EE105 - Fall 2005ee105/fa05/... · 9 17 Inductor Impedance Z L = Admittance: Y L = 1 / Z L = +-L V...

22
1 EE105 - Fall 2005 Microelectronic Devices and Circuits Lecture 17 Frequency-Domain Analysis 2 Announcements Homework 7 due today Homework 8 due next week Lab 6 this week Reading: Chapter 10 (10.1)

Transcript of EE105 - Fall 2005ee105/fa05/... · 9 17 Inductor Impedance Z L = Admittance: Y L = 1 / Z L = +-L V...

1

EE105 - Fall 2005Microelectronic Devices and Circuits

Lecture 17

Frequency-Domain Analysis

2

AnnouncementsHomework 7 due todayHomework 8 due next weekLab 6 this weekReading: Chapter 10 (10.1)

2

3

Lecture Material

Last lectureCommon drain amplifierReview phasors

This lectureFrequency-domain analysisBode plots

4

RC Circuit with Sinusoidal Input

R

vc(t)

C

iR

iC vs(t) +

-

vs(t)= Vs cos(ωt) : set phase of source to zero (use as the reference)

vc(t)= Vc cos(ωt + φ) : solution is a sinusoidal signal with the same frequency, but with a different amplitude and phase-shifted with respect to the source

3

5

A Better Technique

It is much more efficient to work with imaginary exponentials as “representing” sinusoids, since these functions are direct solutions of linear differential equations:

ddt----- ejωt( ) jω ejωt( )=

• Note that EEs use j = (-1)1/2 rather than i, since thesymbol i is already taken for current

6

Using Imaginary Exponentials

scc vv

dtdvRC =+

Substitute:tj

ss evtv ω=)(

)()( φ+ω= tjcc evtv

Result:

tjs

tjc

tjc evevevj ωφ+ωφ+ω =+ωτ )()()(

4

7

Finding the Amplitude Ratio

tjs

tjjc

jc eveevevj ωωφφ =+ωτ ])([

scjj vveej =+ωτ φφ ][

)1(1

ωτ+=

+ωτ=

φ−

φφ je

eejvv j

jjs

cAmplitudeRatio:

Answer is a real number, so take magnitude

… use to find amplitude and phase

( )21

1

ωτ+=

s

cvv

8

Graphical Result for Amplitude Ratio

ω 1/τ 10/τ 1/10τ

1.0

0.5

0.707

5

9

Amplitude: A New Representation

• We are interested in very small ratios (e.g., Vc/Vs = 0.0001)

• Therefore, we use a log plot … but we also define a new function called the deciBel (after Alex. Graham Bell)

(Vc/Vs )dB = 20 log10 (Vc/Vs )

• Examples: Vc/Vs = 0.0001 (Vc/Vs )dB = -80 dB

Vc/Vs = 0.707 (Vc/Vs )dB = -3 dB

10

Finding the Phase

Collect real and imaginary parts; latter must be zero:

Use Euler’s formula to convert to rectangular form:

csjj vveej /][ =+ωτ φφ

(a real number)

cs vvjjj /)sin(cos)sin(cos =φ+φ+φ+φωτ

0sincos)Im( =φ+φωτ=⋅

ωτ−=φtan

6

11

Graphical Result for Phase φ

ω

1/τ 10/τ 1/10τ

0

-45

-90

12

Finding the “Real” Waveform

How to connect the imaginary exponential solution to the measured waveform v(t)? Conventionally, v(t) is the real part of the of the imaginary exponential

)cos()Re( )( φ+ω=φ+ω tvve tj

7

13

Pushing This Idea Further …There are two parameters needed to define a sinusoidal signal:

* magnitude* phase

Why not work with a complex number as the signal and eliminatethe imaginary exponential from the analysis (it cancels out)?

Define the complex number consisting of the amplitude and phasea sinusoidal signal as a phasor

tjVetvtvtv ω=⇔φ+ω= )()cos()(φ= jveV

14

Using Phasors: Capacitor Current

C vc(t)+

-ic(t) dt

dvCti cc =)(

tjcc eIti ω=)( tj

cc eVtv ω=)(

Result:

8

15

Impedance of a Capacitor

Definition: the impedance Z of a two-terminal circuit element is the ratio of the phasor voltage to the phasorcurrent (positive reference convention)

C+

-Ic Vc Zc =

Admittance: Yc = 1 / Zc =

16

Using Phasors: Inductor Voltage

+

-

L vL(t)iL(t) dt

diLtv LL =)(

tjLL eIti ω=)(tj

LL eVtv ω=)(

Result:

9

17

Inductor Impedance

ZL =

Admittance: YL = 1 / ZL =

+

-

L VL

IL

18

Circuit Analysis with PhasorsAssumption: sources are sinusoidal, steady-state!

