Ee325 cmos design lab 7 report - loren k schwappach

13
EE325, CMOS Design, Lab 7: Analog Switch 1 Colorado Technical University L-Edit Designed & PSpice Simulation of an Analog Switch Lab 7 Report Submitted to Professor R. Hoffmeister In Partial Fulfillment of the Requirements for EE 325-CMOS Design By Loren Karl Robinson Schwappach Student Number: 06B7050651 Colorado Springs, Colorado Due: 16 June 2010 Completed: 16 June 2010

description

 

Transcript of Ee325 cmos design lab 7 report - loren k schwappach

Page 1: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

1

Colorado Technical University

L-Edit Designed & PSpice Simulation of an Analog Switch

Lab 7 Report Submitted to Professor R. Hoffmeister

In Partial Fulfillment of the Requirements for EE 325-CMOS Design

By Loren Karl Robinson Schwappach

Student Number: 06B7050651

Colorado Springs, Colorado Due: 16 June 2010

Completed: 16 June 2010

Page 2: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

2

Table of Contents

Lab Objectives ....................................................................................................................................................................................................3

Requirements and Design Approaches/Trade-Offs ..........................................................................................................................3

L-Edit Analog Switch ............................................................................................................................................................................... 4-10

Analog Switch Design Details ............................................................................................................................................... 4-6

Analog Switch L-Edit Model .......................................................................................................................................................7

Analog Switch Cross Sections ....................................................................................................................................................8

Analog Switch Design Rule Check ..........................................................................................................................................8

Analog Switch L-Edit Extracted SW.SPC File ......................................................................................................................9

Analog Switch Modified SCNA.SPC File .............................................................................................................................. 10

Analog Switch Test Plan ........................................................................................................................................................... 10

Analog Switch Proof of Function ........................................................................................................................................................... 11

Circuit Layout ................................................................................................................................................................................ 11

PSpice Simulation Results ........................................................................................................................................................ 11

Analog Switch Frequency Response / Bandwidth ......................................................................................................................... 12

Circuit Layout ................................................................................................................................................................................ 12

PSpice Simulation Results ........................................................................................................................................................ 12

Analog Switch Resistance .......................................................................................................................................................................... 13

Circuit Layout ................................................................................................................................................................................ 13

PSpice Simulation Results ........................................................................................................................................................ 13

Page 3: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

3

Lab Objectives The objective of this lab is to create an analog switch using L-Edit and verify the switches operation using PSpice. The Analog switch must be able to achieve an on-resistance of four hundred ohms or less while the input voltage ranges from 0V to 5V. A formal lab report is not required for this lab.

Requirements and Design Approaches / Trade-offs The requirements for this lab are to design an analog switch with appropriate sizes necessary for achieving an on-resistance of four hundred ohms or less. The design must use the MORBN20 design rules, and use the default 2 micron, 11-mask CMOS SCNA technology design constraints. After the design calculations determine the required W/L for the pFET and nFET devices the model is built in L-Edit, and a design rule check must be completed with zero DRC errors. Finally the device must be extracted for use in PSpice and its’ switching operation, resistance, and bandwidth verified.

Page 4: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

4

L-Edit Analog Switch Design Details In order to achieve the design specifications required by this lab the following procedures and calculations were made in order to determine the required width and lengths of the L-Edit Analog Switches pFET and nFET devices. The design approach and calculations follow as illustrated by figures 1, 2, and 3.

Figure 1: Explanation of the Analog Switch and initial model and calculation plan for determining the

device (W/L)n and (W/L)p.

Page 5: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

5

Figure 2: Hand Calculations continued.

Page 6: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

6

Figure 3: Hand Calculations concluded. Final (W/L)n = 50/2, (W/L)p = 200/2 {4*50/2)

Page 7: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

7

L-Edit Analog Switch Layout

With the results from the hand calculations the design phase began using the Analog Switch model proposed by figure 1 and the calculated W/Ls in figure 3.

Figure 4: L-Edit Analog Switch Design Layout.

Page 8: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

8

L-Edit CMOS NAND Gate Cross Section Obtaining the Analog Switch’s cross section was accomplished by clicking Tools/Cross-Section and clicking on the Analog Switch by using the “Pick” button.

Figure 5: L-Edit Analog Switch Cross Section, NMOS section is on left, PMOS section is on the right.

