Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One...

35
Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 [email protected]

Transcript of Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One...

Page 1: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Eigenvalues and

geometric representations

of graphs

László Lovász

Microsoft Research

One Microsoft Way, Redmond, WA 98052

[email protected]

Page 2: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Every planar graph can be drawnin the plane with straight edges

Fáry-Wagner

planar graph

Page 3: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Steinitz 1922

Every 3-connected planar graphis the skeleton of a convex 3-polytope.

3-connected planar graph

Page 4: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Rubber bands and planarity

Every 3-connected planar graph can be drawn with straight edges and convex faces.

Tutte (1963)

Page 5: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Rubber bands and planarity

outer face fixed toconvex polygon

edges replaced byrubber bands

2( )i jij E

u u

EEnergy:

Equilibrium:( )

1i j

j N ii

u ud

Demo

Page 6: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

G 3-connected planar

rubber band embedding is planar

Tutte

(Easily) polynomial time

computable

Maxwell-Cremona

Lifts to Steinitz representation if

outer face is a triangle

Page 7: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

If the outer face is a triangle, then the Tutte representationis a projection of a Steinitz representation.

1Fv

If the outer face is a not a triangle, then go to the polar.

F F’

p’

p

' '( )p p F Fu u v v ¿- = -

Page 8: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

: 0polytope,dP P

* { : 1 }: polar polytoped TP y x y x P

Page 9: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.
Page 10: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

G: arbitrary graph

A,B V, |A|=|B|=3

A: triangle

edges: rubber bands

2( )ij i jij E

c u u

EEnergy:

Equilibrium:( )

iji j

j N i i

cu u

d

( )

i ijj N i

d c

Rubber bands and connectivity

Page 11: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

()

For almost all choices of edge strengths:B noncollinear

3 disjoint (A,B)-paths

Linial-L-Wigderson

cutset

Page 12: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

For almost all choices of edge strengths:B affine indep

k disjoint (A,B)-paths

Linial-L-Wigderson

()

strengthen

Page 13: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

edges strength s.t. B is independent

for a.a. edge strength, B is independent

no algebraic relationbetween edge strength

Page 14: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

The maximum cut problem

maximize

Applications: optimization, statistical mechanics…

Page 15: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Easy with 50% error Erdős

Bad news: Max Cut is NP-hard

Approximations?

C

Page 16: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

C

Easy with 50% error Erdős

Bad news: Max Cut is NP-hard

Approximations?

Page 17: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Easy with 50% error Erdős

Bad news: Max Cut is NP-hard

Approximations?

Page 18: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Easy with 50% error Erdős

Bad news: Max Cut is NP-hard

Approximations?

Page 19: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Easy with 50% error Erdős

Bad news: Max Cut is NP-hard

Approximations?

Page 20: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Easy with 50% error Erdős

Bad news: Max Cut is NP-hard

Approximations?

Page 21: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Easy with 50% error Erdős

Bad news: Max Cut is NP-hard

Approximations?

Page 22: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

NP-hard with 6% error Hastad

Polynomial with 12% error

Goemans-Williamson

Easy with 50% error Erdős

Bad news: Max Cut is NP-hard

Approximations?

Page 23: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

How to find the minimum energy position?

dim=1: Min = 4·Max Cut Min 4·Max Cut in any dim

dim=2: probably hard

dim=n: Polynomial time solvable!semidefinite optimization

spring (repulsive)

2( )i jij E

u u

EEnergy:

| | 1iu

Page 24: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

random hyperplane

Expected number of edges cut:

2angle( , ) / .22 | | .22 | min | .88MaxCuti j i jij E ij E

u u u u

E|

Probability of edge ij cut: angle( , ) /i ju u

minimum energyin n dimension

Page 25: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Stresses of tensegrity frameworks

bars

struts

cables x y( )ijS x y

( ) 0ij j ij

S x x Equilibrium:

Page 26: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

There is no non-zero stress on the edges of a convex polytope

Cauchy

Every simplicial 3-polytope is rigid.

Page 27: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

If the edges of a planar graph are colored red and bule,then (at least 2) nodes where the colors are

consecutive.

Page 28: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

3

1

4

5

3

9

10

10

9

2

2

2

3

3

Page 29: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Every triangulation of a quadrilateral can be

represented by a square tiling of a rectangle.

Schramm

Page 30: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.
Page 31: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Coin representation

Every planar graph can be represented by touching circles

Koebe (1936)

Discrete Riemann Mapping Theorem

Page 32: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Representation by orthogonal circles

A planar triangulation can be represented byorthogonal circles

no separating 3- or 4-cycles Andre’ev

Thurston

Page 33: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

Polyhedral version

Andre’ev

Every 3-connected planar graph

is the skeleton of a convex polytope

such that every edge

touches the unit sphere

Page 34: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

From polyhedra to circles

horizon

Page 35: Eigenvalues and geometric representations of graphs László Lovász Microsoft Research One Microsoft Way, Redmond, WA 98052 lovasz@microsoft.com.

From polyhedra to representation of the dual