Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of...

42
Effective Connectivity & the basics of Dynamic Causal Modelling Hanneke den Ouden C t f N lSi Center f or NeuralScience New York University Donders Centre for Cognitive Neuroimaging Radboud University Nijmegen SPM course Zurich, February 1517

Transcript of Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of...

Page 1: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Effective Connectivity & the basics of yDynamic Causal Modelling

Hanneke den OudenC t f N l S iCenter for Neural ScienceNew York University

Donders Centre for Cognitive NeuroimagingRadboud University Nijmegen

SPM course Zurich, February 15‐17

Page 2: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Principles of organisation

F ti l S i li ti F ti l I t tiFunctional Specialisation Functional Integration

2

Page 3: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Overview

Brain Connectivity: types & definitions

Dynamic Causal Modelling – in theory

l d llDynamic Causal Modelling – in practice

3

Page 4: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Structural, functional & effective connectivity

/

Sporns 2007, Scholarpedia

anatomical/structural connectivitypresence of axonal connections

functional connectivity statistical dependencies between regional time series

effective connectivity causal (directed) influences between neurons or neuronal populations

4

Page 5: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Anatomical connectivity

Presence of axonal connections

neuronal  communication via synaptic contactssynaptic contacts

Measured with Measured with

tracing techniques

diffusion tensor imaging (DTI)

5

Page 6: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Knowing anatomical connectivity is not enough...

Context‐dependent recruiting of connections : Local functions depend on network activity

Connections show synaptic plasticity change in the structure and transmission change in the structure and transmission 

properties of a synapse even at short timescales

Look at functional and effective connectivity

6

Page 7: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Functional Connectivity

Statistical dependencies between regional time series

Seed voxel correlation analysis Seed voxel correlation analysis

Coherence analysis

Eigen‐decomposition (PCA, SVD)

Independent component analysis (ICA)p p y ( )

any technique describing statistical dependencies amongst regional time seriestime series

7

Page 8: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Seed voxel correlation analyses

hypothesis‐driven choice of a seed voxel

f i i extract reference time series

voxel‐wise correlation with time series from all other voxels

8Helmich R C et al. Cereb. Cortex 2009

Page 9: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Functional Connectivity

Pro Pro useful when we have no experimental control over the 

system of interest and no model of what caused the data ( l h ll i ti t )(e.g. sleep, hallucinations, etc.)

Con Con interpretation of resulting patterns is difficult / arbitrary  no mechanistic insight usually suboptimal for situations where we have a priori 

knowledge / experimental control

Effective Connectivity

9

Page 10: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Effective Connectivity

Causal (directed) influences between neurons /neuronal populations

In vivo and in vitro stimulation and recordingg

Models of causal interactions among neuronal populations Models of causal interactions among neuronal populations explain regional effects in terms of interregional connectivity

10

Page 11: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Models for computing effective connectivity in fMRI data

Structural Equation Modelling (SEM) McIntosh et al. 1991, 1994; Büchel & Friston 1997; Bullmore et al. 2000

Regression models ( h h i l i l i t ti PPI )(e.g. psycho‐physiological interactions, PPIs)Friston et al. 1997

Volterra kernels Volterra kernels Friston & Büchel 2000

Time series models (e.g. MAR, Granger causality)Harrison et al. 2003, Goebel et al. 2003

Dynamic Causal Modelling (DCM)bili F i t t l 2003 li St h t l 2008bilinear: Friston et al. 2003;   nonlinear: Stephan et al. 2008

11

Page 12: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Psycho‐physiological interactions (PPI)

Bilinear model of how the psychological context A changes the influence of area B on area C :of area B on area C :

B x A C

Replace a (main) effect with the timeseries of a voxel showing that effect

A PPI corresponds to differences in regression slopes for different

attention

A PPI corresponds to differences in regression slopes for different contexts. 

