaryrotationalresultsfortrailingandleadingsideswith

    crossflow effect

    Inrotation,boththeleadingandtrailingsideresultsarelessthanthestationaryresults

    .

    Also,thetrailingsidereducedmorethantheleadingside. Thisiscounterintuitive

    because

    radially outward

    flow

    for

    two

    pass

    channels

    show

    an

    increase

    in

    heat

    transfer

    for

    thetrailingsideduetothefavorableeffectsoftheCoriolis force.

  • 8/10/2019 Ekkad's-Gas turbine cooling

    35/36

    Futurestudiesonribroughenedandjetimpingementcooling

    schemesunderrotationRib Roughened Walls Jet Impingement

    Further explore the W-shaped Ribs

    with variations on flow orientationof ribs and angle of ribs

    Explore rotational effects when the

    impingement height is varied (H/d),when pitch is varied (P/d), effect of

    film coolant extraction vs. crossflow

    exit conditions, and Jet angle with

    respect to the impingement plate is

    varied.

    Vs. Capabilities of the Rotating Rig arein the process of being increased.

    Higher flow rates, lower

    temperatures and higher rotational

    speeds will be achievable.

  • 8/10/2019 Ekkad's-Gas turbine cooling

    36/36

    Firstyearofproject

    Understandingvariousparametriceffectsondouble

    wallcoolingschemes

    rotatingframeforinternalheattransfer

    Fundamentalmethodolo ofo timizationachieved Focusingonmorerealisticgeometriesfromhereon

    Workingwithindustrytodeterminefactorsof

    evaluationanddesignmethodologyfornewcoolinggeometries