EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl /...

44
D-Ri37 129 COUPLING BETWEEN TWO ARBITRARILY ORIENTED DIPOLES i/i THROUGH MULTILAYERED SHIELDS(U) ILLINOIS UNIV AT URBANA ELECTROMAGNETICS LAB R YANG ET AL- JUN 83 UIEM-83-7 UNCLASSIFIED N00014-81-K-8245 F/G 20/3 NL IEEEEEEEEEll EEEEEEEEEEEEEE IEEEEEIIEEEEE

Transcript of EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl /...

Page 1: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

D-Ri37 129 COUPLING BETWEEN TWO ARBITRARILY ORIENTED DIPOLES i/iTHROUGH MULTILAYERED SHIELDS(U) ILLINOIS UNIV AT URBANAELECTROMAGNETICS LAB R YANG ET AL- JUN 83 UIEM-83-7

UNCLASSIFIED N00014-81-K-8245 F/G 20/3 NLIEEEEEEEEEllEEEEEEEEEEEEEE

IEEEEEIIEEEEE

Page 2: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

La w e a C -

Lg~~ . L

~J,-

- 32 .

IM -

IIIIIN IlUI IIL*8.-111111-25 L6j____ 11

MICROCOPY RESOLUTION TEST CHARTNATIONAL BUREAU OF STANDARDS-1963-A

I ,,,,.. , ., o.,-- a-- '=.o;.- ,;, '.,".,* 'o,' ." y .. ',',. '., . .., . '.,' .. ,,. . .. . . . , . .. °

Page 3: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

oV./

ELECTROMAGNETICS LABORATORYTECHNICAL REPORT NO. 83-7

June 1983

ADA1 37129

COUPLING BETWEEN TWO ARBITRARILY ORIENTED

DIPOLES THROUGH IMULTILAYERED SHIELDS

R. YANG

R. MITTRA

T , . '; .~ ., -

N AVAL , 4,.::., , ... O?

0,

,==_ for public release and 301,3; itsd~ triS ution is unlimited.

SUPPORTED BYELECTROMGNET I Cs LABORATORY CONTRACT NO. NO0014-81- K- 0245DEPARTMENT OF ELECTRICAL ENGINEERING PHYSICAL SCIENCES DIVISION

ENGINEERI1II2.MENT STATION OFFICE OF NAVAL RESEARCHUNIVERSITY Il/II URBANA-CHAMPAIGN DEPARTMENT OF THE NAVYSURBANA, ILLINI ? ARLINGTON, VIRGINIA 22217

.-.,JANO 2 3 84

::"~ ~ ~ ~ ~ ~ ~~ ~~~Ti doumn ha bee approved,, , ." -;','',''.,-.'''""-,J.,..', "" "- ". ". .. . . .

Page 4: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

SECURITY CLASSIFICATION OF TH4IS PAGE (wOn Date Entered,

REPORT DOCUMENTATION PAGE R I INSTRCTIONSBEFORE COMPLETING FORM

1. REORT NMBER2. GOVT ACCESSION NO13. RECIPIENT'S CATALOG NUMBER

C TITLE (and Subi,.) S. TYPE OF REPORT & PERIOD :ovEREOCOUPLING BETWEEN TWO ARBITRARILY ORIENTED DIPOLESTHROUGH MULTILAYERED SHIELDS Technical

7. AUITHOR(aj S. CONTRACT OR GRANT NUMUER(I)

R. Yang and R. Mittra N00014-81-K-0245

S. PERFORMING ORGANIZATION NAME AND AOORESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA & WORK UNIT NUMBERS

Electromagnetics LaboratoryDepartment of Electrical EngineeringUniversity of Illinois, Urbana- T11inniq 61l01It. CONTROLLING OFFICE NAME AND AOORESS IL REPORT OATEOffice of Naval Research June 1983Department of the Navy 13. NUMBER OF PAGES

Arlington, Virginia 22217 4014. MONITORING AGENCY NAME A AOORESS(II dilffmt frain Controiling Office) iS. SECURITY CLASS. (o1 this report)

I UnclassifiedISe. 0ECLASSIFICATION. OOWNGRADING

SCHEDULE

16. OISTRIGUTION STATEMENT eo thJa Report)

Distribution Unlimited

17. OISTRIUTION STATEMENT 'at the abstract entred in Block 20, it different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY *OROS (Co ainu. an reverse side it neceaary aid identify by block number)

Multilayered Shields; Plane-Wave Spectral Representation; Coupling;Arbitrarily Oriented Dipoles; Transformed Matrices

20.5ASSTRACT MCrtime an ,etver* tide it neceeary and identify by block number)

An analysis of the electromagnetic coupling between two arbitrarily orienteddipoles through planar multilayered shields is made. This method of approachis based on the plane-wave spectral representation of radiation fields andthe use of transformation matrices for multilayered media. Numerical resultsare found to be in good agreement with the experimental data obtained in thefrequency range from 10 kHz to 1 MHz.

