Ee101 Diodes 1

download Ee101 Diodes 1

of 42

Transcript of Ee101 Diodes 1

  • 8/9/2019 Ee101 Diodes 1

    1/112

    EE101: Diode circuits

    M. B. Patil [email protected]

    Department of Electrical EngineeringIndian Institute of Technology Bombay

    M. B. Patil, IIT Bombay

    http://find/http://goback/

  • 8/9/2019 Ee101 Diodes 1

    2/112

    Diodes

    flow

    pressureV

    i

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    3/112

    Diodes

    flow

    pressureV

    i

    *  A diode may be thought of as an electrical counterpart of a directional valve

    (“check valve”).

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    4/112

    Diodes

    flow

    pressureV

    i

    *  A diode may be thought of as an electrical counterpart of a directional valve

    (“check valve”).*  A check valve presents a small resistance if the pressure  p  > 0, but blocks the

    flow (i.e., presents a large resistance) if  p  

  • 8/9/2019 Ee101 Diodes 1

    5/112

    Diodes

    flow

    pressureV

    i

    *  A diode may be thought of as an electrical counterpart of a directional valve

    (“check valve”).*  A check valve presents a small resistance if the pressure  p  > 0, but blocks the

    flow (i.e., presents a large resistance) if  p  

  • 8/9/2019 Ee101 Diodes 1

    6/112

    Diodes

    flow

    pressureV

    i

    *  A diode may be thought of as an electrical counterpart of a directional valve

    (“check valve”).*  A check valve presents a small resistance if the pressure  p  > 0, but blocks the

    flow (i.e., presents a large resistance) if  p  

  • 8/9/2019 Ee101 Diodes 1

    7/112

    Diodes

    flow

    pressureV

    i

    *  A diode may be thought of as an electrical counterpart of a directional valve

    (“check valve”).*  A check valve presents a small resistance if the pressure  p  > 0, but blocks the

    flow (i.e., presents a large resistance) if  p  

  • 8/9/2019 Ee101 Diodes 1

    8/112

    Simple models:   R on/R off  model

    V V

    i   i R = Ron   if V > 0

    R = Roff   if V < 0

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    9/112

    Simple models:   R on/R off  model

    V V

    i   i R = Ron   if V > 0

    R = Roff   if V < 0

    *  Since the resistance is different in the forward and reverse directions, the   i  − V relationship is not symmetric.

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    10/112

    Simple models:   R on/R off  model

    V V

    i   i R = Ron   if V > 0

    R = Roff   if V < 0

    *  Since the resistance is different in the forward and reverse directions, the   i  − V relationship is not symmetric.

    *   Examples:

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    11/112

    Simple models:   R on/R off  model

    V V

    i   i R = Ron   if V > 0

    R = Roff   if V < 0

    *  Since the resistance is different in the forward and reverse directions, the   i  − V relationship is not symmetric.

    *   Examples:

    10

    0

    −5 −4 −3 −2 −1 0 1 −5 −4 −3 −2 −1 0 1 

    V (Volts) V (Volts)

          i

          (    m      A      )

    Ron  = 5Ω

    Roff  = 500Ω

    Ron  = 0.1 Ω

    Roff  = 1 MΩ

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    12/112

    Simple models: ideal switch

    S

    i

    i ii

    V V V

    i

    V

    S closed, V > 0

    S open, V < 0

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    13/112

    Simple models: ideal switch

    S

    i

    i ii

    V V V

    i

    V

    S closed, V > 0

    S open, V < 0

    *   V  > 0 Volts  →  S is closed (a perfect contact), and it can ideally carry anyamount of current. The voltage drop across the diode is 0  V .

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    14/112

    Simple models: ideal switch

    S

    i

    i ii

    V V V

    i

    V

    S closed, V > 0

    S open, V < 0

    *   V  > 0 Volts  →  S is closed (a perfect contact), and it can ideally carry anyamount of current. The voltage drop across the diode is 0  V .

    *   V  

  • 8/9/2019 Ee101 Diodes 1

    15/112

    Simple models: ideal switch

    S

    i

    i ii

    V V V

    i

    V

    S closed, V > 0

    S open, V < 0

    *   V  > 0 Volts  →  S is closed (a perfect contact), and it can ideally carry anyamount of current. The voltage drop across the diode is 0  V .

    *   V  

  • 8/9/2019 Ee101 Diodes 1

    16/112

    Shockley diode equation

    p n

    V

    i   i

    V

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    17/112

    Shockley diode equation

    p n

    V

    i   i

    V

    i  =  I s exp  V 

    V T − 1, where  V T   =  k B T /q .

    k B  = Boltzmann’s constant = 1.38× 10−23 J /K .

    q  = electron charge = 1.602× 10−19 Coul.

    T  = temperature in   ◦K .

    V T  ≈ 25 mV  at room temperature (27  ◦C).

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    18/112

    Shockley diode equation

    p n

    V

    i   i

    V

    i  =  I s exp  V 

    V T − 1, where  V T   =  k B T /q .

    k B  = Boltzmann’s constant = 1.38× 10−23 J /K .

    q  = electron charge = 1.602× 10−19 Coul.

    T  = temperature in   ◦K .

    V T  ≈ 25 mV  at room temperature (27  ◦C).

    *   I s   is called the “reverse saturation current.”

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    19/112

    Shockley diode equation

    p n

    V

    i   i

    V

    i  =  I s exp  V 

    V T − 1, where  V T   =  k B T /q .

    k B  = Boltzmann’s constant = 1.38× 10−23 J /K .

    q  = electron charge = 1.602× 10−19 Coul.

    T  = temperature in   ◦K .

    V T  ≈ 25 mV  at room temperature (27  ◦C).

    *   I s   is called the “reverse saturation current.”

    *  For a typical low-power silicon diode,   I s   is of the order of 10−13 A.

    M. B. Patil, IIT Bombay

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    20/112

    Shockley diode equation

    p n

    V

    i   i

    V

    i  =  I s exp  V 

    V T − 1, where  V T   =  k B T /q .

    k B  = Boltzmann’s constant = 1.38× 10−23 J /K .

    q  = electron charge = 1.602× 10−19 Coul.

    T  = temperature in   ◦K .

    V T  ≈ 25 mV  at room temperature (27  ◦C).

    *   I s   is called the “reverse saturation current.”

    *  For a typical low-power silicon diode,   I s   is of the order of 10−13 A.

    *   Although   I s   is very small, it gets multiplied by a large exponential factor, givinga diode current of several mA   for V  ≈ 0.7  V .

    M. B. Patil, IIT Bombay

    S

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    21/112

    Shockley diode equation

    p n

    V

    i   i

    V

    i  =  I s exp  V 

    V T − 1, where  V T   =  k B T /q .

    k B  = Boltzmann’s constant = 1.38× 10−23 J /K .

    q  = electron charge = 1.602× 10−19 Coul.

    T  = temperature in   ◦K .

    V T  ≈ 25 mV  at room temperature (27  ◦C).

    *   I s   is called the “reverse saturation current.”

    *  For a typical low-power silicon diode,   I s   is of the order of 10−13 A.

    *   Although   I s   is very small, it gets multiplied by a large exponential factor, givinga diode current of several mA   for V  ≈ 0.7  V .

    *  The “turn-on” voltage (V on) of a diode depends on the value of   I s .   V on  may be

    defined as the voltage at which the diode starts carrying a substantial forwardcurrent (say, a few mA).For a silicon diode,  V on  ≈ 0.7  V .For a GaAs diode,  V on  ≈ 1.1  V .

    M. B. Patil, IIT Bombay

    Sh kl di d i

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    22/112

    Shockley diode equation

    p n

    V

    i   i

    V

    i  = I s 

    exp

      V 

    V T 

    − 1

    , where  V T   = k B T /q .

    Example:   I s   = 1× 10−13 A,  V T  = 25 mV .

    M. B. Patil, IIT Bombay

    Sh kl di d ti

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    23/112

    Shockley diode equation

    p n

    V

    i   i

    V

    i  = I s 

    exp

      V 

    V T 

    − 1

    , where  V T   = k B T /q .

    Example:   I s   = 1× 10−13 A,  V T  = 25 mV .

