EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf ·...

56
EE141 EECS 151/251A Spring 2018 Digital Design and Integrated Circuits Instructors: Nick Weaver & John Wawrzynek Lecture 12 1

Transcript of EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf ·...

Page 1: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

EECS 151/251ASpring2018DigitalDesignandIntegratedCircuitsInstructors:NickWeaver&JohnWawrzynek

Lecture 12

1

Page 2: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Wire Models

All-inclusive model Capacitance-only

2

Page 3: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Capacitance

Page 4: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Capacitance: The Parallel Plate Model

❑ Cap scaling (s – process scaling factor) ▪ Local wires

–W, L, tdi all decrease (~s) –Cap decreases linearly with feature size (~s)

▪ Global wires –W, tdi decrease (~s), L constant –Cap ~constant

❑ Permittivity is a property of the dialectric: εdi = 𝜅ε0

Dielectric

Substrate

L

W

H

tdi

Electrical-field lines

Current flow

WLt

cdi

diint

ε=

4

Page 5: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Permittivity/Dialectric Constant

❑ Low-k dielectrics used sub-130nm ▪ Carbon-doped oxide ▪ Fabs also looking at air-gaps

5

𝜅 (factor of of ε0)

Page 6: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Fringing Capacitance

❑ Fringe cap per unit length ~const (good rule of thumb 0.2fF/um)

6

W - H/2H

+

(a)

(b)

Page 7: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Fringing versus Parallel Plate

❑ Narrow, tall wires in modern processes ▪ Trying to keep resistance from increasing ▪ Comes at the expense of fringe cap

7

(from [Bakoglu89])

Page 8: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Interwire Capacitance

8

fringing parallel

Page 9: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Impact of Interwire Capacitance

9

(from [Bakoglu89])

Page 10: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Resistance

Page 11: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Wire Resistance

11

W

LH

R = ρH W

L

Sheet ResistanceRo

R1 R2

Units Ω-m

Page 12: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Interconnect Resistance

12Source: S. Naffziger, AMD, VLSI 2011

Page 13: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Impact on Delay

13Source: Applied Materials

Page 14: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Interconnect Modeling

Page 15: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

The Lumped ModelVout

VoutV incwire S

Rdriver

ClumpedDriver

VoutVout

V incwire S

Rdriver

ClumpedDriver

15

Page 16: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

The Distributed RC-lineDriver Receiverdx

r dx

c dx

r dx

c dx

16

❑ Analysis method: ▪ Break the wire up into segments of length dx ▪ Each segment resistance (r dx) ▪ Capacitance (c dx)

Page 17: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

The Distributed RC-line

2

2

V Vrc

t x∂ ∂

=∂ ∂

( ) ( )1 1i i i iC

V V V VVI c Lt r L

− +− − −∂= Δ =

∂ Δ

r dx

c dx

r dx

c dx

r dx

c dx

r dx

c dx

r dx

c dx

Vi-1 Vi Vi+1 VoutVin

IC

The diffusion equation

17

Page 18: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Intermezzo–DelayofRC-networks:

❑ Idea: Lets approximate things somewhat... ❑ But its a reasonably good approximation

❑ Time delay to fill each capacitor: ❑ Resistance to that capacitor & that

capacitor's capacitance ❑ Total time: Time to fill all capacitors ❑ Its a conservative and easy to calculate

delay estimate ❑ Will overestimate delays

18

Page 19: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Delay Model of RC Networks:

19

Page 20: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Elmore Delay Example

20

Page 21: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Elmore Delay Example❑ Assume: ▪ m2 r is 50 mΩ/□ ▪ m2 c (for a minimum-width line) is 0.2fF/um ▪ m2 minimum width is 90nm ▪ 4x inverter Rpd = 500Ω ▪ 1X inverter input capacitance is 20fF (a standard

load)

21

Page 22: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Elmore Delay Example

22

Page 23: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

BacktoWireDelay

r dx

c dx

r dx

c dx

r dx

c dx

r dx

c dx

r dx

c dx

Vi-1 Vi Vi+1 VoutVin

IC

Page 24: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Wire Model

Model the wire with N equal-length segments:

For large values of N:

24

Page 25: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

RC-Models

25

Page 26: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

CharacteristicImpedence

Page 27: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

When You Get To A Board...❑ We have to fully treat the wires as

transmission lines ❑ Which means inductance also comes

into play ❑ Modeled with "Characteristic impedance"

❑ Measured in Ωs as well❑ Propagation delay also matters even more

❑ Since we are going longer distances❑ ~150 pS/inch

❑ But we don't do the math ourselves...27

Page 28: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Why Impedance Matters...❑ Low impedance transmits energy better ❑ When you have an impedance mismatch...