DO !,AN' 1473 ED:,--ON O 6 'JS S 7 11SOLE- UNCLASSIFIEDE C .,. I:ml

" .ASSIVC, ATION -1"4i$ P AaE-wh*" Jdea Zmrt. eq,)

? " "-.r........... "......... ...... "..... ..

. . . .. . . . . . . %

0 ... . .

Page 5: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

UILU-ENG-83-2546

Electromagnetics Laboratory Report No. 83-7

COUPLING BETWEEN TWO ARBITRARILY ORIENTED DIPOLES THROUGH KULTILAYERED SHIELDS

by

R. Yang*R. Mittra

Electromagnetics LaboratoryDepartment of Electrical Engineering

University of Illinois at Urbana-ChampaignUrbana, Illinois 61801

*On leave from

Xian Jiaolong UniversityXian, Shaanxi Province

The People's Republic of China

Technical Report

copy

June 1983 .. ........

Supported by

Contract No. N00014-81-K-0245Physical Sciences DivisionOffice of Naval ResearchDepartment of the Navy

Arlington, Virginia 22217

* . - . .. . . ... . ... . . . .. . . ... . . . . . .. . .. , . . . • .. .... . - . . - . . . .

Page 6: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

ABSTRACT

An analysis of the electromagnetic coupling between two arbitrarily

oriented dipoles through planar multilayered shields is made. This method of

approach is based on the plane-wave spectral representation of radiation fields [1]

and the use of transformation matrices for multilayered media. Numerical

results are found to be in good agreement with the experiuntal data obtained in

the frequency range from 10 kHz to 1 MHz.

t .

j , " • .,p • •, • • ' .* / r q, . .• °

•" °° -. • . " . . . •-. .- o . - - "•. .

Page 7: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

If.TABLE OF CONTENTS

Page

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..3

2. TRANSFORMATION MATRIX [TI FOR PLANE WAVES. . . . . . . . . . . . . . . 2

3. SPECTRAL REPRESENTATION OF THE RADIATION FIELDS . . . . . . . . . . . . 11

4. NUMERICAL COMPUTATION . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1. Collinear Magnetic Dipoles (or Small Coaxial Loops) . . . . . . . 154.2. Collinear Electric Dipole . . . . . . . . * . . . . . . . . . . . 22

5. NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . .. 28

APPENDIX I: FIELD EQUATIONS . .................... .29

APPENDIX 2: COORDINATE TRANSFORMATION. . . . . . . . . . . . . . . . 32

REFERENCES. . . . . . . . . . . . . .. . . . . . .. . . . . 35

iv

* . - . .-.. . . . . .

.....' ,e , . .- • - .. ' . .. . . ., . - " ." . . .. .. -* . " " " " ' .' ' ' ' ' ' ' ' ' ' ' ' ' ...- .' ' " ' ." .2 " . , , " i -" ..-2 . 2 " . i " " " .,C . ... , ,. " . , -. ... " * ,# 0.0 .,.% ...... ' '.'..... .. . .. ..- .. ...... •. .._.. ..... . . . .. .'

Page 8: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

LIST OF FIGURES

Figure Page

1. The geometry of propagation of the perpendicular (a)and parallel (b) components. ................. 3

2. Multilayered media ...................... 9

3. Two coaxial loops separated by a shield. . . . . . . . . . . . 16

4. Contour transformation .. .................. 20

5 Two coaxial loops separated by a double copper shield. . .*. . 23

6. Theoretical and experimental results for electric dipoles,plane wave and magnetic dipoles. . . . . . . . . . . . . . . . 26

7. The propagation direction of each of the components radiatedby the dipole. . . . . . . . . . . . . . . . . . . . . . . . . 27