L-Edit Analog Switch Design Rule Check Results

-------------------- SW_DRC.DRC --------------------- DRC Errors in cell Cell0 of file C:\Documents and Settings\Loren\Desktop\LAB 7\Lab7.

0 errors. DRC Merge/Gen Layers Elapsed Time: 0.000000 seconds.

DRC Test Elapsed Time: 0.000000 seconds. DRC Elapsed Time: 0 seconds.

-------------------------------------------------------

Page 9: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

9

L-Edit Analog Switch Extracted File Some important things to not about this file, are the “Node Name Aliases”, these are the net aliases names that must be used in PSpice. Also mentioned are PMOS and NMOS lengths and widths.

-------------------- SW.SPC --------------------- * Circuit Extracted by Tanner Research's L-Edit V7.12 / Extract V4.00 ;

* TDB File: C:\Documents and Settings\Loren\Desktop\LAB 7\Lab7, Cell: Cell0 * Extract Definition File: C:\LEdit\mosis\morbn20.ext

* Extract Date and Time: 06/07/2010 - 16:23 * WARNING: Layers with Unassigned AREA Capacitance.

* <Poly Resistor> * <Poly2 Resistor> * <N Diff Resistor> * <P Diff Resistor>

* <N Well Resistor> * <P Base Resistor>

* WARNING: Layers with Unassigned FRINGE Capacitance. * <Pad Comment> * <Poly Resistor>

* <Poly2 Resistor> * <N Diff Resistor> * <P Diff Resistor>

* <N Well Resistor> * <P Base Resistor>

* <Poly1-Poly2 Capacitor> * WARNING: Layers with Zero Resistance.

* <Pad Comment> * <Poly1-Poly2 Capacitor>

* <NMOS Capacitor> * <PMOS Capacitor>

* NODE NAME ALIASES * 1 = VDD (-24,62)

* 2 = G (38,-8) * 3 = GB (-24,-8) * 4 = VSS (52,-8) * 5 = A (10,62) * 6 = Y (10,-8)

M1 A GB Y VDD PMOS L=2u W=50u AD=900p PD=336u AS=600p PS=224u * M1 DRAIN GATE SOURCE BULK (13 5 15 55)

M2 Y GB A VDD PMOS L=2u W=50u AD=600p PD=224u AS=900p PS=336u * M2 DRAIN GATE SOURCE BULK (5 5 7 55)

M3 A GB Y VDD PMOS L=2u W=50u AD=900p PD=336u AS=600p PS=224u * M3 DRAIN GATE SOURCE BULK (-3 5 -1 55)

M4 Y GB A VDD PMOS L=2u W=50u AD=600p PD=224u AS=900p PS=336u * M4 DRAIN GATE SOURCE BULK (-11 5 -9 55)

M5 Y G A VSS NMOS L=2u W=50u AD=300p PD=112u AS=300p PS=112u * M5 DRAIN GATE SOURCE BULK (37 5 39 55)

* Total Nodes: 6 * Total Elements: 5

* Extract Elapsed Time: 0 seconds .END

Page 10: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

10

Edited SCNA.CSE File Required for using L-Edit Analog Switch Lines 2 and 11 of this file were edited to change CMOSN to NMOS and CMOSP to PMOS.

-------------------- SCNA.SPC --------------------- * THESE ARE TYPICAL SCNA SPICE LEVEL 2 PARAMETERS

.MODEL NMOS NMOS LEVEL=2 LD=0.250000U TOX=417.000008E-10 + NSUB=6.108619E+14 VTO=0.825008 KP=4.919000E-05 GAMMA=0.172

+ PHI=0.6 UO=594 UEXP=6.682275E-02 UCRIT=5000 + DELTA=5.08308 VMAX=65547.3 XJ=0.250000U LAMBDA=6.636197E-03

+ NFS=1.98E+11 NEFF=1 NSS=1.000000E+10 TPG=1.000000 + RSH=32.740000 CGDO=3.105345E-10 CGSO=3.105345E-10 CGBO=3.848530E-10

+ CJ=9.494900E-05 MJ=0.847099 CJSW=4.410100E-10 MJSW=0.334060 PB=0.800000 * Weff = Wdrawn - Delta_W

* The suggested Delta_W is -0.25 um .MODEL PMOS PMOS LEVEL=2 LD=0.227236U TOX=417.000008E-10