❑ Energy gets reflected back... ❑ Which means noise & less efficiency

❑ Devices will specify the trace impedance needed: ❑ EG, WiFi Antenna trace: 50 Ω❑ DDR3 DRAM on Zynq:

40 Ω single, 80 Ω differential pair❑ Fatter wires -> lower impedance❑ Thinner boards -> lower impedance

❑ It ups the capacitance but that lowers the impedance because it lowers the inductance/capacitance ratio

28

Page 29: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

The Board "Stack-Up"❑ Boards are produced in layers just like

chips ❑ Signal layers with wires ❑ Plane layers with large areas of

conductor for power or ground ❑ Vias to connect between them

❑ In generating the stack-up can also find the characteristic impedance for traces

29

Page 30: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

An Example Stack-Up

30

Customer InputPart Number/ Rev : kest001/ 1PCB Size in X : 2 inches X 3 inches

Number of layers : 10 PCB Thickness :0.047 inches

Material : NP175 Outer Layer :Signal

All MicroVias shown as   are STACKED MICROVIASFinished Copper Weight

Finished Thickness

 (inches)

    SOLDER MASK     0.0005

 L­1   TOP SIGNAL     1 Oz 0.0014

    DIELECTRIC     0.0035

 L­2   PLANE     0.5 Oz 0.0007

    DIELECTRIC     0.0035

 L­3   SIGNAL     0.5 Oz 0.0007

    DIELECTRIC     0.0035

 L­4   SIGNAL     0.5 Oz 0.0007

    DIELECTRIC     0.0035

 L­5   PLANE     0.5 Oz 0.0007

    DIELECTRIC     0.0100

 L­6   PLANE     0.5 Oz 0.0007

    DIELECTRIC     0.0035

 L­7   SIGNAL     0.5 Oz 0.0007

    DIELECTRIC     0.0035

 L­8   SIGNAL     0.5 Oz 0.0007

    DIELECTRIC     0.0035

 L­9   PLANE     0.5 Oz 0.0007

    DIELECTRIC     0.0035

 L­10   BOTTOM SIGNAL     1 Oz 0.0014

    SOLDER MASK     0.0005

 Total Thickness0.0474

 (inches)

Customer Saved Impedance Results

Layer Impedance Model Impedance (ohms) Trace Width (mils) Space (mils)

Layer 1 Soldermask Coated Microstrip Single­ended 51.7 5 ­­

Layer 1 Soldermask Coated Microstrip Differential Pair 97.82 5 10

Layer 3 Stripline Single­ended 39.32 6 ­­

Layer 3 Stripline Differential Pair 82.67 4 4

Stackup Details

Number of LayersNumber of Signal Layers Number of Sequential 

 Laminations

Number of Plane Layers Maximum Number of Laser Drills Mechanical Drills

10 6 3 4 8 2

Sierra Circuits, Inc. www.protoexpress.com/hdi

HDI Stackup Planner — Detailed Report for HSP-240108 Option E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 31: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Board Return Paths...❑ On a board, it isn't just transmitting a signal...

❑ You also need a return path for the current for the ground plane

❑ In general, the return path should follow the trace ❑ So if you have a break in the ground

plane, the signal should route around the break too

❑ "Bypass capacitors": Read the data sheets ❑ Act as temporary power reservoirs which

can support specific frequency responses31

Page 32: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Seeing Some Of This In Action...❑ Board With

Routing... ❑ Areas of focus:

❑ DDR: Controlled Impedance & length matching

❑ Power & Ground planes:Low impedance,Lots of Bypassing

32

Page 33: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

DDR Constraints❑ 40Ω signal, 80Ω

differential❑ Obtained from

Xilinx datasheet ❑ 3 major groups of

signals ❑ 2 data banks:

8 data lines, differential data strobe

❑ 1 group of control & address lines

33

Page 34: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

This Routing of DDR...❑ Data-sheet's very low impedance

requirement needs fat wires & thin layers ❑ Limits routing to the internal layers:

Can't "escape" the BGA on the top ❑ Length matching

a semi-manualprocess ❑ Target of .025"

❑ Based onmicron'sdata sheet

34

Page 35: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Ground and Power❑ Ground: 2 unified

planes ❑ Only exception a

bit of isolation for the WiFi chip

❑ Power: L1: 1.0/3.3/1.5 ❑ L2:

1.5/1.8/3.3 ❑ And a crap-ton® of

bypass capacitors35

Page 36: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Gates and Wires

Page 37: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Driving an RC-line

V i n

Rs V o ut(rw,cw,L)