A.I. Contour for z > z' . . . . . .. . . ... . . . . . . .. 31

A.2. Contour for z < z' . . . . . . . . . 0 0 . . . . . . . . 31

A.3. Coordinate transformation. o o . . ... . . . . . . . o 33

Uv

I% %

~~~~~~~~. . . . . . . . . -o.... .. %%.... •. .... -..... . . ..... . . .. . ..

Page 9: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

1. INTRODUCTION

It is well-known that an arbitrary field can be represented in terms of its

plane-wave spectral representation. In this paper, we employ this represen-

tation to express the incident and scattered fields from multilayered media as

follows

E(x,y,z) - ff ff(a,S) ej( ax+ sy + yz) dado (1)

H(xy,z) - ff ff(ct,S) eJ(ax+ oyy z) dodo (2)

where y - a - , k - w/p- and - on top indicates Fourier transform. For

a plane wave that is incident on the boundary between two media from an

arbitrary direction, it is possible to find a matrix relationship between the

fields in the two regions separated by the boundary. The matrix may be termed

the transformation matrix and will be very useful for our analysis. In order to

simplify the representation of the transformation matrix, it is useful to

resolve the incident wave into two components, one parallel to the plane of

incidence, and the other perpendicular to the same. These two components will

be denoted by subscripts (I - parallel, i - perpendicular), propagate indepen-

dently, and remain uncoupled throughout the processes of reflection and

transmission at the interface between dissimilar media. Hence, the transfor-

mation matrix for the fields expressed in terms of the parallel and perpen-

dicular components (to the plane of incidence) becomes diagonal.

7. A.

Page 10: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

2. TRANSFORMATION MATRIX [T] FOR PLANE WAVES

In this section, we first derive the transformation matrix for a single

interface between two dissimilar media. The extension to the multilayered case

is considered later. Let us define two reference planes that are parallel to

the boundary at Z - 0, namely, plane 1 and plane 2, as shown in Fig. 1. The1, an ie l2 2G

waves E and E are at plane 1, and E and E are at plane 2. The G sign

indicates waves propagating in the +z-direction, whereas the e sign indicates

waves propagating in the opposite direction.

Next we resolve the incident electric field of the incident wave into the

parallel and perpendicular components. Figures la and lb illustrate the

geometry of propagation of the perpendicular and parallel components, respec-

tively. The boundary condition that must be satisfied on the interface between

the two dissimilar media is that the tangential components of the fields E and H

be continuous. Enforcing these conditions we get

E* Jr Ed2 e -e - r~d d2 E- j r2d2 jr 2-H eJrd 1 + le e 2 c +d2 e ca sr d 3e 2

-H cos + He cose 1 2 H e- j r 2d 2 Cos

(4)

where d and d2 are distances of the terminal planes from the interface, and

01 and 82 are the angles between the directions of propagation and the normals

of the interface, as shown in Fig. 1. Therefore, we have

" (2 2 82

Cos 1, - (5)

Sq/k _> 2 _2

Cos 2 2 (6)rw2 k1 r72y

2

%5S* ...- . . . . . . . . . . .

% . . . ~ 5. . . . . .. . . . . . . . .. . . . . . . ..o.. . . . . . . .. . . . . . . . . . . . . . . . .

Page 11: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

r, M M-T T- V 11 177 7-1- 7; --- :7 T7

HII

%J II x I

'IH'

HII

(b)

Fiur ..Th eoctyofprpgaio f heprpndcla ()an prlll b

componen20

Page 12: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

Note that the phase factor ejkr is assumed here. Rewriting Eq. (4) and using

H - /'eTP E, we obtain

( 1- (e jr 1 d1 - Ele Jrld 1) cos 81 (E e r2 - E ej r 2d 2) Cos 82

(7)

Multiplying Eq. (3) by V'i/ 1 Cos 1) and subtracting from Eq. (7), we have

1i J 1 E 2 - j r2d2( 22E1 e _ Cos 8 - e E Cos 81 + - CB

+ E er2d2 cos 81 - cos 82) (8)

Similarly, multiplying Eq. (3) by cos 01) and subtracting from Eq. (7),

we have

.0 9 -r e -r d ( E ,2E1 erd 1 1 cos 81 E20 e~ 2 2)Cs6 o1J 2)11

+oE e - cos 81 - .- cos 02)

From Eqs. (8) and (9), we obtain

El isi1 1

[T] (10)E I E i

VLEI iT EEJwhere

.14

4