V1 x Att.V1 x Att. V5V5

attention

tt ti5 ac

tivity

no attentionV5

12Friston et al. 1997, NeuroImage; Büchel & Friston 1997, Cereb. Cortex

V1 activity

Page 13: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Psycho‐physiological interactions (PPI)

Pro given a single source region we can test for its context dependent given a single source region, we can test for its context-dependent

connectivity across the entire brain easy to implement

Con only allows to model contributions from a single area operates at the level of BOLD time series* ignores time-series properties of the data *

* b l d* To be explained 

DCM for more robust statements of effective connectivity

13

y

Page 14: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Overview

Brain Connectivity: types & definitionsBrain Connectivity: types & definitions

Dynamic Causal Modelling – in theoryB i id• Basic idea

• Neural and hemodynamic levels

• Preview: priors & inference 

Dynamic Causal Modelling – in practice

14

Page 15: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

DCM: the basics

DCM allows us to look at how areas within a network interact:

Investigate functional integration & modulation of specific cortical pathwayspathways

– Temporal dependency of activity within and between areas (causality)

15

Page 16: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Temporal dependence and causal relations

Seed voxel approach, PPI etc.  Dynamic Causal Models

timeseries (neuronal activity)

16

timeseries (neuronal activity)

Page 17: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

DCM: the basics

DCM allows us to look at how areas within a network interact:

Investigate functional integration & modulation of specific cortical pathwayspathways

– Temporal dependency of activity within and between areas (causality)

– Separate neuronal activity from observed BOLD responses

17

Page 18: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

DCM: Neuronal and hemodynamic level

Cognitive system is modelled at its underlying l l l ( t di tl ibl f fMRI)neuronal level (not directly accessible for fMRI).

The modelled neuronal dynamics (z) are transformedz

The modelled neuronal dynamics (z) are transformed into area-specific BOLD signals (y) by a hemodynamic model (λ).y ( )

λThe aim of DCM is to estimate parameters at the neuronal level such that the modelled and measured BOLD signals are maximally* similar

y18

Page 19: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Neuronal model

Aim: model temporal evolution of a set of neuronal states zt

System states ztState changes are dependent on:

1 2 3

g p– the current state z– external inputs u

z1 z2 z3– its connectivity θ

),,( uzFdzC ti it t θ

Inputs ut

),,( uzFdtConnectivity parameters θ

19

Page 20: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Why are DCM parameters rate constants?

Integration of a 1st order linear differential equation gives an exponential function:

z11a

)exp()0()( 1111 taztz 1111 za

dtdz

Decay function

z1 dt

0 8

1

Decay function

0.4

0.6

0.8

)0(5.0 1zIf z1z1 is ‐0.10 s‐1 this means that, per unit time, the decrease in activity in z corresponds to 10% of

‐0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.2

activity in z1 corresponds to 10% of the current activity in z1

20

0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s/2ln

Page 21: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Connectivity Z1Z2

Z Z

Strong

ZZ

Weak

Z1 Z2 Z2Z1

High

n Z 2

High

tivity

 in

Z

Act Z1 Z2Z1 Z2

Low

Page 22: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Neurodynamics: 2 nodes with input

14 1;4 2111 aa

z 11a

2;4 2111 aa

z1

2;4 2111 aa21a

z2

22a22a2;8 2111 aa

22

Page 23: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Neurodynamics: 2 nodes with input

u1

activity in z2 is coupled to z1 via u2

1

u1 p 1coefficient a21

z1z1

z2

21a

2z2

1111111

00

uc

zz

aaa

zz

1111111

zazazuczaz

23

222212 0zaaz 2221212 zazaz

Page 24: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Neurodynamics: 2 nodes with input

activity in z2 is coupled to z1 via u1

CAp 1

coefficient a21

z1 CACuAzz

,

CA,21a

z2

1111111

zazazuczaz

1

111111

00

uc

zz

aaa

zz

24

2221212 zazaz 222212 0zaaz

Page 25: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Neurodynamics: modulatory input

u2

u1Modulatory input u2 activity u1 u2

z

through coefficient a21u2 z1 z1

z2

21a

z2z2

21111111

)( auba

uczaz

25

2221221212 )( zazubaz

Page 26: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Neurodynamics: modulatory input