37

)2/(69.0 wwwsp CRCRt +=

Page 38: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

The Global Wire Problem

Challenges ❑ No further improvements to be expected after the

introduction of Copper (superconducting, optical?) ❑ Design solutions

▪ Use of fat wires ▪ Efficient chip floorplanning ▪ Insert repeaters

38

Td = 0.69(0.5RwCw +RNCin + RNCw + RwCin)

Page 39: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Reducing RC-delay Using Repeaters

39

Repeater

Page 40: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Repeaters

40

⎟⎠

⎞⎜⎝

⎛ ++++= )5.0()(69.0mcLWC

mrLWC

mcLCW

WRmt inininN

p γ

in

Nopt

p

unbufferedpwire

inNopt

rCcR

W

tt

CRrc

Lm

=

=+

=1

)(

)1(2 γ

Page 41: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Repeater Insertion

For a given technology and a given interconnect layer, there exists an optimal length of the wire segments between repeaters. The delay of these wire segments is independent of the routing layer!

in

Nopt

p

unbufferedpwire

inNopt

rCcR

W

tt

CRrc

Lm

=

=+

=1

)(

)1(2 γ

From Elmore example: rc = 0.1fs/um2, tp1 = 55ps, Lcrit = 1262um (rule of thumb ~ 0.5-1mm) 41

rct

mL

L p

optcrit 69.0

2 1== 1min,

, )1(212 p

opt

pcritp t

mt

t ⎟⎟⎠

⎞⎜⎜⎝

++==

γ

Page 42: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE14142

Importance of Repeaters

❑ In modern designs the number of repeaters increases dramatically

Source: IBM POWER processors, R. Puri et al SRC Interconnect Forum 2006

Page 43: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE14143

Wire and Gate Delay Scaling

❑ Gate delay gets better, wire delay gets worse

source: ITRS

Page 44: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Logical Effort

44

Page 45: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Question #1

❑ How to best combine logic and drive for a big capacitive load?

CL CL

45

Page 46: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Question #2

❑ All of these are “decoders” ▪ Which one is “best”?

46

Page 47: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Method to answer both of these questions

❑ Extension of buffer sizing problem

❑ Logical effort

47

Page 48: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Complex Gate Sizing

48

Page 49: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Complex Gate Sizing: NAND-2 Example

2

2

22Cgnand = 4CG = (4/3) Cginv

Cdnand = 6CD = 6γCG =2γCginv

f = CL/Cgnand = (3/4) CL/Cginv

tpNAND = kRN(Cdnand+ CL) = kRN(2γCginv+ CL) = kRNCginv (2γ + CL/Cginv) = tinv (2γ + (4/3)f)

49

Page 50: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Logical Effort

❑ Defines ease of gate to drive external capacitance ❑ Inverter has the smallest logical effort and intrinsic delay

of all static CMOS gates ❑ Logical effort LE is defined as:

▪ (Req,gateCin,gate)/(Req,invCin,inv) ▪ Easiest way to calculate (usually):

– Size gate to deliver same current as an inverter, take ratio of gate input capacitance to inverter capacitance

❑ LE increases with gate complexity

50

Page 51: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Logical Effort

Measure everything in units of tinv (divide by tinv):

p – intrinsic delay - gate parameter ≠ f(W) LE – logical effort – gate parameter ≠ f(W) f – electrical fanout = CL/Cin = f (W)

Normalize everything to an inverter: LEinv =1, pinv = γ

tpgate = tinv (p + LEf)

51

Page 52: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Delay of a Logic Gate

Gate delay:Delay = EF + p (measured in units of tinv)

effective fanout intrinsic delay

Effective fanout:EF = LE f

logical effort electrical fanout = CL/Cin

Logical effort is a function of topology, independent of sizing Effective fanout is a function of load/gate size

52

Page 53: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Logical Effort of Gates

Fan-out (f)

Nor

mal

ized

del

ay (d

)

t

1 2 3 4 5 6 7

pINVtpNAND-2

LE= p= d=

LE= p= d=

p = γ·Fan-in (for top input)

53

Page 54: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Delay Of NOR-2 Gate

1. Size for same resistance as inverter

2. LE = ratio of input cap of gate versus inverter

Intrinsic capacitance (Cdnor) =

tpint (NOR) =

54

Page 55: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Question

Any logic function can be implemented using NOR gates only or NAND gates only!

Which of the two approaches is preferable in CMOS (from a performance perspective)?

55

Page 56: EECS 151/251A Spring 2018 Digital Design and Integrated ...eecs151/sp18/files/Lecture12.pdf · vvvvv icl t rl ∂ − −−− + =Δ ... solder mask 0.0005 l1 top signal 1 oz 0.0014

EE141

Logical Effort

[From Sutherland, Sproull, Harris]

56