EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix...

42
M. Lustig, EECS UC Berkeley EE123 Digital Signal Processing Lecture 27 Compressed Sensing II

Transcript of EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix...

Page 1: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

EE123Digital Signal Processing

Lecture 27Compressed Sensing II

Page 2: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

From Samples to Measurements

• Shanon-Nyquist sampling–Worst case for ANY bandlimited data

• Compressive sampling (CS)! “Sparse signals statistics can be recovered from a

small number of non-adaptive linear measurements”

–Integrated sensing, compression and processing.–Based on concepts of incoherency between signal and

measurements

Page 3: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

• x∈ℜN is a signal • Make N linear measurements

N N

Traditional Sensing

xy

=

Φ

sensing matrix

NxN

Desktop scanner/ digital camera sensing

Page 4: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

• x∈ℜN is a signal • Make N linear measurements

N N

Traditional Sensing

xy

=

Φ

sensing matrix

NxN

MRI Fourier Imaging

Page 5: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

• x∈ℜN is a signal • Make N linear measurements

N N

Traditional Sensing

xy

=

Φ

sensing matrix

NxN

A “good” sensing matrix is orthogonal

Φ* Φ = I

Arbitrary sensing

Page 6: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

sensing matrix

Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006)

• x∈ℜN is a K-sparse signal (K<<N)• Make M (K<M<<N) incoherent linear projections

x

=

Φ

MxNK

sensing matrix

A “good” compressed sensing matrix is incoherent i.e, approximately orthogonal

Φ* Φ ≈ I

Incoherency can preserve information

M

y

Page 7: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

CS recovery

• Given y = Φxfind x

• But there’s hope, x is sparse!

Under-determined

=

Φ xy

Page 8: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

CS recovery

• Given y = Φxfind x

• But there’s hope, x is sparse!

Under-determined

Page 9: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

CS recovery

• Given y = Φxfind x

• But there’s hope, x is sparse!

Under-determined

minimize ||x||2 s.t. y = Φx

WRONG!

Page 10: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

CS recovery

• Given y = Φxfind x

• But there’s hope, x is sparse!

Under-determined

minimize ||x||0 s.t. y = Φx

HARD!

Page 11: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

CS recovery

• Given y = Φxfind x

• But there’s hope, x is sparse!

Under-determined

minimize ||x||1 s.t. y = Φx

need M ≈ K log(N) <<NSolved by linear-programming

Page 12: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

minimum ||x||1 minimum ||x||2

Geometric Interpretation

domain of sparse signals

Page 13: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

A non-linear sampling theorem

• f∈CN supported on a set Ω in Fourier• Shannon:

– Ω is known connected set, size B– Exact recovery from B equispaced time samples– Linear reconstruction by sinc interpolation

• Non-linear sampling theorem– Ω is an arbitrary, unknown set of size B– Exact recovery from ~ B logN (almost) arbitrary placed samples– Nonlinear reconstruction by convex programming

Page 14: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

Practicality of CS

• Can such sensing system exist in practice?

Fourier matrix

Page 15: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

Practicality of CS

• Can such sensing system exist in practice?

Fourier matrix

Page 16: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

Practicality of CS

• Can such sensing system exist in practice?

Fourier matrix

Page 17: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

• Can such sensing system exist in practice?

• Randomly undersampled Fourier is incoherent

Φ* Φ ≈ I

Practicality of CS

=

• MRI samples in the Fourier domain!

Page 18: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

Page 19: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Intuitive example of CS

Page 20: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Intuitive example of CS

FFT

Nyquistsampling

Page 21: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Intuitive example of CS

FFT

sub-Nyquistequispaced

Page 22: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Intuitive example of CS

FFT

sub-Nyquist

Ambiguity

Page 23: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Intuitive example of CS

FFT

sub-Nyquistrandom

Page 24: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

Page 25: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Intuitive example of CS

FFT

sub-NyquistLooks like

“random noise”

Page 26: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Intuitive example of CS

FFT

sub-NyquistBut it’s not

noise!

Page 27: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

Page 28: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

Page 29: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Intuitive example of CS

FFT

Recovery

Example inspired by Donoho et. Al, 2007

Page 30: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

M. Lustig, EECS UC Berkeley

Page 31: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Question!

• What if this was the signal?• Would CS still work?

sub-Nyquistrandom sub-Nyquist

Page 32: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Domains in Compressed Sensing

Signal

SparseDomain

SamplingDomain

Not Sparse!

Sparse! incoherent

Page 33: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

MRI

Signal

Not Sparse!

Sparse! incoherent

SamplingDomainSignal

SparseDomain

Page 34: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Acquired Data

Sparse “denoising”

Compressed SensingReconstruction

Page 35: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Acquired Data

Sparse “denoising”

Compressed SensingReconstruction

Page 36: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Acquired Data

Sparse “denoising”Undersampled Final Image

Compressed SensingReconstruction

Tutorial & code available at http://www.mlustig.com

Page 37: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

6 year old male abdomen. Fine structures (arrows) are buried in noise (artifactual + noise amplification) and are recovered by CS with L1-wavelets. x8 acceleration

liver

Linear Reconstruction Compressed sensing

portal vein

hepatic vein

Page 38: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

6 year old male abdomen. Fine structures (arrows) are buried in noise (artifactual + noise amplification) and are recovered by CS with L1-wavelets.

liver

Linear Reconstruction Compressed sensing

portal veinnot seen

Zoom Zoom

Hepatic vein

bile duct

pancreatic duct

Page 39: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Back to Results6yearold8-foldacceleration16secondscan0.875mmin-plane1.6slicethickness

Page 40: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Principles of Magnetic Resonance Imaging

EE c225E / BIOE c265

Shameless Promotion

Spring 2016

Page 41: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Other Applications

• Compressive Imaging• Medical Imaging• Analog to information conversion• Biosensing• Geophysical Data Analysis• Compressive Radar• Astronomy• Communications• More ......

Page 42: EE123 Digital Signal Processingee123/sp16/Notes/Lecture...M. Lustig, EECS UC Berkeley sensing matrix Compressed Sensing ! ! (Candes, Romber, Tao 2006; Donoho 2006) • x∈ℜN is

Resources• CS + parallel imaging matlab code, examples

http://www.eecs.berkeley.edu/~mlustig/software/

• Rice University CS page: papers, tutorials, codes, ….http://www.dsp.ece.rice.edu/cs/

• IEEE Signal Processing Magazine, special issue on compressive sampling 2008;25(2)

• March 2010 Issue Wired Magazine: “Filling the Blanks”

• Igor Caron Blog: http://nuit-blanche.blogspot.com/

הברהדותThank you!