Modulatory input u2 activity u1

through coefficient a21u2 z1

0000 uczzaz21a

z2

2

111

2

1221

22

1

2221

11

2

1

000

0000

uuc

zz

bu

zz

aaa

zz

21111111

)( auba

uczaz

26

2221221212 )( zazubaz

Page 27: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Neurodynamics: bilinear neural state equation

CBAm

j )(

CBA

CuzBuAzj

jj

,,1

)(

ti itstate externalstate direct modulation of

,,

connectivitychanges inputsvector inputs

connectivity

mm

jn

j

j

n ucczbbu

aaz

111111111111

mnmnnj j

nnj

n

j

nnnn ucczbbaaz 11

11

27

n regions m direct inputsm mod inputs

Page 28: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

DCM: Neuronal and hemodynamic level

Cognitive system is modelled at its underlying l l l ( t di tl ibl f fMRI)neuronal level (not directly accessible for fMRI).

The modelled neuronal dynamics (z) are transformedz

The modelled neuronal dynamics (z) are transformed into area-specific BOLD signals (y) by a hemodynamic model (λ).y ( )

λ

y28

Page 29: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Hemodynamics: reciprocal connections

h(u,θ) represents the modelled BOLD response (balloon model) to the neural dynamics

24BOLD

(without noise)h

u1

u2

0 20 40 60

0( t out o se)h1

2 z1

024

BOLD

(without noise)h2z

2

0 20 40 60

0

secondsZ: neuronal activityO

2

29

H: BOLD response

Page 30: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

The hemodynamic “Balloon” model

,)( signal BOLD

qvty

3 hemodynamicparameters volumechanges in dHbchanges in

Important for model fitti b t f i t t

volumechanges in dHbchanges in

fitting, but of no interest

Computed separately

tionflow induc

Computed separately for each area region-specific HRFs ry signalvasodilato

)(tz

nputneuronal i

30

Friston et al. 2000, NeuroImageStephan et al. 2007, NeuroImage

)(tz

Page 31: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

DCM for fMRI: the full picture

yBOLDyyy

hemodynamicmodelλ

activityz2(t) activity

zactivityz1(t)

2 yz3(t)

Neuronal states

j )( )(

integrationmodulatoryinput u2(t)

endogenous 

Neural state equation CuzBuAz jj )( )(

zA

drivinginput u1(t)

input u2(t)

t

connectivity

modulation ofconnectivity z

zu

B

zA

j

j

)(

input u1(t)

31direct inputs

connectivity

uzC

zu j

t

Stephan & Friston (2007), Handbook of Brain Connectivity

Page 32: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Modelled and measured BOLD signal

u1

y1u2 z1

RecapThe aim of DCM is to estimate

l t {A B C}

y2z

‐ neural parameters {A, B, C}‐ hemodynamic parameters such that theMODELLED andy2

2

such that the MODELLED and MEASURED BOLD signals are maximally similar.

32

Page 33: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Bayesian statistics: Priors in DCM

Express our prior knowledge or “belief” about parameters of the model

posterior    likelihood  ∙  prior Parameters governing

Hemodynamics in a single region

d t i k l d

Hemodynamics in a single region

Neuronal interactions

new data prior knowledgeConstraints (priors) on

Hemodynamic parameters Hemodynamic parameters‐ Empirical 

Self connections‐ principled

Other connectionsh i k

33

‐ shrinkage

Page 34: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Inference about DCM parameters

Bayesian single subject analysis Classical frequentist test across Ss

The model parameters are distributions that have a mean

d i C

Test summary statistic: mean ηθ|y

– One-sample t-test: Parameter > ηθ|y and covariance Cθ|y.

– Use of the cumulative normal distribution to test the

p0?