    V x  = V /V T    e x  i   (Amp)

    0.1 3.87 0.479×102 0.469×10−11

    0.2 7.74 0.229×104 0.229×10−9

    0.3 11.6 0.110×106 0.110×10−7

    0.4 15.5 0.525×107 0.525×10−6

    0.5 19.3 0.251×109 0.251×10−4

    0.6 23.2 0.120×1011 0.120×10−2

    0.62 24.0 0.260×1011 0.260×10−2

    0.64 24.8 0.565×1011 0.565×10−2

    0.66 25.5 0.122×1012 0.122×10−1

    0.68 26.3 0.265×1012 0.265×10−1

    0.70 27.1 0.575×1012 0.575×10−1

    0.72 27.8 0.125×1013 0.125

    M. B. Patil, IIT Bombay

    Sh kl di d ti

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    24/112

    Shockley diode equation

    p n

    V

    i   i

    V

    i  = I s 

    exp

      V 

    V T 

    − 1

    , where  V T   = k B T /q .

    Example:   I s   = 1× 10−13 A,  V T  = 25 mV .

    V x  = V /V T    e x  i   (Amp)

    0.1 3.87 0.479×102 0.469×10−11

    0.2 7.74 0.229×104 0.229×10−9

    0.3 11.6 0.110×106 0.110×10−7

    0.4 15.5 0.525×107 0.525×10−6

    0.5 19.3 0.251×109 0.251×10−4

    0.6 23.2 0.120×1011 0.120×10−2

    0.62 24.0 0.260×1011 0.260×10−2

    0.64 24.8 0.565×1011 0.565×10−2

    0.66 25.5 0.122×1012 0.122×10−1

    0.68 26.3 0.265×1012 0.265×10−1

    0.70 27.1 0.575×1012 0.575×10−1

    0.72 27.8 0.125×1013 0.125V (Volts)

       i   (   A  m  p   )

    1

       i   (  m   A   )

    20

    40

    60

    80

    100

    0

    log scale

    linear scale

     0 0.2 0.4 0.6 0.8

     

    10-6

    10-12

    M. B. Patil, IIT Bombay

    Shockley equation and simple models

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    25/112

    Shockley equation and simple models

    p n

    V

    i   i

    V

    i = Is

    e

    V/VT − 1

      , Is   = 10−13 A ,   VT   = 25 mV .

    Shockley equation and simple models

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    26/112

    Shockley equation and simple models

    p n

    V

    i   i

    V

    i = Is

    e

    V/VT − 1

      , Is   = 10−13 A ,   VT   = 25 mV .

    Model 1:

    (open circuit)

    V (Volts)

    0

    20

    60

    80

    100

       i   (  m   A   )

    40

    Model 1

    equation

    Shockley

     0.2 0.4 0.6 0.8

     

    0

     

    V > Von

    V < Von

    i  Von

    Von

    Von   = 0.7 V

    Shockley equation and simple models

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    27/112

    Shockley equation and simple models

    p n

    V

    i   i

    V

    i = Is

    e

    V/VT − 1

      , Is   = 10−13 A ,   VT   = 25 mV .

    Model 1:

    (open circuit)

    V (Volts)

    0

    20

    60

    80

    100

       i   (  m   A   )

    40

    Model 1

    equation

    Shockley

     0.2 0.4 0.6 0.8

     

    0

     

    V > Von

    V < Von

    i  Von

    Von

    Von   = 0.7 V

    Model 2:

    (open circuit)

    V (Volts)

    Shockleyequation

    Model 2

     

    0.2 0.4 0.6 0.80

    VonV > Von

    V < Von

    i  Ron

    slope = 1/Ron

    Von

    Von  = 0.668 V

    Ron  = 0.5  Ω

    M. B. Patil, IIT Bombay

    Shockley equation and simple models

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    28/112

    Shockley equation and simple models

    p n

    V

    i   i

    V

    i = Is

    e

    V/VT − 1

      , Is   = 10−13 A ,   VT   = 25 mV .

    Model 1:

    (open circuit)

    V (Volts)

    0

    20

    60

    80

    100

       i   (  m   A   )

    40

    Model 1

    equation

    Shockley

     0.2 0.4 0.6 0.8

     

    0

     

    V > Von

    V < Von

    i  Von

    Von

    Von   = 0.7 V

    Model 2:

    (open circuit)

    V (Volts)

    Shockleyequation

    Model 2

     

    0.2 0.4 0.6 0.80

    VonV > Von

    V < Von

    i  Ron

    slope = 1/Ron

    Von

    Von  = 0.668 V

    Ron  = 0.5  Ω

    *  For many circuits, Model 1 is adequate since  R on   is much smaller than otherresistances in the circuit.

    M. B. Patil, IIT Bombay

    Shockley equation and simple models

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    29/112

    Shockley equation and simple models

    p n

    V

    i   i

    V

    i = Is

    e

    V/VT − 1

      , Is   = 10−13 A ,   VT   = 25 mV .

    Model 1:

    (open circuit)

    V (Volts)

    0

    20

    60

    80

    100

       i   (  m   A   )

    40

    Model 1

    equation

    Shockley

     0.2 0.4 0.6 0.8

     

    0

     

    V > Von

    V < Von

    i  Von

    Von

    Von   = 0.7 V

    Model 2:

    (open circuit)

    V (Volts)

    Shockleyequation

    Model 2

     

    0.2 0.4 0.6 0.80

    VonV > Von

    V < Von

    i  Ron

    slope = 1/Ron

    Von

    Von  = 0.668 V

    Ron  = 0.5  Ω

    *  For many circuits, Model 1 is adequate since  R on   is much smaller than otherresistances in the circuit.

    *   If  V on   is much smaller than other relevant voltages in the circuit, we can useV on  ≈ 0  V , and the diode model reduces to the ideal diode model seen earlier.

    M. B. Patil, IIT Bombay

    Shockley equation and simple models

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    30/112

    Shockley equation and simple models

    p n

    V

    i   i

    V

    i = Is

    e

    V/VT − 1

      , Is   = 10−13 A ,   VT   = 25 mV .

    Model 1:

    (open circuit)

    V (Volts)

    0

    20

    60

    80

    100

       i   (  m   A   )

    40

    Model 1

    equation

    Shockley

     0.2 0.4 0.6 0.8

     

    0

     

    V > Von

    V < Von

    i  Von

    Von

    Von   = 0.7 V

    Model 2:

    (open circuit)

    V (Volts)

    Shockleyequation

    Model 2

     

    0.2 0.4 0.6 0.80

    VonV > Von

    V < Von

    i  Ron

    slope = 1/Ron

    Von

    Von  = 0.668 V

    Ron  = 0.5  Ω

    *  For many circuits, Model 1 is adequate since  R on   is much smaller than otherresistances in the circuit.

    *   If  V on   is much smaller than other relevant voltages in the circuit, we can useV on  ≈ 0  V , and the diode model reduces to the ideal diode model seen earlier.

    *  Note that the “battery” shown in the above models is not a “source” of power!It can only absorb power (see the direction of the current), causing heatdissipation.

    M. B. Patil, IIT Bombay

    Reverse breakdown

    http://find/http://goback/

  • 8/9/2019 Ee101 Diodes 1

    31/112

    Reverse breakdown

    0

    −20

    20

    40

    V (Volts)

       i   (  m   A   )

     

    −6 −5 −4 −3 −2 −1 0 1

    V

    i

    M. B. Patil, IIT Bombay

    Reverse breakdown

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    32/112

    0

    −20

    20

    40

    V (Volts)

       i   (  m   A   )

     

    −6 −5 −4 −3 −2 −1 0 1

    V

    i

    *   In the reverse direction, an ideal diode presents a large resistance for  any  appliedvoltage.

    M. B. Patil, IIT Bombay

    Reverse breakdown

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    33/112

    0

    −20

    20

    40

    V (Volts)

       i   (  m   A   )

     

    −6 −5 −4 −3 −2 −1 0 1

    V

    i

    *   In the reverse direction, an ideal diode presents a large resistance for  any  appliedvoltage.

    *  A real diode cannot withstand indefinitely large reverse voltages and “breaksdown” at a certain voltage called the “breakdown voltage” (V BR).

    M. B. Patil, IIT Bombay

    Reverse breakdown

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    34/112

    0

    −20

    20

    40

    V (Volts)

       i   (  m   A   )

     

    −6 −5 −4 −3 −2 −1 0 1

    V

    i

    *   In the reverse direction, an ideal diode presents a large resistance for  any  appliedvoltage.

