EE Policy Opportunities for EM-Driven Systems Paul_Waide

download EE Policy Opportunities for EM-Driven Systems Paul_Waide

of 132

Transcript of EE Policy Opportunities for EM-Driven Systems Paul_Waide

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    1/132

    Energy-EfficiencyPolicy Opportunities

    for ElectricMotor-Driven Systems

    INTERNATIONALENERGYAGENCY

    PAULWAIDEANDCONRADU. BRUNNER

    W O R K IN G PA PE R

    Energy

    Efficiency

    Series

    2011

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    2/132

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    3/132

    Energy-EfficiencyPolicy Opportunities

    for ElectricMotor-Driven Systems

    INTERNATIONALENERGYAGENCY

    PAULWAIDEANDCONRADU. BRUNNER

    W O R K IN G PA PE R

    2011

    The views expressed in this working paper are those of the

    authors and do not necessarily reflect the views or policy

    of the International Energy Agency (IEA) Secretariat or of

    its individual member countries. This paper is a work in

    progress, designed to elicit comments and further debate;

    thus, comments are welcome, directed to the authors of the

    Energy Efficiency and Environment Division at: [email protected]

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    4/132

    INTERNATIONAL ENERGY AGENCY

    The International Energy Agency (IEA), an autonomous agency, was established in November 1974.Its primary mandate was and is two-fold: to promote energy security amongst its membercountries through collective response to physical disruptions in oil supply, and provide authoritative

    research and analysis on ways to ensure reliable, affordable and clean energy for its 28 membercountries and beyond. The IEA carries out a comprehensive programme of energy co-operation amongits member countries, each of which is obliged to hold oil stocks equivalent to 90 days of its net imports.The Agencys aims include the following objectives:

    Secure member countries access to reliable and ample supplies of all forms of energy; in particular,through maintaining effective emergency response capabilities in case of oil supply disruptions.

    Promote sustainable energy policies that spur economic growth and environmental protectionin a global context particularly in terms of reducing greenhouse-gas emissions that contributeto climate change.

    Improve transparency of international markets through collection and analysis ofenergy data.

    Support global collaboration on energy technology to secure future energy supplies

    and mitigate their environmental impact, including through improved energyefficiency and development and deployment of low-carbon technologies.

    Find solutions to global energy challenges through engagement anddialogue with non-member countries, industry, international

    organisations and other stakeholders.IEA member countries:

    Australia

    Austria

    Belgium

    Canada

    Czech Republic

    Denmark

    Finland

    France

    Germany

    Greece

    Hungary

    Ireland

    Italy

    Japan

    Korea (Republic of)

    Luxembourg

    NetherlandsNew Zealand

    Norway

    Poland

    Portugal

    Slovak Republic

    Spain

    Sweden

    Switzerland

    Turkey

    United Kingdom

    United States

    The European Commission

    also participates in

    the work of the IEA.

    Please note that this publication

    is subject to specific restrictions

    that limit its use and distribution.

    The terms and conditions are available

    online at www.iea.org/about/copyright.asp

    OECD/IEA, 2011

    International Energy Agency9 rue de la Fdration

    75739 Paris Cedex 15, France

    www.iea.org

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    5/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|3

    TableofContents

    Acknowledgments............................................................................................................................9

    ExecutiveSummary........................................................................................................................11

    Theglobalassessment.............................................................................................................11

    Motorsystemsusedwidelyacrossallsectors.........................................................................11

    Policyinterventioncanstimulatesignificantsavings..............................................................13

    Policiesneededforoptimisingpackagedsystems..................................................................14

    Comprehensiveintegratedpolicypackage.............................................................................15

    Regulatorypolicymeasures.............................................................................................15

    Nonregulatorypolicymeasures......................................................................................16

    Puttingideasintopractice.......................................................................................................16

    1.Introduction...............................................................................................................................18

    2. ElectricMotorDrivenSystemsandApplications.....................................................................20

    Motorsystemtypesanddefinitions........................................................................................20

    EMDSApplications...................................................................................................................20

    Motormarketdata..................................................................................................................21

    Marketvolumesbyapplication...............................................................................................22

    Marketsharebyefficiency......................................................................................................23

    MarketpenetrationofVFDtechnology...........................................................................27

    3.Global

    Electricity

    Consumption

    and

    CO2

    Emissions

    of

    Electric

    Motor

    Driven

    Systems..........29

    Scopeandmethodology..........................................................................................................29

    Scopeanddefinitions.......................................................................................................30

    Methodology....................................................................................................................32

    Topdownestimatesofelectricityuse....................................................................................32

    Demandbyenduse.........................................................................................................32

    Demandbymotorsector.................................................................................................33

    Demandbymotorsize.....................................................................................................37

    Demandbymotorapplication.........................................................................................37

    Conclusionsfromtopdownestimates............................................................................39

    Bottomupmodelofmotorelectricityuse..............................................................................41

    Methodology....................................................................................................................41

    Themotorstockmodel....................................................................................................41

    Estimatesfrombottomupmodel...................................................................................42

    Consolidatedtopdownandbottomupestimatesofelectricityconsumption

    andCO2emissions...................................................................................................................43

    Causesofuncertainty..............................................................................................................45

    Topdownestimates........................................................................................................45

    Bottomupestimates.......................................................................................................45

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    6/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|4

    4. EnergySavingsTechnologiesandSavingsPotentialsApplicabletoElectric

    MotorDrivenSystems..............................................................................................................46

    Improvingcomponentefficiency.............................................................................................46

