Einstein Summation Convention - Department of Physics - Indian

22
PH6_L3 1 Einstein Summation Convention This is a method to write equation involving several summations in a uncluttered form Example: i i ij j ij i B A or j i j i where B A B A = = = = 0 1 . δ δ •Summation runs over 1 to 3 since we are 3 dimension •No indices appear more than two times in the equation •Indices which is summed over is called dummy indices appear only in one side of equation •Indices which appear on both sides of the equation is free indices.

Transcript of Einstein Summation Convention - Department of Physics - Indian

Page 1: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 1

Einstein Summation Convention

This is a method to write equation involving several summations in a uncluttered form

Example:

ii

ijjiji

BAorjiji

whereBABA

=⎩⎨⎧

≠=

==01

. δδ

•Summation runs over 1 to 3 since we are 3 dimension•No indices appear more than two times in the equation•Indices which is summed over is called dummy indices appear only in one side of equation•Indices which appear on both sides of the equation is free indices.

Page 2: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 2

Vector or Cross or Outer Product

)()()(

ˆsin)()()(

)()(

)(ˆsin

AssocitiveNotCBACBA

nmABBmABAmBAm

veDistributiCABACBA

eCommutativNotABnABBA

⎩⎨⎧

××≠××=×=×=×

×+×=+×

×−==×

θ

θ

Product varies under change of basis, i.e. coordinate systemDirection of the product is given by right hand screw ruleProduct gives the area of the parallelogram consisting the two vectors as its arms

Page 3: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 3

Cross Product: Graphical Representation

A

BθBs

inθ

n

Page 4: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 4

Examples:Magnetic force on a moving charge

.magF qv B= ×

Torque on a bodyr fτ = ×

r

Page 5: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 5

In the component formˆ ˆ ˆx y z

x Y Z

X Y Z

e e eA B A A A

B B B

⎡ ⎤⎢ ⎥× = ⎢ ⎥⎢ ⎥⎣ ⎦

( ) ( ) ( )x y z z y y z x x z z x y y xe A B A B e A B A B e A B A B= − + − + −

In the Einstein summation notation

( )i ijk j kA B A Bε× =

Where εijk is a Levi‐Civita Tensor

Page 6: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 6

The tensor operator      and  ijkε ijkε

• The tensor       is defined for i,j,k=1,...,3 as

0 unless , ,and are distinct1, if rst is an even permutation of 123

-1, if rst is an odd permutation of 123ijk

i j kε

⎧⎪= +⎨⎪⎩

3 2 11 3 2

2 1 3 

1 2 32 3 13 1 2

evenodd

ijkε

6

Page 7: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 7

What is a Tensor? 

A Tensor is a method to represent the Physical Properties in an anisotropic system

For example: 

You apply a force in one direction and look for the affect in other direction

(Piezo‐electricity)

Elasticity  : Elastic Tensor   Dielectric constant  : Dielectric Tensor Conductivity  : Conductivity Tensor 

Page 8: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 8

This generalized notation allows an easy writing of equations of the continuum mechanics, such as the generalized Hook's law : 

2nd rank tensorsStress, strain Conductivity  (  )susceptibility Kroneker Delta δij

3rd rank tensorsPiezoelectricityLevi‐Civita

4th rank tensorsElastic moduli

nth rank tensor has 3n

components in 3 ‐ dimensional space

i ij jJ Eσ=

Stress on plane

in direction

thij

th

i

j

σ →

Page 9: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 9

For discrete particlesi ij jL I ω=

Moment of Inertia tensor: When axis of rotation is not given, then we can generalize moment of inertia into a tensor of rank 2.