    *  A real diode cannot withstand indefinitely large reverse voltages and “breaksdown” at a certain voltage called the “breakdown voltage” (V BR).

    *  When the reverse bias  V R  >  V BR, the diode allows a large amount of current.If the current is not constrained by the external circuit, the diode would getdamaged.

    M. B. Patil, IIT Bombay

    Reverse breakdown

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    35/112

    0

    −20

    20

    40

    V (Volts)

       i   (  m   A   )

    Symbol for a Zener diode

     

    −6 −5 −4 −3 −2 −1 0 1

    V

    i

    M. B. Patil, IIT Bombay

    Reverse breakdown

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    36/112

    0

    −20

    20

    40

    V (Volts)

       i   (  m   A   )

    Symbol for a Zener diode

     

    −6 −5 −4 −3 −2 −1 0 1

    V

    i

    *  A wide variety of diodes is available, with  V BR  ranging from a few Volts to a fewthousand Volts! Generally, higher the breakdown voltage, higher is the cost.

    M. B. Patil, IIT Bombay

    Reverse breakdown

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    37/112

    0

    −20

    20

    40

    V (Volts)

       i   (  m   A   )

    Symbol for a Zener diode

     

    −6 −5 −4 −3 −2 −1 0 1

    V

    i

    *  A wide variety of diodes is available, with  V BR  ranging from a few Volts to a fewthousand Volts! Generally, higher the breakdown voltage, higher is the cost.

    *   Diodes with high  V BR  are generally used in power electronics applications andare therefore also designed to carry a large forward current (tens or hundreds of Amps).

    M. B. Patil, IIT Bombay

    Reverse breakdown

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    38/112

    0

    −20

    20

    40

    V (Volts)

       i   (  m   A   )

    Symbol for a Zener diode

     

    −6 −5 −4 −3 −2 −1 0 1

    V

    i

    *  A wide variety of diodes is available, with  V BR  ranging from a few Volts to a fewthousand Volts! Generally, higher the breakdown voltage, higher is the cost.

    *   Diodes with high  V BR  are generally used in power electronics applications andare therefore also designed to carry a large forward current (tens or hundreds of Amps).

    *  Typically, circuits are designed so that the reverse bias across any diode is lessthan the  V BR  rating for that diode.

    M. B. Patil, IIT Bombay

    Reverse breakdown

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    39/112

    0

    −20

    20

    40

    V (Volts)

       i   (  m   A   )

    Symbol for a Zener diode

     

    −6 −5 −4 −3 −2 −1 0 1

    V

    i

    *  A wide variety of diodes is available, with  V BR  ranging from a few Volts to a fewthousand Volts! Generally, higher the breakdown voltage, higher is the cost.

    *   Diodes with high  V BR  are generally used in power electronics applications andare therefore also designed to carry a large forward current (tens or hundreds of Amps).

    *  Typically, circuits are designed so that the reverse bias across any diode is lessthan the  V BR  rating for that diode.

    *  “Zener” diodes typically have  V BR  of a few Volts, which is denoted by  V Z . Theyare often used to limit the voltage swing in electronic circuits.

    M. B. Patil, IIT Bombay

    Diode types

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    40/112

    Apart from their use as switches, diodes are also used for several other purposes. Thechoice of materials used, fabrication techniques, and packaging depend on thefunctionality expected from the device.

    M. B. Patil, IIT Bombay

    Diode types

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    41/112

    Apart from their use as switches, diodes are also used for several other purposes. Thechoice of materials used, fabrication techniques, and packaging depend on thefunctionality expected from the device.

    *   Light-emitting diodes (LEDs)  emit light when a forward bias is applied.Typically, LEDs are made of III-V semiconductors.

    An LED emits light of a specific wavelength (e.g., red, green, yellow, blue).

    White LEDs combine individual LEDs that emit the three primary colors (red,green, blue) or use a phosphor material to convert monochromatic light from ablue or UV LED to broad-spectrum white light.

    M. B. Patil, IIT Bombay

    Diode types

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    42/112

    Apart from their use as switches, diodes are also used for several other purposes. Thechoice of materials used, fabrication techniques, and packaging depend on thefunctionality expected from the device.

    *   Light-emitting diodes (LEDs)  emit light when a forward bias is applied.Typically, LEDs are made of III-V semiconductors.

    An LED emits light of a specific wavelength (e.g., red, green, yellow, blue).

    White LEDs combine individual LEDs that emit the three primary colors (red,green, blue) or use a phosphor material to convert monochromatic light from ablue or UV LED to broad-spectrum white light.

    *   Semiconductor lasers  are essentially light-emitting diodes with structuralmodifications that establish conditions for coherent light.

    M. B. Patil, IIT Bombay

    Diode types

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    43/112

    Apart from their use as switches, diodes are also used for several other purposes. Thechoice of materials used, fabrication techniques, and packaging depend on thefunctionality expected from the device.

    *   Light-emitting diodes (LEDs)  emit light when a forward bias is applied.Typically, LEDs are made of III-V semiconductors.

    An LED emits light of a specific wavelength (e.g., red, green, yellow, blue).

    White LEDs combine individual LEDs that emit the three primary colors (red,green, blue) or use a phosphor material to convert monochromatic light from ablue or UV LED to broad-spectrum white light.

    *   Semiconductor lasers  are essentially light-emitting diodes with structuralmodifications that establish conditions for coherent light.

    (source: wikipedia)

    M. B. Patil, IIT Bombay

    Diode types

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    44/112

    *   Solar cells  are generally silicon diodes designed to generate current efficientlywhen solar radiation is incident on the device. A “solar panel” has a large

    number of individual solar cells connected in series/parallel configuration.A solar cell can be modelled as a diode in parallel with a current source(representing the photocurrent). In addition, parasitic series and shuntresistances need to be considered.

    M. B. Patil, IIT Bombay

    Diode types

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    45/112

    *   Solar cells  are generally silicon diodes designed to generate current efficientlywhen solar radiation is incident on the device. A “solar panel” has a large

    number of individual solar cells connected in series/parallel configuration.A solar cell can be modelled as a diode in parallel with a current source(representing the photocurrent). In addition, parasitic series and shuntresistances need to be considered.

    photo

    current

    p

    n

    Rseries

    Rshunt

    M. B. Patil, IIT Bombay

    Diode types

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    46/112

    *   Solar cells  are generally silicon diodes designed to generate current efficientlywhen solar radiation is incident on the device. A “solar panel” has a large

    number of individual solar cells connected in series/parallel configuration.A solar cell can be modelled as a diode in parallel with a current source(representing the photocurrent). In addition, parasitic series and shuntresistances need to be considered.

    photo

    current

    p

    n

    Rseries

    Rshunt

    *   Photodiodes  are used to detect optical signals (DC or time-varying) and toconvert them into electrical signals which can be subsequently processed by

    electronic circuits. They are used in fibre-optic communication systems, imageprocessing, etc.

    A photodiode works on the same principle as a solar cell, i.e., it converts lightinto a current. However, its design is optimized for high-sensitivity, low-noise, orhigh-frequency operation, depending on the application.

    M. B. Patil, IIT Bombay

    Diode circuit analysis

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    47/112

    *   In DC situations, for each diode in the circuit, we need to establish whether it ison or off, replace it with the corresponding equivalent circuit, and then obtainthe quantities of interest.

    M. B. Patil, IIT Bombay

    Diode circuit analysis

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    48/112

    *   In DC situations, for each diode in the circuit, we need to establish whether it ison or off, replace it with the corresponding equivalent circuit, and then obtainthe quantities of interest.

    *   In transient analysis, we need to find the time points at which a diode turns onor off, and analyse the circuit in intervals between these time points.

    M. B. Patil, IIT Bombay

    Diode circuit analysis

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    49/112

    *   In DC situations, for each diode in the circuit, we need to establish whether it ison or off, replace it with the corresponding equivalent circuit, and then obtainthe quantities of interest.

    *   In transient analysis, we need to find the time points at which a diode turns onor off, and analyse the circuit in intervals between these time points.

    *   In AC (small-signal) situations, the diode can be replaced by its small-signalmodel, and phasor analysis is used. We will illustrate this procedure for a BJTamplifier later.

    M. B. Patil, IIT Bombay

    Diode circuit analysis

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    50/112

    *   In DC situations, for each diode in the circuit, we need to establish whether it ison or off, replace it with the corresponding equivalent circuit, and then obtainthe quantities of interest.