+ NSUB=1.056124E+16 VTO=-0.937048 KP=1.731000E-05 GAMMA=0.715 + PHI=0.6 UO=209 UEXP=0.233831 UCRIT=47509.9

+ DELTA=1.07179 VMAX=100000 XJ=0.250000U LAMBDA=4.391428E-02 + NFS=3.27E+11 NEFF=1.001 NSS=1.000000E+10 TPG=-1.000000

+ RSH=72.960000 CGDO=2.822585E-10 CGSO=2.822585E-10 CGBO=5.292375E-10 + CJ=3.224200E-04 MJ=0.584956 CJSW=2.979100E-10 MJSW=0.310807 PB=0.800000

* Weff = Wdrawn - Delta_W * The suggested Delta_W is -1.14 um

--------------------------------------------------------

Analog Switch Test Plan Now that the L-Edit Analog Switch has been created, passed its DRC, and extracted, we will check whether or not the device works (Proof of functionality), check out its bandwidth (Frequency Response), and verify the on-resistance.

Page 11: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

11

Analog Switch Proof of Function To prove the analog switch functions correctly the circuit shown in figure 6 was created and a time domain analysis simulation was completed. The results shown in figure 7 illustrate that the switch is on when G is high and off when G is low as required.

Figure 6: PSpice Analog Switch Circuit Diagram for testing functionality.

Figure 7: PSpice Analog Switch Simulation Results. Notice that the switch is on (only passes the input V(A)) when V(G) is high (5V), and V(GB) is low. However, when V(G) is low (0V) and V(GB) is high the switch is

‘off” and V(Y) = 0V.

Transmission Gate / Analog Switch

Net Aliases {VDD, G, GB, VSS, A, Y}

VGB

TD = 0TF = 1ns

PW = 100usPER = 200us

V1 = 0 TR = 1nsV2 = 5

V1

5Vdc

RL

400

Rg

1VGTD = 0TF = 1ns

PW = 100usPER = 200us

V1 = 5 TR = 1nsV2 = 0

0

00

00

0

VDDGB

G

A

V2

FREQ = 10kVAMPL = 1VOFF = 2.5

Y

VSS

V

Time

0s 50us 100us 150us 200us 250us 300us 350us 400us

V(Y)

0V

1.0V

2.0VV

o

l

t

s

SEL>>

Rsw = (RL/Gain) - RL = 209.18

Gain = 656.6195mV/V

V(Y) = 1.313239 Vpp(174.997u,901.561m)

(124.996u,2.2148)

V(GB)

0V

2.5V

5.0VV

o

l

t

s

V(G)

0V

2.5V

5.0VV

o

l

t

s

V(A)

2.0V

3.0V

V

o

l

t

s

(174.997u,1.5000)

(124.996u,3.5000)

V(A) = 2 Vpp

Page 12: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

12

Analog Switch Frequency Response / Bandwidth To find the frequency response of the analog switch the circuit shown in figure 8 was created and an AC Sweep simulation was ran to find the bandwidth as shown in figure 9. This bandwidth was noted as 1.4GHz.

Figure 8: PSpice Analog Switch Circuit Diagram for plotting frequency response.

Figure 9: PSpice Analog Switch Frequency Response Simulation Results. Bandwidth is approximately 1.4 GHz.

Transmission Gate / Analog Switch

Net Aliases {VDD, G, GB, VSS, A, Y}

V1

5Vdc

RL

400

Rg

1

0

00

00

0

VDDGB

G

A Y

VSS

VGB

0Vdc

VG

5Vdc

VA1Vac

2.5Vdc

Frequency

1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz 1.0GHz 10GHz 100GHz

DB(V(Y)/V(A))

-40

-30

-20

-10

0G

a

i

n

(

d

B

)

-16.9368 dB/decade

LP Filter

Bandwidth = 1.4019GHz

1.4019GHz

Corner Frequency = f*3dB

(14.019G,-22.891)

(1.4019G,-5.9542)

Page 13: Ee325 cmos design   lab 7 report - loren k schwappach

EE325, CMOS Design, Lab 7: Analog Switch

13

Analog Switch Resistance To find the on-resistance of the analog switch the circuit shown by figure 10 below was created and a bias analysis simulation was ran. The voltage and current results showed that Iswitch = 3.838 mA and Vswitch = 965mV. Thus the on-resistance was calculated to be approximately 251 ohms. Thus, the design constraint was met.

Figure 10: PSpice Analog Switch Circuit and Voltage and Current Results. The On-Resistance is approximately

251 ohms which is less than 400 ohms. Thus the device meets all requirements.