'~~~~~~~~~~~.°. .... .. . .. ...... ..............".,,,, ,'-"- ,, , "." . .".." - , , - . . " . ' . .-. . . . - . .. . . • . . .

Page 13: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

e- j 2 d2-j r 1d 1 2eo (7 j r 2d 2- j r d 1

1 2 21

E[TI J.

C -cCo - U 1 211~2~ -jr d +jr d1 -r cas +j/ Ul • /W2 -Jr~2+Jldle~r 2d2+irldl

2 2-ae 2 1-cas2e1 12 Cos aI 2/ - Cos I .

1E 1

(11)

E

The matrix [T] is termed a transformation matrix for the perpendicular com-

ponents of the electric field.

In a similar manner, we can derive the transformation matrix for the

parallel components of the electric fields, which is given by

[T] (12)

where

:5:

.

S°,

4 ..

-4.." , , "- , -.- - -42..,' ' " -"-"' - -" -""'"* . """"-7 . . . . ''.,. '''',...".'" - .•. " ". .'

4" ' ' 'h J - , '- ,, , ,r . , , ,'% " ,% % ' - % . - ...- -. '.. ,.. ', '' ..

' '. .... . .

Page 14: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

/2 Cos 81//Ij Co -2 cos d o 6

2- 1 1 T7---114......* e. j-- r- 2 d -

.4 l

2 cos = 2 cose , cose, cos d17 c /2 E

2 c e2 -jr 2d2 + j r d1 d 1 2 Cos _ _jr_2_d2_

jr2d2-ir d1

/ Cos 0 U cos8

(13)

E

: These matrices [T] Iand [T] Iare used to calculate the coupling between two

f magnetic dipoles. For the coupling between two electric dipoles, it is

necessary to find the transformation matrices for the magnetic field, namely,a H

I and [T] . It is evident that Fig. l(a) also describes the propagation for

-cs 1 2-oe Jthe parallel components of the magnetic fields, and Fig. l(b) the perpendicularHE H

co Theseematricesh[Tiaandt[T]f aredusedith calculatend he couplin beteen two3

neceSsardfl to findtha the transformation matrices for magnetic ed aey

H H

-; = T] (14)

'"TI adJ . i vdnJhtFg ()as ecie h rpgto oH, . 1 1 H2

* %*

cS- o Ag

4- r (S

'ai sntdfiutt hwta hetasomto arcsfrmgei

. . - . . - . - . - . . " - . - . . . . . - . . - . • . . . - . . - . . . . . . - . . - . " .,-m .% - .- ' . - . - .- .. - ., - ,, .- .• . .- - - - ... - ---: -, - .-' -" -'field-s.-< , -- are given.- by". . , .--' "' :'- , .-- ' .i . - ' .i.-- . 5 .' - - " -. '. .4 -. .J .; . - - .- 55 . - - .. . , .. ., ".-'" " " " H"i " :" " " " ' ' "'"' ": ' '" ' " '

Page 15: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

where

Sc /2 - cose cos d- cos-1 22_2 -Jr2 d 2 -Jrldl / 1- Jr 2d 2-jrld 1

e ,e

2 cos 2 cos 1

H[TI -

i2Cos I- Cos Cosa1 + 2 Cos 2

-e8 -cs 2 £ 1 £ 2Se-j r2 d2+j r1 d I ejr2d2 j I

2 Cos 2 2 Cos jd

(16)

and

2 It£I cosc 2 - i- c 2

£2 -j r2d2-j r d cos cos ejr 2d2-jr d

2 Cos 1 2 1- Cos1

H(T]

I

cos o1- cos 82 - cos + - cose 2

2 e-j r2 d2 Jr+j r d £1 2 jr d2+jr d

71 e1

2 - cose1 2 cos91

H H

The matrices [TI and [TI can be identified as the transformation matrices

1 3for the perpendicular and the parallel components of the magnetic fields,

respectively.

7

. . . .. . . . .. ... .- - - - - - - - -

Page 16: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

FIN. .. . . . . . . . . . . .

Having derived the matrices for a single interface between t dissimilar

media, we now proceed to generalize the analysis for the case of multilayered

media. Suppose we have n different media and (n - 1) boundaries as shown in

Fig. 2. From the preceding results, we have

W ] = [T]2,3

W(i- = [TI 2 i

W .

n-1, = (Tnl,nn9

where W stands for the waves propagating in the +z-direction in the

i t h medium, and W stands for the waves propagating in the -z-direction in the

i t h medium, i.e.,

W E " io ,E H , or H i - 1, 2, 3, n

IG I I iG

W ie E i, E, H i, or Hie i - 1, 2, 3, . n

We obtain the following results:

= 1- [ 4 r , n .n ( 1 8 )

.,,, 8

Page 17: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

Eni*L- EnS

Wie moll W2 jGe wie W (n-oe Wn

Figure 2. Multilayered media.

Page 18: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

where

[T, n [TIl, 2 [T]2, 3 ... [T]n-l, n (19)

The matrix [T]I can be termed the transformation matrix for the N-layer1 ,n

medium.

It is obvious that the transformation matrices only depend on the direc-

tions of the waves, the constitutive parameters of the media, and the locations

of the terminal planes. For the lossy medium, all of the above formulas are

still applicable, provided we replace e by (e' + je").

10

1t %1 1tzI %-