    *   In transient analysis, we need to find the time points at which a diode turns onor off, and analyse the circuit in intervals between these time points.

    *   In AC (small-signal) situations, the diode can be replaced by its small-signalmodel, and phasor analysis is used. We will illustrate this procedure for a BJTamplifier later.

    *  Note that there are diode circuits in which the exponential nature of the diodeI-V relationship is made use of. For these circuits, computer simulation would berequired to solve the resulting non-linear equations.

    M. B. Patil, IIT Bombay

    Diode circuit example

    6 k

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    51/112

    36 V3 k

    6 k

    1 k

    i=?D

    A B

    C

    IDR1

    R2  R3

    0.7 VVD

    Diode circuit example

    6 k

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    52/112

    36 V3 k

    6 k

    1 k

    i=?D

    A B

    C

    IDR1

    R2  R3

    0.7 VVD

    Case 1: D is off.

    36 V3 k

    6 k

    1 k

    i

    A B

    C

    R1

    R2  R3

    Diode circuit example

    6 k

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    53/112

    36 V3 k

    6 k

    1 k

    i=?D

    A B

    C

    IDR1

    R2  R3

    0.7 VVD

    Case 1: D is off.

    36 V3 k

    6 k

    1 k

    i

    A B

    C

    R1

    R2  R3

    VAB   = VAC   =3

    9 × 36 = 12 V ,

    which is not consistent with ourassumption of D being off.

    Diode circuit example

    6 k

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    54/112

    36 V3 k

    6 k

    1 k

    i=?D

    A B

    C

    IDR1

    R2  R3

    0.7 VVD

    Case 1: D is off.

    36 V3 k

    6 k

    1 k

    i

    A B

    C

    R1R2

      R3

    VAB   = VAC   =3

    9 × 36 = 12 V ,

    which is not consistent with ourassumption of D being off.

    →D must be on.

    Diode circuit example

    6 kA B

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    55/112

    36 V3 k

    6 k

    1 k

    i=?D

    A B

    C

    IDR1

    R2  R3

    0.7 VVD

    Case 1: D is off.

    36 V3 k

    6 k

    1 k

    i

    A B

    C

    R1R2

      R3

    VAB   = VAC   =3

    9 × 36 = 12 V ,

    which is not consistent with ourassumption of D being off.

    →D must be on.

    36 V3 k

    6 k

    1 k

    i

    A B

    C

    Case 2: D is on.

    R1R2

      R3

    0.7 V

    Diode circuit example

    6 kA B

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    56/112

    36 V3 k

    6 k

    1 k

    i=?D

    A B

    C

    IDR1

    R2  R3

    0.7 VVD

    Case 1: D is off.

    36 V3 k

    6 k

    1 k

    i

    A B

    C

    R1R2

      R3

    VAB   = VAC   =3

    9 × 36 = 12 V ,

    which is not consistent with ourassumption of D being off.

    →D must be on.

    36 V3 k

    6 k

    1 k

    i

    A B

    C

    Case 2: D is on.

    R1R2

      R3

    0.7 V

    Taking VC  = 0 V,

    VA − 36

    6 k  +

    VA3 k

     +VA − 0.7

    1 k  = 0 ,

    →   VA  = 4.47 V,   i = 3.77 mA .

    Diode circuit example

    6 kA B

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    57/112

    36 V3 k

    6

    1 k

    i=?D

    A B

    C

    IDR1

    R2  R3

    0.7 VVD

    Case 1: D is off.

    36 V3 k

    6 k

    1 k

    i

    A B

    C

    R1R2

      R3

    VAB   = VAC   =3

    9 × 36 = 12 V ,

    which is not consistent with ourassumption of D being off.

    →D must be on.

    36 V3 k

    6 k

    1 k

    i

    A B

    C

    Case 2: D is on.

    R1R2

      R3

    0.7 V

    Taking VC  = 0 V,

    VA − 36

    6 k  +

    VA3 k

     +VA − 0.7

    1 k  = 0 ,

    →   VA  = 4.47 V,   i = 3.77 mA .

    Remark: Often, we can figure out by inspection if a diode is on or off.

    M. B. Patil, IIT Bombay

    Diode circuit example

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    58/112

    1 V

    1 k

    1.5 k

    0.5 k

    B

    A

    (a) Plot Vo versus Vi for −5 V < Vi  < 5 V .

    (b) Plot Vo(t)  for a triangular input:

    −5 V to +5 V, 500 Hz.

    ID

    Vi   Vo

    R1

    R2

    D2

    R

    i2i1

    D1

    0.7 VVD

    M. B. Patil, IIT Bombay

    Diode circuit example

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    59/112

    1 V

    1 k

    1.5 k

    0.5 k

    B

    A

    (a) Plot Vo versus Vi for −5 V < Vi  < 5 V .

    (b) Plot Vo(t)  for a triangular input:

    −5 V to +5 V, 500 Hz.

    ID

    Vi   Vo

    R1

    R2

    D2

    R

    i2i1

    D1

    0.7 VVD

    First, let us show that  D 1   on  ⇒  D 2  off, and  D 2  on  ⇒  D 1   off.

    M. B. Patil, IIT Bombay

    Diode circuit example

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    60/112

    1 V

    1 k

    1.5 k

    0.5 k

    B

    A

    (a) Plot Vo versus Vi for −5 V < Vi  < 5 V .

    (b) Plot Vo(t)  for a triangular input:

    −5 V to +5 V, 500 Hz.

    ID

    Vi   Vo

    R1

    R2

    D2

    R

    i2i1

    D1

    0.7 VVD

    First, let us show that  D 1   on  ⇒  D 2  off, and  D 2  on  ⇒  D 1   off.

    Consider D 1  to be on  → V AB   = 0.7 + 1 + i 1R 1 .

    M. B. Patil, IIT Bombay

    Diode circuit example

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    61/112

    1 V

    1 k

    1.5 k

    0.5 k

    B

    A

    (a) Plot Vo versus Vi for −5 V < Vi  < 5 V .

    (b) Plot Vo(t)  for a triangular input:

    −5 V to +5 V, 500 Hz.

    ID

    Vi   Vo

    R1

    R2

    D2

    R

    i2i1

    D1

    0.7 VVD

    First, let us show that  D 1   on  ⇒  D 2  off, and  D 2  on  ⇒  D 1   off.

    Consider D 1  to be on  → V AB   = 0.7 + 1 + i 1R 1 .

    Note that   i 1  > 0, since  D 1  can only conduct in the forward direction.

    ⇒ V AB  > 1.7  V  ⇒D 2  cannot conduct.

    M. B. Patil, IIT Bombay

    Diode circuit example

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    62/112

    1 V

    1 k

    1.5 k

    0.5 k

    B

    A

    (a) Plot Vo versus Vi for −5 V < Vi  < 5 V .

    (b) Plot Vo(t)  for a triangular input:

    −5 V to +5 V, 500 Hz.

    ID

    Vi   Vo

    R1

    R2

    D2

    R

    i2i1

    D1

    0.7 VVD

    First, let us show that  D 1   on  ⇒  D 2  off, and  D 2  on  ⇒  D 1   off.

    Consider D 1  to be on  → V AB   = 0.7 + 1 + i 1R 1 .

    Note that   i 1  > 0, since  D 1  can only conduct in the forward direction.

    ⇒ V AB  > 1.7  V  ⇒D 2  cannot conduct.

    Similarly, if  D 2   is on,  V BA  > 0.7  V , i.e.,  V AB  < −0.7  V  ⇒D 1  cannot conduct.

    M. B. Patil, IIT Bombay

    Diode circuit example

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    63/112

    1 V

    1 k

    1.5 k

    0.5 k

    B

    A

    (a) Plot Vo versus Vi for −5 V < Vi  < 5 V .

    (b) Plot Vo(t)  for a triangular input:

    −5 V to +5 V, 500 Hz.

    ID

    Vi   Vo

    R1

    R2

    D2

    R

    i2i1

    D1

    0.7 VVD

    First, let us show that  D 1   on  ⇒  D 2  off, and  D 2  on  ⇒  D 1   off.

    Consider D 1  to be on  → V AB   = 0.7 + 1 + i 1R 1 .

    Note that   i 1  > 0, since  D 1  can only conduct in the forward direction.

    ⇒ V AB  > 1.7  V  ⇒D 2  cannot conduct.