+-vs(t)

RC

+

vc(t)

-

==s

cVVH

Ratio of output to input phasor is the transfer function of the circuit:

10

19

Bode Plots

1. Plot magnitude | H | in dB vs. ω (log scale)2. Plot phase H in degrees vs. ω (log scale)

20

Bode Plots for Low-Pass Filter

1. Plot magnitude | H | in dB vs. ω (log scale)2. Plot phase H in degrees vs. ω (log scale)

dBdBdB jj

H ⎥⎦

⎤⎢⎣

⎡+

=+

=|1|

|1||1

1|||ωτωτ

11

21

Sketching the Magnitude Plot

⎥⎥⎦

⎢⎢⎣

+=⎥⎦

⎤⎢⎣

⎡+

=2)(1

1log20|1|

|1|||ωτωτ dB

dB jH

Low-frequency (ωτ <<1) asymptote

High-frequency (ωτ >>1) asymptote

22

The Break Frequency ω-3dB = (1/τ)

1/τ 10/τ 100/τ 1/(10τ) ω| H |dB

-20

-40

-60

12

23

Finding the Phase Plot

( ) )arctan(01

1ωτ−=⎥

⎤⎢⎣

⎡ωτ+

∠=∠j

H

Why?

Low-frequency asymptote

High-frequency asymptote

Approx. linear with ω for 1/(10τ) < ω < 10/ τ

24

Rapidly Sketching the Phase Plot

1/τ 10/τ 100/τ 1/(10τ) ωPhase H

-45

-90

13

25

The High-Pass Filter

vs(t) +- R

C +

vr(t)

-

+- R

1/(jωC) +

Vr

-

Vs ==sr

VVH

26

Magnitude Bode Plot

dBdBdBdB jj

jjH |

11||||

1|||

ωτωτ

ωτωτ

++=

+=

First term (numerator):

14

27

Graphical Addition of Magnitudes

| H |dB

1/τ 10/τ 100/τ 1/(10τ)

ω

-20

-40

20

40

28

Phase Bode Plot for HPF

1/τ 10/τ 100/τ 1/(10τ) ω

Phase H

+90

-90

15

29

Get to know your logs!

A “margin” of 6dB is a factor of 2 (power)!Knowing a few logs by memory can help you calculate logs of different ratios by employing properties of log. For instance, knowing that the ratio of 2 is 6 dB, what’s the ratio of 4?

dB ratio dB ratio-20 0.100 20 10.000-10 0.316 10 3.162

-5 0.562 5 1.778-3 0.708 3 1.413-2 0.794 2 1.259-1 0.891 1 1.122

30

Bode Plot OverviewTechnique for estimating a complicated transfer function (several poles and zeros) quickly

Break frequencies :

)1()1)(1()1()1)(1()()(

22

210

pmpp

znzzK

jjjjjjjGHωτωτωτωτωτωτωω

++++++

=L

L

ii τ

ω 1=

16

31

Summary of Individual Factors Simple Pole:

Simple Zero:

DC Zero:

DC Pole:

ωτ+ j11

ωτ+ j1

ωτj

ωτj1

τω 1

=dB0

dB0

dB0

dB0

90−

90+

90−

90+

τω 1

=

32

ExampleConsider the following transfer function

Break frequencies: invert time constants

)1)(1()1(10)(31

25

ωτωτωτωωjj

jjjH++

+=

ps100ns10ns100

3

2

1

===

τττ

Grad/s10Mrad/s100Mrad/s10 321 === ωωω

)1)(1(

)1(10)(

31

25

ωω

ωω

ωωω

ωjj

jj

jH++

+=

17

33

Breaking Down the MagnitudeRecall log of products is sum of logs

Let’s plot each factor separately and add them graphically

)1)(1(

)1(10log20)(

31

25

dB

ωω

ωω

ωωω

ωjj

jj

jH++

+=

31

25

1log201log20

1log2010

log20

ωω

ωω

ωωω

jj

jj

+−+−

++=

34

Breaking Down the PhaseSince

Let’s plot each factor separately and add them graphically

)1)(1()1(10)(31

25

ωτωτωτωωjj

jjjH++

+∠=∠

baba ∠+∠=⋅∠

31

25

11

110

)(

ωω

ωω

ωωωω

jj

jjjH

+∠−+∠−

+∠+∠=∠

18

35

Magnitude Bode Plot: DC Zero80

20

60

40

-20

-60

-80

-40

104 105 106 107 108 109 1010 1011ω

510ωj

0 dB

36

Phase Bode Plot: DC Zero180

45

135

90

-45

-135

-180

-90

104 105 106 107 108 109 1010 1011ω

510ωj

19

37

Magnitude Bode Plot: Add First Pole80

20

60

40

-20

-60

-80

-40

104 105 106 107 108 109 1010 1011ω

dB510

ωj

dB710

1

1ωj+

Mrad/s101 =ω

38

Phase Bode Plot: Add First Pole180

45

135

90

-45

-135

-180

-90

104 105 106 107 108 109 1010 1011ω

510ωj

7101

1ωj+

20

39

Magnitude Bode Plot: Add 2nd Zero80

20

60

40

-20

-60

-80

-40

104 105 106 107 108 109 1010 1011ω

dB810

1 ωj+Mrad/s1002 =ω

40

Phase Bode Plot: Add 2nd Zero180

45

135

90

-45

-135

-180

-90

104 105 106 107 108 109 1010 1011ω

8101 ωj+∠

21

41

Magnitude Bode Plot: Add 2nd Pole80

20

60

40

-20

-60

-80

-40

104 105 106 107 108 109 1010 1011ω

dB1010

1

1ωj+

Grad/s103 =ω

42

Phase Bode Plot: Add 2nd Pole180

45

135

90

-45

-135

-180

-90

104 105 106 107 108 109 1010 1011ω

10101 ωj+∠−

22

43

Comparison to Actual Mag Plot

44

Comparison to Actual Phase Plot