Page 19: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

Rut- C. r - r%eN

3. SPECTRAL REPRESENTATION OF THE RADIATION FIELDS

The fields due to a z-oriented electric dipole located at (x',y',z') can be

derived from a z-oriented electric vector potential Az , which satisfies the

equation

72 A + k2 A - -Idit (x - x') 6(y - y') 6(z - z') (20)Z Z

* where Idt is the dipole moment of the electric dipole. Equation (20) can be

solved via the Fourier transform technique to yield (see Appendix I)

(xyz) fId e j a(x-x')+B(y-y')+Y(z-z')J dad (21)z 2 /k _a2 _ 2A~(x~~z - - . e ada(1

From Maxwell's equation we have

H -Az E 1 gHX A z E=

-y xj we 3z ax

3A I 2AH -zE (22)y ax y jwe 3z3y

1 2A

E -j wU~A + --

Zz z j we az2

Therefore, the various field components for a z-oriented electric dipole are

given as follows

11

Page 20: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

Idt -L---- Jbx(x-x')+(y-y')+Ylz-zI]dl

ExM dlf - a J[axx 2+ j(-x' )+ z-')y - J dda B 23

EyMIdl f~ a' J [a(x-x' )+ O(y-y')+Ylz-z'I dci (23)X 8w 2 _ w

E - A&7-(a i[ + 2 1(x-x'+y' )+Y~zzI Zd Z

8w 2 _00 2 a2 2

where

Similarly, we can derive the various field components for an X-oriented

electric dipole as follows

H -d f -e ' c(x-x' )+O(y-y I)+y I Z-z' d ad 0

8w 2-

H0 -(k 28

Ex -( -d f) ej[I (x-x')+ S(Y-Y')+YI Z-Z dI d i8w 2 wwV2_a 2(24)

EyaIdl f' g ej Ia(x-x')+s(y-y' )+YIz-z'I I dodo8w-2Ern 2--

E d- ( {f-:2 eJ 1 (x-x')+ O(Y-Y')+Y z-z'8W -

12

Page 21: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

From duality, we know that

7 - Id +kd-+ kdg I+ Idt + C (25)

where kdX is the dipole moment of the magnetic dipole. Consequently, the

various field components for the magnetic dipole can be obtained directly from

those of the electric dipole upon application of the duality principle.

The various field components for the z-oriented magnetic dipole are

kdt f f - 2 eJ [a(x-x')+$(Y-y')+Ylz-z'tI d ad

x 8 w 2 -

E kdg X f e ifa(x-x')+O(Y-Y')+Ylz-z'l] duadSy 8 _. f ' '2 _ m2 S2

ux ~kdz -m yf e 3 [ Q(x-x' )+S(y-y' )+Yjz-z'II duds (26)

8W d

H .!d1 f-S eJ [a(x-x')+B(y-y')+ylz-z' lj ddi

y 8w - -

-'Z 8w- (pk2 _a2 02

Likewise, the components for the x-oriented magnetic dipole are given by

13

%~ ~~~ % ~ S*.--. ., '-"..... .. ... .-.• 5 - . .- . -.. ,.. . .- . 5,. .5.. . . .... . *. . . . .' . 5

Page 22: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

E edtJ(c(x-x')+$(y-y')+Yiz-zf 11 adZ 8 w C2 M2

x kdXt f d -J (k 2 a ~2 eja(xx' )+S(Y-Y')+y Z-Z' dII (7

H - jtcz$- e (x-x' )+ S(y-Y')+Y z-z' d cB

-Z kdX f 7ZJ-t ej Ia(x-x')+$(Y-Y')+Ylz-z' 11 dodB2 8w 2 wu.

414

Page 23: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

4. NUMERICAL COMPUTATION

4.1. Collinear Magnetic Dipoles (or Small Coaxial Loops)

Suppose we have two z-oriented collinear magnetic dipoles separated by a

shield. Loop I is a transmitting antenna placed at the origin of Cartesian

coordinates (0,0,0), whereas Loop 2 is a receiving antenna at the point

(0,0,z ), as shown in Figure 3.

Letting the terminal planes at z - 0 and z = z, respectively, the incident

electric fields E1x, E1 for the magnetic dipole at the plane I are,x y

E IO(x,y,0) _ Ld fe =+y dad8X 8w2

(28)kd. __ __ _ ej (o c-I)

4E 19(x'y,0) -W f ae(LB)dd8wi

From the matrix Eq. (A.12) in Appendix 2, we obtain

EiiO 1L2 + S ' /2+S 'l

(29)

_-l _ 2 2 ,

k/'T+ ' l + :

and

4'.'E0(x~y,O) _ kdX So a/2-2 + 122 e(WC+lBY) dad a

8 2 - _f 2 _ 1

(30)

E (x,y,O) - 0

This result shows that the direction of every incident electric field at plane 1

is always perpendicular to its plane of incidence, because the electric field of

15

'li _, .e: ,-'li.'i" .. '-,..''..'r..'.":.. . . . . ." """ " " "' " ' . . •

Page 24: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

x I

7I

Loop I Loop 20zZo

plane I plane 2

.Figure 3. Two coaxial loops separated by a shield.

lhb

I," 8~~,5~ *. * *q%.'' ' , *, N sv -- ,. , .. -... v .. . .. . v - '" .o' -, , .,",.v-," " --' "--- .7---.'-7 '.-. ..

Page 25: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

the z-oriented magnetic dipole in the cylindrical coordinates (p,O,z) has the

one #-component.

Let

W E19-9 i (31)

Finally,

11El E (32)

E EL ER