    Similarly, if  D 2   is on,  V BA  > 0.7  V , i.e.,  V AB  < −0.7  V  ⇒D 1  cannot conduct.

    Clearly,  D 1   on  ⇒  D 2  off, and  D 2  on  ⇒  D 1  off.

    M. B. Patil, IIT Bombay

    Diode circuit example (continued)

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    64/112

    *   For −0.7   V   < V i    < 1.7  V , both   D 1   and  D 2  are off.

    → no drop across  R , and  V o   =  V i . (1)

    1 V

    1 k

    1.5 k

    0.5 k

    A

    B

    Vi   Vo

    R1

    R2

    D2

    R

    i2i1

    D1

    M. B. Patil, IIT Bombay

    Diode circuit example (continued)

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    65/112

    *   For −0.7   V   < V i    < 1.7  V , both   D 1   and  D 2  are off.

    → no drop across  R , and  V o   =  V i . (1)

    *   For V i    < −0.7  V ,   D 2  conducts.   → V o   = −0.7 − i 2R 2 .

    Use KVL to get   i 2:   V i  + i 2R 2 + 0.7 +  Ri 2  = 0.

    → i 2  = −V i  + 0.7

    R  + R 2, and

    V o   = −0.7 − R 2i 2  =  R 2

    R  + R 2V i  − 0.7

      R 

    R  +  R 2. (2)

    1 V

    1 k

    1.5 k

    0.5 k

    A

    B

    Vi   Vo

    R1

    R2

    D2

    R

    i2i1

    D1

    M. B. Patil, IIT Bombay

    Diode circuit example (continued)

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    66/112

    *   For −0.7   V   < V i    < 1.7  V , both   D 1   and  D 2  are off.

    → no drop across  R , and  V o   =  V i . (1)

    *   For V i    < −0.7  V ,   D 2  conducts.   → V o   = −0.7 − i 2R 2 .

    Use KVL to get   i 2:   V i  + i 2R 2 + 0.7 +  Ri 2  = 0.

    → i 2  = −V i  + 0.7

    R  + R 2, and

    V o   = −0.7 − R 2i 2  =  R 2

    R  + R 2V i  − 0.7

      R 

    R  +  R 2. (2)

    *   For V i    > 1.7  V ,  D 1   conducts.  → V o   = 0.7 + 1 +  i 1R 1 .

    Use KVL to get   i 1:   −V i   + i 1R  + 0.7 + 1 + i 1R 1  = 0.

    → i 1  =  V i  − 1.7

    R  + R 1, and

    V o   = 1.7 +  R 1i 1  =  R 1

    R  + R 1

    V i   + 1.7  R 

    R  +  R 1

    . (3)

    1 V

    1 k

    1.5 k

    0.5 k

    A

    B

    Vi   Vo

    R1

    R2

    D2

    R

    i2i1

    D1

    M. B. Patil, IIT Bombay

    Diode circuit example (continued)

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    67/112

    *   For −0.7   V   < V i    < 1.7  V , both   D 1   and  D 2  are off.

    → no drop across  R , and  V o   =  V i . (1)

    *   For V i    < −0.7  V ,   D 2  conducts.   → V o   = −0.7 − i 2R 2 .

    Use KVL to get   i 2:   V i  + i 2R 2 + 0.7 +  Ri 2  = 0.

    → i 2  = −V i  + 0.7

    R  + R 2, and

    V o   = −0.7 − R 2i 2  =  R 2

    R  + R 2V i  − 0.7

      R 

    R  +  R 2. (2)

    *   For V i    > 1.7  V ,  D 1   conducts.  → V o   = 0.7 + 1 +  i 1R 1 .

    Use KVL to get   i 1:   −V i   + i 1R  + 0.7 + 1 + i 1R 1  = 0.

    → i 1  =  V i  − 1.7

    R  + R 1, and

    V o   = 1.7 +  R 1i 1  =  R 1

    R  + R 1

    V i   + 1.7  R 

    R  +  R 1

    . (3)

    *   Using Eqs. (1)-(3), we plot   V o   versus   V i .

    (SEQUEL file:   ee101 diode circuit 1.sqproj)

    1 V

    1 k

    1.5 k

    0.5 k

    A

    B

    Vi   Vo

    R1

    R2

    D2

    R

    i2i1

    D1

    M. B. Patil, IIT Bombay

    Diode circuit example (continued)

    http://goforward/http://find/http://goback/

  • 8/9/2019 Ee101 Diodes 1

    68/112

    *   For −0.7   V   < V i    < 1.7  V , both   D 1   and  D 2  are off.

    → no drop across  R , and  V o   =  V i . (1)

    *   For V i    < −0.7  V ,   D 2  conducts.   → V o   = −0.7 − i 2R 2 .

    Use KVL to get   i 2:   V i  + i 2R 2 + 0.7 +  Ri 2  = 0.

    → i 2  = −V i  + 0.7

    R  + R 2, and

    V o   = −0.7 − R 2i 2  =  R 2

    R  + R 2V i  − 0.7

      R 

    R  +  R 2. (2)

    *   For V i    > 1.7  V ,  D 1   conducts.  → V o   = 0.7 + 1 +  i 1R 1 .

    Use KVL to get   i 1:   −V i   + i 1R  + 0.7 + 1 + i 1R 1  = 0.

    → i 1  =  V i  − 1.7

    R  + R 1, and

    V o   = 1.7 +  R 1i 1  =  R 1

    R  + R 1V i   + 1.7

      R 

    R  +  R 1. (3)

    *   Using Eqs. (1)-(3), we plot   V o   versus   V i .

    (SEQUEL file:   ee101 diode circuit 1.sqproj)

    1 V

    1 k

    1.5 k

    0.5 k

    A

    B

    Vi   Vo

    R1

    R2

    D2

    R

    i2i1

    D1

     

    −5 0 5

    −0.7   1.7

    −5

    0

    5

    Vo

    Vi

    D1  off 

    D2  on

    D1  on

    D2  off 

    D1  off 

    D2  off 

    M. B. Patil, IIT Bombay

    Diode circuit example (continued)

    A5 5

    R

    Vo   Vo

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    69/112

    t (msec)

    t (msec)

     t   (  m s 

     e c  )  

     t   (  m s 

     e c  )  

    1 V

    1 k

    1.5 k

    0.5 k

    B

     

     0 

     1 

     2 

     

    0 1 2

     

    −5 0 5

    0

     

     0 

      0 . 5 

     1 

     1 . 5 

     2 

     0 1 2

    0

    −5−5

    −5 0 5

    Vo

    R1

    R2

    D2

    i2i1

    D1

    Vi

    t2t1

    Point-by-point construction of 

    are shown as examples.

    Two time points, t1 and t2,

    Vo versus t:

    Vi

    Vi

    D1 off 

    D2 on

    D1  on

    D2  off 

    D1  off 

    D2  off 

    M. B. Patil, IIT Bombay

    Diode circuit example

    D

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    70/112

    Plot Vo   versus Vi   for −5 V < Vi  < 5 V .

    I

    D

    Vi   VoR2

    R1

    D

    0.7 VVD

    1 k

    0.5 k

    Diode circuit example

    D

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    71/112

    Plot Vo   versus Vi   for −5 V < Vi  < 5 V .

    I

    D

    Vi   VoR2

    R1

    D

    0.7 VVD

    1 k

    0.5 k

    D on

    0.7 V

    Vi   VoR2

    R1

    Vo   = Vi − 0.7

    Diode circuit example

    D0 7 V VD

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    72/112

    Plot Vo   versus Vi   for −5 V < Vi  < 5 V .

    I

    D

    Vi   VoR2

    R1

    D

    0.7 VVD

    1 k

    0.5 k

    D on

    0.7 V

    Vi   VoR2

    R1

    Vo   = Vi − 0.7

    D off

    Vi   VoR2

    R1

    VD

    Vo  =R2

    R1 + R2

    Vi

    M. B. Patil, IIT Bombay

    Diode circuit example

    D0 7 V VD

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    73/112

    Plot Vo   versus Vi   for −5 V < Vi  < 5 V .

    ID

    Vi   VoR2

    R1

    0.7 VVD

    1 k

    0.5 k

    D on

    0.7 V

    Vi   VoR2

    R1

    Vo   = Vi − 0.7

    D off

    Vi   VoR2

    R1

    VD

    Vo  =R2

    R1 + R2

    Vi

    At what value of  V i  will the diode turn on?