Angular momentum

For continuous mass distribution

For axis of rotation about         the scalar form can be calculated as

n

Page 10: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 10

Rank of a Tensor

Rank =  0 : Scalar Only One component

Rank =  1  : Vector  Three components

Rank = 2      Nine Components

Rank = 3       Twenty Seven Components  

Rank  = 4     Eighty One Components 

Symmetry plays a very important role in evaluating these components

Page 11: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 11

Tensor notation

⎟⎟⎟

⎜⎜⎜

== =3

2

1

3,2,1)(ppp

pP iii• In tensor notation a superscript 

stands for a column vector

• a subscript for a row vector (useful to specify lines)

• A matrix is written as

You know about Matrix Methods

),,( 321 lllLi =

),,( 321

3

2

1

33

32

31

23

22

21

13

12

11

jjj

i

i

ij

i

MMM

MMM

mmmmmmmmm

M

=

⎟⎟⎟

⎜⎜⎜

=⎟⎟⎟

⎜⎜⎜

=

11

Page 12: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 12

Tensor notation

• Tensor summation convention:– an index repeated as sub and superscript in a product represents summation over the range of the index.

• Example: 

33

22

11 plplplPL i

i ++=

12

Page 13: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 13

Tensor notation

• Scalar product can be written as 

• where the subscript has the same index as the superscript. This implicitly computes the sum.

• This is commutative

• Multiplication of a matrix and a vector

• This means a change of P from the coordinate system i to the coordinate system j (transformation).

33

22

11 plplplPL i

i ++=

iii

i LPPL =

iji

j PMP =

13

Page 14: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 14

Line equation

• In classical methods, a line is defined by the equation

• In homogenous coordinates we can write this as

• In tensor notation we can write this as

0=++ cbyax

01

),,( =⎟⎟⎟

⎜⎜⎜

⎛⋅=⋅ y

xcbaPLT

0=iiPL

14

Page 15: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 15

Determinant in tensor notation

( )jjjji mmmM 321 ,,=

1 2 3det( )j i j ki ijkM m m mε=

15

Page 16: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 16

Cross product in tensor notation

bac ×=

( ) j ki i ijkc a b a bε= × =

16

Page 17: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 17

Example

• Intersection of two lines 

• L: l1x+l2y+l3=0,   M: m1x+m2y+m3=0

• Intersection:

• Tensor:

• Result:

12213113,

12212332

mlmlmlmly

mlmlmlmlx

−−

=−−

=

kjijki MLEP =

12213

31132

23321

mlmlp

mlmlp

mlmlp

−=

−=

−=

17

Page 18: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 18

Translation

• Classic

• Tensor notation

• T is a transformation from the system A to B

• Homogenous coordinates

y

x

tyytxx

+=+=

12

12

⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

⎛=

⎟⎟⎟

⎜⎜⎜

111

1001001

122

yx

tytx

yx

1,2,3 BA, with == ABA

B PTP

18

Page 19: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 19

Rotation

• Homogenous coordinates

1)cos(1)sin(1)sin(1)cos(

2

2

yaxayyaxax

+=−=

⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

⎛ −=

⎟⎟⎟

⎜⎜⎜

111

1000)cos()sin(0)sin()cos(

122

yx

aaaa

yx

• Classic

• Tensor notation1,2,3 BA, with == AB

AB PRP

19

Page 20: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 20

Scalar Triple Product

.( ) .( ) .( )x y z

x y z

x y z

A A AC A B A B C B C A B B B

C C C

⎛ ⎞⎜ ⎟

× = × = × = ⎜ ⎟⎜ ⎟⎝ ⎠

Can we take these vectors in any other sequence? 

Page 21: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 21

vector triple productThe cross product of a vector with a cross product  The expansion formula of the triple cross product is

This vector is in the plane spanned by the vectors      and(when these are not parallel). 

b c

Exercise: Prove it: Hint: use ijk ilm jl km jm klε ε δ δ δ δ= −

Note that the use of parentheses in the triple cross products is necessary, since the cross 

product operation is not associative, i.e., generally we have

Page 22: Einstein Summation Convention - Department of Physics - Indian

PH6_L3 22

Coordinate Transformations: translation

In engineering it is often necessary to express vectors in different coordinate frames.  This requires the rotation and translation matrixes, which relates coordinates, i.e. basis (unit) vectors in one frame to those in another frame.

Translation of Coordinate systems

A

xe

ze

ye'ˆx

e

'ˆz

e

'ˆy

eT

Position coordinate

'A A T= −