where T1 is the first element of the matrix [T] which is [T] L-TI . The1ELi i

matrix [T] is the transformation matrix for tee left boundary, whereasER I

the [T]I is the one for the right.ITherefore, one may obtain the field at plane 2

E 2(x,Yz 0 ) kd _ eJ ( ° + Oy ) dodo (33)TI -) - 8-2

In order to find the magnetic fields received by loop 2, it is necessary to

transform the E. into the components E and E2 * From the matrix Eq. (A.13)±x y

in Appendix 2, we obtain

xi2 E,7 ~El

(AM)

and

17

', * ',,;-, ., " ,-''.,,'-:'.:',:-, -;_.:-"-. ,,-."-,""."'" - -"-'.-;-.'- - " . , .. ,'-,--: ," :- -,',,." , _," "- ".-'2"--..".. "- ,'e .'-.--r .-

Page 26: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

-T77-1 T 7 7... 7 '-.- 74

'o

Ex39(xYzo kdt -B ejCx+ lBy) dodx 0 2 ff e €d2 2

TII ---

(34)

E 2E(xyZ0 kdX ff a e ( ° x + BY) dcdy 0 8w 2 _ww2_' )

It is obvious that the z-oriented magnetic dipole placed at the z-axis can

only couple the z-component of the magnetic field. From Maxwell's equation we

have

Hz - - .-. ] (35)

and

_2 2)

H (xy Z) . 1 -(ff e j ( a " ) dodo (36)

In order to evaluate this integral, let us make the following

*substitutions [2]:

(: - ICos X x- P Cos(37)

- sin y p sin

E

It is worth noting that the first element T of the matrix [T] is only a func-I

tion of X and independent of , because the factors contained in the matrix

become

8 2_ a2 2 2_ 2CosC kk

(38)

Hence, one can separate the above double integral and obtain

18

• .. .. . .. -

Page 27: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

H Cos ) wH (p, *,z O) "j -f Ad% A eiPdOSz 0 2 f 0

8w ciii 0 T1

- 1w f - 3 1 o(pA) dA (39)8wu 0 V

Making another substitution

X - sin C (40)

we have

Z '0 8ww (p~kdz -2wk 3 sin 3 C o sin ) d(H Z(0,0,z 0) - f • k i )d (41)

1c TL

where c is a contour in the complex C-plane, as specified by the transformation

A - k sin C. In this case, the magnetic dipole is placed in the free space, so

k is real. Let k - k'. Then

A - A' + JA" - k' [sin C' chc" + j cos C' shC"] (42)

It is easy to show that the mapping of Eq. (34) transforms the quadrants of the

A-plane into parallel strips of width w/2 radians. The path of the integrands

in Eq. (39), that runs from A - 0 to A - +- in the right-half plane, is now

transformed into the path c, as shown in Fig. 4.

4*1

4

* . .. a'. .'- . . ... ,-. - . '. . - . .... . -.-.. .•. " • .

Page 28: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

X-plane t-piane

I 7II I

I III

I I

II C -

.c

-? I I

Figure 4. Contour transformation.

42

9 20-p . . . . .-.. . -.. 1._.

Page 29: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

Finally, we have

-k 3kd) f sin 3 d;' • Jo(kpsin i') d1'H z(P'O'z0) =4wwp 0 10(pi ;

TL (cos )

f ch3 " J0(kp chC") d ") (43)

T 1 1(sh ")

The magnetic field received from the z-oriented magnetic dipole placed

along the z-axis is

-k 3 kdit 2 sin3 d ' - ch3 "Hz (0,0,z 0 ) 2n-p f d - f 4 dC" (44)

0 i O IT1 -(CosJ T (sh")

If the shield is removed, it becomes a free space. From Eqs. (26), the com-

ponent of the magnetic field on plane 2 is obtained

H (xYz kd f -(a 2) eJ(a ) ejdi-2- z O dcd8 (45)HzO(, 0Z) -'-,- . _0 wwp A /2 _a2 82

Using the same substitutions in Eqs. (37) and (40), one may obtain

Fit2~d e jkz~cos

( z) -k3 kd sin3%' j (kP sin 4') e d0Z 4 u 0- ~kz0 sh ," 1

+ f ch 3 ' J 0 (kpchc") e d4" (46)

0

and r

H 0 0 2__ sin3 eJkz 0 cos d'

- f ch3% ekz0 s h " d4" (47)0

21

.~~~~~~~~~~~~~~....,... .,.......-...,......,.....,-....,............-......-.:,--... -. . -. --.-.

Page 30: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

*-.'-1777

Let us define the shielding coefficient of the shield as

Hzo(O,O,zO )i(free space)SH - 20 log (db) (48)

IHz(0,0,z0 )I (with shield)

It can be used to describe the coupling between two coaxial z-oriented small

loops separated by the shield. The large S means that the coupling is weak.

4.2. Collinear Electric Dipole

Consider two z-oriented collinear electric dipoles separated by a shield,

as shown in Fig. 5. Invoking duality (Eq. (25)), it is possible to find the z-

component of the electric field at plane 2 directly

22 3

E (pz) -k2IdX f sin3 d j (kpsin ') dC'z''0 4w2 we 0 10T 1 10 (cos '

-~ 3- ch 4 J0 (kp ch,") dC") (49)