    M. B. Patil, IIT Bombay

    Diode circuit example

    D0 7 V VD

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    74/112

    Plot Vo   versus Vi   for −5 V < Vi  < 5 V .

    ID

    Vi   VoR2

    R1

    0.7 VVD

    1 k

    0.5 k

    D on

    0.7 V

    Vi   VoR2

    R1

    Vo   = Vi − 0.7

    D off

    Vi   VoR2

    R1

    VD

    Vo  =R2

    R1 + R2

    Vi

    At what value of  V i  will the diode turn on?

    In the off state,  V D   =  R 1

    R 1 +  R 2V i  .

    M. B. Patil, IIT Bombay

    Diode circuit example

    D0 7 V VD

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    75/112

    Plot Vo   versus Vi   for −5 V < Vi  < 5 V .

    ID

    Vi   VoR2

    R1

    0.7 VVD

    1 k

    0.5 k

    D on

    0.7 V

    Vi   VoR2

    R1

    Vo   = Vi − 0.7

    D off

    Vi   VoR2

    R1

    D

    Vo  =R2

    R1 + R2

    Vi

    At what value of  V i  will the diode turn on?

    In the off state,  V D   =  R 1

    R 1 +  R 2V i  .

    For  D  to change to the on state,  V D   = 0.7  V .

    i.e.,  V i   =

      R 1 +  R 2

    R 1 × 0.7 = 1.05  V .

    M. B. Patil, IIT Bombay

    Diode circuit example

    D0.7 V VD

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    76/112

    Plot Vo   versus Vi   for −5 V < Vi  < 5 V .

    ID

    Vi   VoR2

    R1

    0.7 VVD

    1 k

    0.5 k

    D on

    0.7 V

    Vi   VoR2

    R1

    Vo   = Vi − 0.7

    D off

    Vi   VoR2

    R1

    D

    Vo  =R2

    R1 + R2

    Vi

    At what value of  V i  will the diode turn on?

    In the off state,  V D   =  R 1

    R 1 +  R 2V i  .

    For  D  to change to the on state,  V D   = 0.7  V .

    i.e.,  V i   =

      R 1 +  R 2

    R 1 × 0.7 = 1.05  V .

    (SEQUEL file:   ee101 diode circuit 2.sqproj)

    M. B. Patil, IIT Bombay

    Diode circuit example

    D0.7 V VD

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    77/112

    Plot Vo   versus Vi   for −5 V < Vi  < 5 V .

    ID

    Vi   VoR2

    R1

    0.7 VVD

    1 k

    0.5 k

    D on

    Vi   VoR2

    R1

    Vo   = Vi − 0.7

    D off

    Vi   VoR2

    R1

    D

    Vo  =R2

    R1 + R2

    Vi

    At what value of  V i  will the diode turn on?

    In the off state,  V D   =  R 1

    R 1 +  R 2V i  .

    For  D  to change to the on state,  V D   = 0.7  V .

    i.e.,  V i   =

      R 1 +  R 2

    R 1 × 0.7 = 1.05  V .

    (SEQUEL file:   ee101 diode circuit 2.sqproj)

     

    −5 0 5

    1.05

    0

    5

    −5

    Vo

    Vi

    D onD off 

    M. B. Patil, IIT Bombay

    Diode circuit example

    D1   D2R1

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    78/112

    1 k

    1 k

    Von   = 0.7 V, VZ   = 5 V.

    Plot Vo  versus Vi.

    V

    i

      VoR2

    Diode circuit example

    D1   D2R1

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    79/112

    1 k

    1 k

    Von   = 0.7 V, VZ   = 5 V.

    Plot Vo  versus Vi.

    V

    i

      VoR2

    5 V0.7 V1 k

    1 k

    Vo  = i R2  =Vi − 5.7

    R1 + R2R2

    Since i > 0, this can happen only when Vi  > 5.7 V.

    D1 on (forward), D2 in reverse breakdown

    For a current to flow, we have two possibilities:

    i

    Vi   Vo

    R1

    R2

    Diode circuit example

    D1   D2R1

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    80/112

    1 k

    1 k

    Von   = 0.7 V, VZ   = 5 V.

    Plot Vo  versus Vi.

    V

    i

      VoR2

    5 V0.7 V1 k

    1 k

    Vo  = i R2  =Vi − 5.7

    R1 + R2R2

    Since i > 0, this can happen only when Vi  > 5.7 V.

    D1 on (forward), D2 in reverse breakdown

    For a current to flow, we have two possibilities:

    i

    Vi   Vo

    R1

    R2

    5 V 0.7 V1 k

    1 k

    Vo  = −i R2  =Vi +   5.7

    R1 + R2R2

    Since i > 0, this can happen only when Vi  < -5.7 V.

    D2 on (forward), D1 in reverse breakdown

    i

    Vi   Vo

    R1

    R2

    Diode circuit example

    D1   D2R11.5

    Vo

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    81/112

    1 k

    1 k

    Von   = 0.7 V, VZ   = 5 V.

    Plot Vo  versus Vi.

    V

    i

      VoR2

    5 V0.7 V1 k

    1 k

    Vo  = i R2  =Vi − 5.7

    R1 + R2R2

    Since i > 0, this can happen only when Vi  > 5.7 V.

    D1 on (forward), D2 in reverse breakdown

    For a current to flow, we have two possibilities:

    i

    Vi   Vo

    R1

    R2

    5 V 0.7 V1 k

    1 k

    Vo  = −i R2  =Vi +   5.7

    R1 + R2R2

    Since i > 0, this can happen only when Vi  < -5.7 V.

    D2 on (forward), D1 in reverse breakdown

    i

    Vi   Vo

    R1

    R2

    0

    −1.5 

    −8 −4 4 80

    D2 r.b.D1 r.b.D1 r.b. D2 r.b.Vi

    (breakdown)(breakdown)

    M. B. Patil, IIT Bombay

    Diode circuit example

    D1   D2R11.5

    Vo

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    82/112

    1 k

    1 k

    Von   = 0.7 V, VZ   = 5 V.

    Plot Vo  versus Vi.

    Vi   VoR2

    5 V0.7 V1 k

    1 k

    Vo  = i R2  =Vi − 5.7

    R1 + R2R2

    Since i > 0, this can happen only when Vi  > 5.7 V.

    D1 on (forward), D2 in reverse breakdown

    For a current to flow, we have two possibilities:

    i

    Vi   Vo

    R1

    R2

    5 V 0.7 V1 k

    1 k

    Vo  = −i R2  =Vi +   5.7

    R1 + R2R2

    Since i > 0, this can happen only when Vi  < -5.7 V.

    D2 on (forward), D1 in reverse breakdown

    i

    Vi   Vo

    R1

    R2

    0

    −1.5 

    −8 −4 4 80

    D2 r.b.D1 r.b.D1 r.b. D2 r.b.Vi

    (breakdown)(breakdown)

    (SEQUEL file:   ee101 diode circuit 3.sqproj)

    M. B. Patil, IIT Bombay

    Diode circuit example (voltage limiter)

    1 k

    R

    http://goforward/http://find/http://goback/

  • 8/9/2019 Ee101 Diodes 1

    83/112

    Von   = 0.7 V, VZ   = 5 V.

    Plot Vo  versus Vi.

    Vi

    D2

    D1

    Vo

    Diode circuit example (voltage limiter)

    1 k

    R

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    84/112

    Von   = 0.7 V, VZ   = 5 V.

    Plot Vo  versus Vi.

    Vi

    D2

    D1

    Vo

    1 ki

    0.7 V

    5 V

    D1 on (forward), D2 in reverse breakdown

    For a current to flow, we have two possibilities:

    Vi

    R

    Vo

    D2

    D1

    Vi  > 5.7 V

    Vo   = 5.7 V

    C

    Diode circuit example (voltage limiter)

    1 k

    R

    D

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    85/112

    Von   = 0.7 V, VZ   = 5 V.

    Plot Vo  versus Vi.

    Vi

    D2

    D1

    Vo

    1 ki

    0.7 V

    5 V

    D1 on (forward), D2 in reverse breakdown

    For a current to flow, we have two possibilities:

    Vi

    R

    Vo

    D2

    D1

    Vi  > 5.7 V

    Vo   = 5.7 V

    C

    1 ki

    0.7 V

    5 V

    D2 on (forward), D1 in reverse breakdown

    Vi

    R

    Vo

    D2

    D1Vo   = −5.7 V

    Vi  < −5.7 VA

    Diode circuit example (voltage limiter)

    1 k

    R

    D

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    86/112

    Von   = 0.7 V, VZ   = 5 V.