– Paired t-test:parameter 1 > parameter 2?distribution to test the

probability that a certain parameter is above a chosen threshold γ:

parameter 1 > parameter 2?

threshold γ:

η Bayesian model averaging ηθ|yy g g

34

Page 35: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Overview

Brain Connectivity: types & definitions

Dynamic Causal Modelling – in theory

Dynamic Causal Modelling – in practice

– Design of experiments and models– Simulated data– Connectivity in synesthesia

35

Page 36: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Planning a DCM compatible study

Suitable experimental design: any design that is suitable for a GLM  preferably multi‐factorial (e.g. 2 x 2) f t th t i th d i i ( ) i t e.g. one factor that varies the driving (sensory) input and one factor that varies the contextual input

Hypothesis and model: Define specific a priori hypothesis Define specific a priori hypothesis Define model space: What are the alternative models? Define criteria for inference Which parameters are relevant to test your hypothesis?

If you want to verify that intended model is suitable to test this hypothesis, use l

36

simulations

Page 37: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Multifactorial design: explaining interactions with DCM

Task factorTask A Task B

Stim2/Task A

Stim1/Task ATask A Task B

Stim

1s

fact

or

A1 B1z1 z2 GLM

Stim

2St

imul

us

A2 B2

1 2

Stim 1/ Stim 2/SS Stim 1/Task B

Stim 2/Task B

z z

Stim1

DCMLet’s assume that an SPM analysis shows a main effect of stimulus in z1 z1 z2

Stim2

DCMand a stimulus task interaction in z2.

How do we model this using DCM?

37

Task A Task B

Page 38: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

S1       S2       S1     S2 S1       S2       S1     S2Simulation

z1

Stim1 ++++

z1 z2

Stim2 +++++

+++

Task A Task B

z22

38

Page 39: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

An Example: Brain Connectivity in Synesthesia

Specific sensory stimuli lead to unusual, additional experiences Grapheme‐color synesthesia: color Involuntary, automatic; stable over time, prevalence ~4%

i l b i i b b i Potential cause: aberrant cross‐activation between brain areas grapheme encoding area color area V4color area V4  superior parietal lobule (SPL)

Hubbard 2007Hubbard, 2007

Can changes in effective connectivity explain synesthesia activity in V4?

39Van Leeuwen et al. 2011 JNeurosci

Page 40: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

An Example: Brain Connectivity in Synesthesia

Bottom-up Top-down(Ramachandran & Hubbard, 2001) (Grossenbacher & Lovelace, 2001)( )

AssociatorsProjectors

ABC ABC

ABC

40

Effective connectivity determines conscious experiences…!

Page 41: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Summary: DCM Roadmap

Neuronal d i Haemodynamicsdynamics ae ody a cs

State space Model

Posterior densities of parameters

Priorsf p

Bayesian Model inversion 

fMRI data Model comparison

41

Page 42: Effective Connectivity the basics of Causal Modelling · Stephan & Friston (2007), Handbook of Brain Connectivity. Modelled and measured BOLD signal u1 y 1 u2 z 1 Recap The aim of

Some useful references

• 10 Simple Rules for DCM (2010). Stephan et al. NeuroImage 52.

• The first DCM paper: Dynamic Causal Modelling (2003).  Friston et al. NeuroImage 19:1273‐1302. 

• Physiological validation of DCM for fMRI: Identifying neural drivers with functional MRI: an electrophysiological validation (2008) David et al PLoS Biol 6 2683–2697electrophysiological validation (2008). David et al. PLoS Biol. 6 2683 2697

• Hemodynamic model: Comparing hemodynamic models with DCM (2007). Stephan et al. NeuroImage 38:387‐401

• Nonlinear DCM:Nonlinear Dynamic Causal Models for FMRI (2008). Stephan et al. NeuroImage 42:649‐662

• Two‐state DCM: Dynamic causal modelling for fMRI: A two‐state model (2008). Marreiros et al. NeuroImage 39:269‐278

• Stochastic DCM: Generalised filtering and stochastic DCM for fMRI (2011) Li et al• Stochastic DCM: Generalised filtering and stochastic DCM for fMRI (2011). Li et al. NeuroImage 58:442‐457.

• Bayesian model comparison: Comparing families of dynamic causal models (2010). Penny et 

42

y p p g y ( ) yal. PLoS Comput Biol. 6(3):e1000709.