aD T.I(ShC,)

and

k 3 Idt 2 n3

E (0,0,z2 L d d ' - dC" (50)4T 110 (Cos ')"TI (shC")

Bu 1 is the first element of the transformation matrix for the perpendicular

But T1 1

H E

component of the magnetic fields [T] in Eq. (15), instead of [T]I i

For free space, we have

22

,'*''¢ :'" i' ' ';" " " ~ " :i ...--.., . . . . . _" "" ,'-.....- -.a.. -.-. . . . .. -. a...... . . .. . . ....> . - -..- ,.. . . ...... ---- , .. . - .- ..-- .

Page 31: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

! ,

Loop 1 _Loop2

,.. Izoy IZ

I I

w-dd did-.

Figure 5. Two coaxial loops separated by a double copper shield.

.1

4

23

of" -- -".

Page 32: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

^ COS vV'-V'CT- 'r

rE (0,Oz) =-k 3 Il sin 3 e j kz0 Cos '

f ch 3 C" e k z Os h ' d (51)0

Similarly, we can define the shielding coefficient of the shield as

I Ezo(O,O,zO ) (free space)SE - 20 log E(0 )jihsel) (dB) (52)E = JE z(OO'zO ) [(with shiel1d)

It describes the coupling between two collinear electric dipoles separated by a

shield.

:V

e.

2

A N

.4' . # . ' .. ' .... ' , ,e '. ' .. ' ' ' .. ' -. ' -. '. ' .. " .. ' - ' .. " . ' .... ,. ' .. " . " - " .. . . " . "

: , .. "m- r ' , ,r4% k " - " " " f

Page 33: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

5. NUMERICAL RESULTS

We have two coaxial loops separated by a double copper shield. Let us com-

pute the shielding coefficient of this shield. The thickness of each shield is

(1/1000)"; the separation between the two shields is ds - (1/2)" or (1/8)"; and

the distances from the dipoles to the shields are d1 = d2 - 12", as shown in

Fig. 5.

The variations of the shielding coefficient with frequency for magnetic

dipoles, electric dipoles, and plane waves are shown in Fig. 6. Experimental

results for magnetic dipoles are also given. From these results, we know that

the copper shield, which has a very high electric conductivity, possesses a

higher shielding coefficient for electric dipoles.

It is worth noting that in the above calculation we have assumed that the

propagation direction of each of the components radiated by the dipole is always

perpendicular to the boundaries in the double copper shield (see Fig. 7). This

is because the electrical conductivity of copper is very high.

25

.1'%,' .G - '' .'2.;, i', ' . ,' :-- -.- ----22"1i' i i ? " i'l:" i l" ii' " .!": i . ." . ..""

... ,.9;.-. / / . ..'..i,,''' ... .::', .,. 1 '."- .. - -:. ....,. . .-. . '

Page 34: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

400- 0 T :

0 1 D"S*0Dm OS,(/2)or (I/8). 0(/I00). 01,30 2 " "

Ii'n

300---- Theoretical, (1/2)"

.m .- Theoretical. (1/13)"

*0

Electric. Dipole

200 T

my

l - 1 0-1.

X Joe x- Eherie tal, (1/2) 0Mageoetnaltic8)

.Dipolet" 0 Eperimental, (/81

Oz 02 |0-1 101 Jos 106 107

IDSl

109

F (Hz)

Figue 6. Theoetical and experimental esuls for electrtic dipoles, planewave and magnetic dipoles.

26

%,,-- -

Page 35: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

ir--. 77 7.

Figure 7. The propagation direction of each of the components radiated bythe dipole.

27

V....

Page 36: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

6. CONCLUSION

The formulas given in References i31 and (41 are only for specially

oriented dipoles, i.e., the dipoles must be perpendicular to the boundary. The

formulas are not available for arbitrarily oriented dipoles. We have already

obtained formulas for z-oriented and x-oriented dipoles. The former is perpen-

dicular to the boundary, whereas the latter is parallel. If a dipole is

oriented in an arbitrary direction to the boundary, we can always resolve the

dipole into two equivalent dipoles. One is z-oriented, and the other is x-

oriented. Therefore, the above approach can be used for arbitrarily oriented

dipoles. Furthermore, the boundary transformation matrices obtained in this

paper are also useful for the study of wave propagation in stratified media.

The method presented in this paper is simple and convenient.

28

281

* - . -- i.: ~- -

.~5 . 4]

Page 37: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

4:

APPENDIX 1

FIELD EQUATIONS

We have

V2A + kAz - -Idt S(x-x') 6(y-y') (z-z') (A.1)z