    Plot Vo  versus Vi.

    Vi

    D2

    D1

    Vo

    1 ki

    0.7 V

    5 V

    D1 on (forward), D2 in reverse breakdown

    For a current to flow, we have two possibilities:

    Vi

    R

    Vo

    D2

    D1

    Vi  > 5.7 V

    Vo   = 5.7 V

    C

    1 ki

    0.7 V

    5 V

    D2 on (forward), D1 in reverse breakdown

    Vi

    R

    Vo

    D2

    D1Vo   = −5.7 V

    Vi  < −5.7 VA

    In the range,  −5.7 V < Vi  < 5.7 V, no current flows, and Vo   = Vi.   B

    Diode circuit example (voltage limiter)

    1 k

    R

    D1 4

     8Vo

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    87/112

    Von   = 0.7 V, VZ   = 5 V.

    Plot Vo  versus Vi.

    Vi

    D2

    D1

    Vo

    1 ki

    0.7 V

    5 V

    D1 on (forward), D2 in reverse breakdown

    For a current to flow, we have two possibilities:

    Vi

    R

    Vo

    D2

    D1

    Vi  > 5.7 V

    Vo   = 5.7 V

    C

    1 ki

    0.7 V

    5 V

    D2 on (forward), D1 in reverse breakdown

    Vi

    R

    Vo

    D2

    D1Vo   = −5.7 V

    Vi  < −5.7 VA

    In the range,  −5.7 V < Vi  < 5.7 V, no current flows, and Vo   = Vi.   B

     

    −8 −4 0 4 8

     4

     0

    −4

    −8

    Vi

    A   B   C

    (SEQUEL file:  ee101 diode circuit 4.sqproj)M. B. Patil, IIT Bombay

    Peak detector

    10

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    88/112

     

    time (msec) 0 1 2

    VoVi

    0C

    D

    10

    -10

    Vo (V)

    Vi  (V)

    M. B. Patil, IIT Bombay

    Peak detector

    10

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    89/112

     

    time (msec) 0 1 2

    VoVi

    0C

    D

    10

    -10

    Vo (V)

    Vi  (V)

    Let  V o (t ) = 0  V   at   t  = 0, and assume the diode to be ideal, with  V on  = 0  V .

    M B Patil IIT Bombay

    Peak detector

    10

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    90/112

     

    time (msec) 0 1 2

    VoVi

    0C

    D

    10

    -10

    Vo (V)

    Vi  (V)

    Let  V o (t ) = 0  V   at   t  = 0, and assume the diode to be ideal, with  V on  = 0  V .

    For 0 <  t  <  T /4,  V i  rises from 0 to  V m. As a result, the capacitor charges.

    M B Patil IIT Bombay

    Peak detector

    10

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    91/112

     

    time (msec) 0 1 2

    VoVi

    0C

    D

    10

    -10

    Vo (V)

    Vi  (V)

    Let  V o (t ) = 0  V   at   t  = 0, and assume the diode to be ideal, with  V on  = 0  V .

    For 0 <  t  <  T /4,  V i  rises from 0 to  V m. As a result, the capacitor charges.

    Since the on resistance of the diode is small, time constant  τ   T /4; therefore thecharging process is instantaneous  ⇒ V o (t ) =  V i (t ).

    M B Patil IIT Bombay

    Peak detector

    10

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    92/112

     

    time (msec) 0 1 2

    VoVi

    0C

    D

    10

    -10

    Vo (V)

    Vi  (V)

    Let  V o (t ) = 0  V   at   t  = 0, and assume the diode to be ideal, with  V on  = 0  V .

    For 0 <  t  <  T /4,  V i  rises from 0 to  V m. As a result, the capacitor charges.

    Since the on resistance of the diode is small, time constant  τ   T /4; therefore thecharging process is instantaneous  ⇒ V o (t ) =  V i (t ).

    For   t  > T /4,  V i  starts falling. The capacitor holds the charge it had at  t  = T /4 since

    the diode prevents discharging.

    M B Patil IIT Bombay

    Peak detector

    10

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    93/112

     

    time (msec) 0 1 2

    VoVi

    0C

    D

    0

    -10

    Vo (V)

    Vi  (V)

    Let  V o (t ) = 0  V   at   t  = 0, and assume the diode to be ideal, with  V on  = 0  V .

    For 0 <  t  <  T /4,  V i  rises from 0 to  V m. As a result, the capacitor charges.

    Since the on resistance of the diode is small, time constant  τ   T /4; therefore thecharging process is instantaneous  ⇒ V o (t ) =  V i (t ).

    For   t  > T /4,  V i  starts falling. The capacitor holds the charge it had at  t  = T /4 since

    the diode prevents discharging.

    SEQUEL file:   ee101 diode circuit 5.sqproj

    M B Patil IIT Bombay

    Peak detector (continued)

    10

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    94/112

    5 k 

    time (msec) 0 1 2

     

    VoVi RC

    D

    1µF

    10

    -10

    0

    Vi (V)

    Vo (V)

    M B Patil IIT Bombay

    Peak detector (continued)

    10

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    95/112

    5 k 

    time (msec) 0 1 2

     

    VoVi RC

    D

    1µF

    -10

    0

    Vi (V)

    Vo (V)

    If a resistor is added in parallel, a discharging path is provided for the capacitor, andthe capacitor voltage falls after reaching the peak.

    M B Patil IIT Bombay

    Peak detector (continued)

    10

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    96/112

    5 k 

    time (msec) 0 1 2

     

    VoVi RC

    D

    1µF

    -10

    0

    Vi (V)

    Vo (V)

    If a resistor is added in parallel, a discharging path is provided for the capacitor, andthe capacitor voltage falls after reaching the peak.

    When  V i  > V o , the capacitor charges again. The time constant for the chargingprocess is  τ  = R ThC , where  R Th  =  R   R on   is the Thevenin resistance seen by thecapacitor,  R on  being the on resistance of the diode.

    M B Patil IIT Bombay

    Peak detector (continued)

    10

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    97/112

    5 k 

    time (msec) 0 1 2

     

    VoVi RC

    D

    1µF

    -10

    0

    Vi (V)

    Vo (V)

    If a resistor is added in parallel, a discharging path is provided for the capacitor, andthe capacitor voltage falls after reaching the peak.

    When  V i  > V o , the capacitor charges again. The time constant for the chargingprocess is  τ  = R ThC , where  R Th  =  R   R on   is the Thevenin resistance seen by thecapacitor,  R on  being the on resistance of the diode.

    Since τ   T , the charging process is instantaneous.

    M B Patil IIT Bombay

    Peak detector (continued)

    10

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    98/112

    5 k 

    time (msec) 0 1 2

     

    VoVi RC

    D

    1µF

    -10

    0

    Vi (V)

    Vo (V)

    If a resistor is added in parallel, a discharging path is provided for the capacitor, andthe capacitor voltage falls after reaching the peak.

    When  V i  > V o , the capacitor charges again. The time constant for the chargingprocess is  τ  = R ThC , where  R Th  =  R   R on   is the Thevenin resistance seen by thecapacitor,  R on  being the on resistance of the diode.

    Since τ   T , the charging process is instantaneous.SEQUEL file:   ee101 diode circuit 5a.sqproj

    M B Patil IIT Bombay

    Peak detector (with  V on  = 0.

    7  V )

    10

    Vo (V)

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    99/112

     

    time (msec) 0 1 2

     

    VoVi   R

    0

    -10

    0

    -10

    10C

    D

    1µF

    Vi (V)

    Vi (V)

    Vo (V)

    R = 1 M

    R = 5 k

    M B P til IIT B mb

    Peak detector (with  V on  = 0.

    7  V )

    10

    Vo (V)

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    100/112

     

    time (msec) 0 1 2

     

    VoVi   R

    0

    -10

    0

    -10

    10C

    D

    1µF

    Vi (V)

    Vi (V)

    Vo (V)

    R = 1 M

    R = 5 k

    With  V on  = 0.7  V , the capacitor charges up to (V m − 0.7  V ).

    M B P til IIT B b

    Peak detector (with  V on  = 0.

    7  V )

    10

    Vo (V)

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    101/112

     

    time (msec) 0 1 2

     

    VoVi   R

    0

    -10

    0

    -10

    10C

    D

    1µF

    Vi (V)

    Vi (V)

    Vo (V)

    R = 1 M

    R = 5 k

    With  V on  = 0.7  V , the capacitor charges up to (V m − 0.7  V ).Apart from that, the circuit operation is similar.

    M. B. Patil, IIT Bombay

    Peak detector (with  V on  = 0.

    7  V )

    10

    Vo (V)

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    102/112

     

    time (msec) 0 1 2

     

    VoVi   R

    0

    -10

    0

    -10

    10C

    D

    1µF

    Vi (V)

    Vi (V)

    Vo (V)

    R = 1 M

    R = 5 k

    With  V on  = 0.7  V , the capacitor charges up to (V m − 0.7  V ).Apart from that, the circuit operation is similar.

    SEQUEL file:   ee101 diode circuit 5a.sqproj

    M. B. Patil, IIT Bombay

    Clamped capacitor

    20VC Vo

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    103/112

    0

    10

     

    0 0.5 1 1.5 2

    time (msec)

    Vi  Vo

    iD

    VC

    Vi

    C

    D

    *   Assume  V on  = 0  V   for the diode.When  D  conducts,  V D   = −V o  = 0 ⇒ V C  + V i  = 0, i.e.,  V C   = −V i .

    M. B. Patil, IIT Bombay

    Clamped capacitor

    20VC Vo

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    104/112

    0

    10

     

    0 0.5 1 1.5 2

    time (msec)

    Vi  Vo

    iD

    VC

    Vi

    C

    D

    *   Assume  V on  = 0  V   for the diode.

    When  D  conducts,  V D   = −V o  = 0 ⇒ V C  + V i  = 0, i.e.,  V C   = −V i .

    *   V C  can only increase with time (or remain constant) since   i D  can only bepositive.

    M. B. Patil, IIT Bombay

    Clamped capacitor

    20VC Vo

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    105/112

    0

    10

     

    0 0.5 1 1.5 2

    time (msec)

    Vi  Vo

    iD

    VC

    Vi

    C

    D

    *   Assume  V on  = 0  V   for the diode.

    When  D  conducts,  V D   = −V o  = 0 ⇒ V C  + V i  = 0, i.e.,  V C   = −V i .

    *   V C  can only increase with time (or remain constant) since   i D  can only bepositive.

    *  The net result is that the capacitor gets charged to a voltage  V C   = −V i ,corresponding to the maxmimum negative value of  V i , and holds that voltagethereafter. Let us call this voltage  V 0

      (a constant).

    M. B. Patil, IIT Bombay

    Clamped capacitor

    20VC Vo

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    106/112

    0

    10

     

    0 0.5 1 1.5 2

    time (msec)

    Vi  Vo

    iD

    VC

    Vi

    C

    D

    *   Assume  V on  = 0  V   for the diode.

    When  D  conducts,  V D   = −V o  = 0 ⇒ V C  + V i  = 0, i.e.,  V C   = −V i .

    *   V C  can only increase with time (or remain constant) since   i D  can only bepositive.

    *  The net result is that the capacitor gets charged to a voltage  V C   = −V i ,corresponding to the maxmimum negative value of  V i , and holds that voltagethereafter. Let us call this voltage  V 0

      (a constant).

    *   V o (t ) =  V C (t ) +  V i (t ) =  V 0

    C  + V i (t ), which is a “level-shifted” version of  V i .

    M. B. Patil, IIT Bombay

    Clamped capacitor

    20VC Vo

    C

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    107/112

    0

    10

     

    0 0.5 1 1.5 2

    time (msec)

    Vi  Vo

    iD

    VC

    Vi

    C

    D

    *   Assume  V on  = 0  V   for the diode.

    When  D  conducts,  V D   = −V o  = 0 ⇒ V C  + V i  = 0, i.e.,  V C   = −V i .

    *   V C  can only increase with time (or remain constant) since   i D  can only bepositive.

    *  The net result is that the capacitor gets charged to a voltage  V C   = −V i ,corresponding to the maxmimum negative value of  V i , and holds that voltagethereafter. Let us call this voltage  V 0

      (a constant).

    *   V o (t ) =  V C (t ) +  V i (t ) =  V 0

    C  + V i (t ), which is a “level-shifted” version of  V i .

    (SEQUEL file:   ee101 diode circuit 6.sqproj)

    M. B. Patil, IIT Bombay

    Voltage doubler

    Diode clamp Peak detector

    A B C

    VC1

    C1 VD2

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    108/112

    −10

    0

    10

    20

    −10

    0

    10

    20

    R100 k

     

    0 1 2 3 4 5 6 7 8 9 10

    time (msec)

     

    0 1 2 3 4 5 6 7 8 9 10

    time (msec)

     

    Von   = 0 V Von   = 0.7 V

    C1

    C2

    VA

    VB

    VC

    D1

    D2

    M. B. Patil, IIT Bombay

    Voltage doubler

    Diode clamp Peak detector

    A B C

    VC1

    C1 VD2

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    109/112

    −10

    0

    10

    20

    −10

    0

    10

    20

    R100 k

     

    0 1 2 3 4 5 6 7 8 9 10

    time (msec)

     

    0 1 2 3 4 5 6 7 8 9 10

    time (msec)

     

    Von   = 0 V Von   = 0.7 V

    C1

    C2

    VA

    VB

    VC

    D1

    D2

    *   The diode clamp shifts  V A  up by  V m  (the amplitude of the AC source), making  V B  go from0 to 2 V m.

    M. B. Patil, IIT Bombay

    Voltage doubler

    Diode clamp Peak detector

    A B C

    VC1

    C1 VAD2

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    110/112

    −10

    0

    10

    20

    −10

    0

    10

    20

    R100 k

     

    0 1 2 3 4 5 6 7 8 9 10

    time (msec)

     

    0 1 2 3 4 5 6 7 8 9 10

    time (msec)

     

    Von   = 0 V Von   = 0.7 V

    C1

    C2

    VA

    VB

    VC

    D1

    D2

    *   The diode clamp shifts  V A  up by  V m  (the amplitude of the AC source), making  V B  go from0 to 2 V m.

    *   The peak detector detects the peak of  V B   (2 V m  w.r.t. ground), and holds it constant.

    M. B. Patil, IIT Bombay

    Voltage doubler

    Diode clamp Peak detector

    A B C

    VC1

    C1 VAD2

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    111/112

    −10

    0

    10

    20

    −10

    0

    10

    20

    R100 k

     

    0 1 2 3 4 5 6 7 8 9 10

    time (msec)

     

    0 1 2 3 4 5 6 7 8 9 10

    time (msec)

     

    Von   = 0 V Von   = 0.7 V

    C1

    C2

    VA

    VB

    VC

    D1

    *   The diode clamp shifts  V 

    A  up by V 

    m  (the amplitude of the AC source), making V 

    B  go from0 to 2 V m.

    *   The peak detector detects the peak of  V B   (2 V m  w.r.t. ground), and holds it constant.

    *   Note that it takes a few cycles to reach steady state. Plot  V C 1,   i D 1,   i D 2   versus  t  and explainthe initial behaviour of the circuit.

    M. B. Patil, IIT Bombay

    Voltage doubler

    Diode clamp Peak detector

    A B C

    VC1

    C1 VAD2

    http://find/

  • 8/9/2019 Ee101 Diodes 1

    112/112

    −10

    0

    10

    20

    −10

    0

    10

    20

    R100 k

     

    0 1 2 3 4 5 6 7 8 9 10

    time (msec)

     

    0 1 2 3 4 5 6 7 8 9 10

    time (msec)

     

    Von   = 0 V Von   = 0.7 V

    C1

    C2

    VA

    VB

    VC

    D1

    *  The diode clamp shifts

      V A  up by

     V m  (the amplitude of the AC source), making

     V B  go from0 to 2 V m.

    *   The peak detector detects the peak of  V B   (2 V m  w.r.t. ground), and holds it constant.

    *   Note that it takes a few cycles to reach steady state. Plot  V C 1,   i D 1,   i D 2   versus  t  and explainthe initial behaviour of the circuit.

    (SEQUEL file:   ee101 voltage doubler.sqproj)

    M. B. Patil, IIT Bombay

    http://find/