Let

wAz(x,Y,z) -= f!f Az(a,8,) e [ a (x - x')+8(y-y')+YIz -z' I1 dci 8y (A.2)

Fourier transforming Eq. (A.1) we get

(k 2 - (a2 + 02 + Y2)) X( -y) Idt

(27r)3

Therefore,

S ,) -Id£A (, ,Y) - -(2i)

3 (k 2 _ (a2 + 82 + y2))

Thus the solution of Eq. (A.1) isra

A (x,y,z) _ .dl f 7f eJ[a(x-x')+$(Y-Y')I dcddyz8w 3 -

, _ Id f eJia(x-x')+6(yy')J do fm eJY(z-z') dy8 3 - - c (k a2 _ 2 - 2 ) y2 d

(A.3)

Let k2 - a2 - 82- K2 , and K 2 - Then the second integral of

Eq. (A.3) becomes

- e(z-z' dy (A.4)

Applying the complex function theory to evaluate this integration, it is ev.dent

that the integrand eiy(z-z') has two poles y - ±K on the real axis inK2 -

29

%.' ' '. . ".-",-".-'.."..". - . . . . - "

Page 38: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

I.,

the complex y-plane. From the radiation condition, we know that only one pole

is reasonable and that

y - R(cos # + jsin *)Therefore,

leJy(z-z') I - e-R(z-z') sin ( (A.5)

Since sin * > 0 in the upper-half plane, the integrand will become negligibly

small as R increases without bound, but only if z > z'. Thus, we can take the

contour as shown in Fig. A.I. For z > z', the contour includes only one pole

(r - +K). We then obtain in the limit

% jy(z-z') er(z-z')

2 2 2 (A. J K(z-z') _ _ _ -ae a(z-Az > Z )

-leK -(z > z')

: - 0

Obviously, for z < z' the contour must be closed in the lower-half plane,

as shown in Fig. A.2. The contour includes another pole (y -K), so that

f e J Y(z-z -2wJ Res e-jr(z-z')-a K2 - y2 K2 _2

g - 7 - ' (A.7)

- i a 02 ) (z < z')

and for z > z' or z < z'

ejy(z-z') IM -C% jz-z' I z >Z'f 22 dy A I__ (A.8)

- K -y or z <z

Finally, we have

_ __ eI [ a( x-x' )+ 1(yy +,2 2. 8

A(x,y,z) - d ff ,-e dauda (A.9)8w 3 - 2 -

30

7 _ . . , - ,-j . - . .. . .. -. .- -- ' '.' '.' - "- .'- ,'- -" " " -' '- - - " -" ' " - - - " '.

Page 39: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

' C

,,,

//

Figure A.2. Contour for z > z'.

C' /

a. ', ,-. .;-,.,tg..;.. . .-.- d y•'... .. . . . . '.- .-. . . -.

Page 40: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

7 7

APPENDIX 2

COORDINATE TRANSFORMATION

Considering the coordinate transformation from the E, Ey, E coordinate

system to the system defined by the orthogonal triad consisting of the wave vec-

tor k and vectors E and E shown in Fig. A.3 , we obtain a coordinate transfor-

mation matrix

E.i.I Ex

TE [ R] i(A. 10)ky

where

sin* -cos 0[R ] "( A I )

Los *cos e, sin 0 cos 8, -sin

The final results are

*Esin* -Cos E

L cos L cos 8 , sin *cos 1

Ex sin -- E.LEx i cos8 I (A.13)

-" -cos * sin -J Cos cos E I

and

-in cos -sin

32. , '3 '.', '#' ' 't ' " " J ," "' ' ' " " ' ' • " ' -"" • " - ' - ". - - " • " ' • ' ' - "- "- ( A . '14 )

r ; :. i- r ",. '

." : -4 :" ' . 4 ." 4'- ._ 4' " ' '. , _ .",, " ±". ,. :, ': ." ," - ,_ "

Page 41: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

E- y

Fiur A.. Codiaetasfrain

*% .33

Page 42: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

C Cos * (A. 15)

sin cos LEz -cos sin 0 i

where

k.z 2_a2 2t2 /2_2

cos 6 = = sin 6 =fk k k

k-x a 1

Cos *= k = 2 _sn _ 8 (A.16)

2 _ 2 + 2 +Iki z

43

NJ

-I.'

' tI,. . " ' ' ' " ;. € . - " . . - . - . - , .- - ' . - . . , ,

'I . o ••• •

••

- "-" ". . . ...

,, .1 . •*. •% . - • . . • % •J ,,,. ,.- , : " - -_ . . "." - -. ," -". . . • •. . . ..•. . . ._. •. ?; ' • ;: :- . ,1 2 iii.

Page 43: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs

REFERENCES

[1] P.C. Clemmow, The Plane Wave Spectrum Representation in ElectromagneticFields. London: Pergamon Press, 1966.

[21 G. Tyras, Radiation and Propagation of Electromagnetic Waves. New York:Academic Press, 1969.

[3] J. R. Moser, "Low-Frequency Shielding of a Circular Loop ElectromagneticField Source," IEEE Transactions on Electromagnetic Compatibility,vol. EMC-9, no. 1, March 1967.

(41 P. R. Bannister, "Further Notes for Predicting Shielding Effectiveness forthe Plane Shield Case," IEEE Transactions on Electromagnetic Compatibility,vol. EMC-II, no. 2, May 1969.

35

Page 44: EEEEEEEEEEEEEE D-Ri37 IEEEEEEEEEll COUPLING BETWEEN … · 2014-09-27 · 1 - 2-Jr22_2 d2-Jrldl / 1- Jr 2d 2-jrld 1 e ,e 2 cos 2 cos 1 H [TI -i2 Cos I- Cos Cosa1 + 2 Cos 2-e8 -cs