    StandardACsquirrelcageinductionmotor............................................................................46

    Othermotortechnologies...............................................................................................48

    Newmotortechnologies.................................................................................................49

    Gearsandtransmissions..................................................................................................51

    Motorcontroltechnologies.....................................................................................................53

    VariableloadsandVFDsorASDs.............................................................................................53

    Efficiencyopportunitiesindifferentmotorapplications........................................................56

    Pumps..............................................................................................................................56

    Fans..................................................................................................................................62

    Compressors....................................................................................................................66

    Otherapplications...........................................................................................................67

    Relatedenergysavingsopportunities.....................................................................................68

    Engineeringpracticeimprovement.........................................................................................68

    Integratedmachinedesign..............................................................................................69

    Packagedproductsascoremotorsystems.....................................................................70

    Adequatesizing................................................................................................................70

    Efficientoperation...........................................................................................................70

    5. TheEconomicsofEnergySavingsinElectricMotorDrivenSystems......................................72

    FactorsthatinfluenceEMDSeconomics.................................................................................72

    Engineeringdecisionmaking...........................................................................................73

    Leastlifecyclecost..........................................................................................................73

    Repairversusreplacement..............................................................................................75

    Upgradingexistingsystems.............................................................................................75

    Payingforabettermotorbybuyingasmallermotor.....................................................76

    Tappingcostbenefitsfrommotorsystemoptimisation.........................................................76

    6.BarrierstoOptimisationofEfficientElectricMotorDrivenSystems.......................................78

    Conceptsofbarriers................................................................................................................78Missedcostreductionsformassproducedproducts.....................................................78

    Barrierstointernationaltrade.................................................................................................80

    Technicalbarriersinelectricitysupply............................................................................80

    Barriersinnonharmonisedstandards............................................................................81

    Barriersatsectorandbusinesslevels.....................................................................................82

    BarriersatthelevelofmanufacturersandOEMs...........................................................82

    Barriersinwholesale,planningandengineering.............................................................84

    Barriersatthelevelofinvestorsandenergymanagers..................................................85

    Paybackperiodandinternalrateofreturn:riskandprofitabilityanalysis...........................87

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    7/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|5

    Externalitiesofelectricityusebyelectricmotorsandmotorsystems...................................88

    Conclusionsonremovingbarriers...........................................................................................89

    6. EnergyEfficiencyPolicyExperienceforElectricMotorDrivenSystems.................................90

    Regulationsandlabellingforintegratedequipmentandcomponents..................................90Electricmotors.................................................................................................................90

    Pumps..............................................................................................................................96

    Fans................................................................................................................................101

    Compressors..................................................................................................................102

    Systemsperformancespecifications.....................................................................................103

    Electricmotors...............................................................................................................103

    Pumps............................................................................................................................103

    Fans................................................................................................................................104

    Aircompressors.............................................................................................................104

    Toolstoencourageadoptionofenhancedmotordrivensystems.......................................105

    UnitedStates:pumpmotorsystems.............................................................................105

    UnitedStates:fanmotorsystems.................................................................................106

    UnitedStates:aircompressorsystems.........................................................................106

    Awarenessraisingefforts......................................................................................................107

    EuropeanUnion:pumps................................................................................................107

    Economicincentives..............................................................................................................107

    NorthAmerica................................................................................................................107

    China..............................................................................................................................108

    Industrialsectorenergyservicecompanies..........................................................................108

    Industrialenergyefficiencyprogrammesandcapacitybuilding.............................................108

    EuropeanUnion.............................................................................................................108

    China..............................................................................................................................109

    Linkswithmacropolicyinitiatives.................................................................................109

    Evaluationandimpacts..................................................................................................109

    7. OptionsandRecommendationsforNewPoliciesonElectricMotorDrivenSystems..........111

    Policycontext........................................................................................................................111

    Policyrecommendations.......................................................................................................112

    Regulatorypolicymeasures...........................................................................................112

    Nonregulatorypolicymeasures....................................................................................114

    Potentialpolicyimpacts........................................................................................................116

    Comprehensiveintegratedpolicypackage...........................................................................117

    Regulatory......................................................................................................................118

    Nonregulatory...............................................................................................................118

    Puttingideasintopractice.....................................................................................................119

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    8/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|6

    AnnexA.TechnicalStandardsforEMDS......................................................................................121

    Abbreviations................................................................................................................................123

    References....................................................................................................................................125

    Listoffigures

    Figure1: Projectedglobalelectricmotorsystemelectricityconsumption.................................14

    Figure2: Electricmotorcategories..............................................................................................20

    Figure3: EfficiencyclassesforfourpolemotorsofstandardIE3,IE2andIE1classes,

    andthenewIE4class....................................................................................................23

    Figure4: MarketshareofefficiencyclassesintheUnitedStates(200106)...............................25

    Figure5: MotorefficienciesinCanadabeforeandafterintroductionin1997ofEnergy

    EfficiencyRegulationsforGeneralPurposeIndustrialMotors.....................................26

    Figure6: MarketshareofefficiencyclassesinEuropeunderthe

    CEMEPvoluntaryagreement........................................................................................27

    Figure7: Totalmotorsystem,coremotorsystemandelectricmotor........................................29

    Figure8: Maintypesofelectricmotorsasafunctionofpowerand

    associatedcharacteristics.............................................................................................31

    Figure9: Estimatedshareofglobalelectricitydemandbyenduse(2006).................................33

    Figure10: Assumedshareofmotorelectricityusebyendusersector........................................35

    Figure11: Estimatedelectricitydemandforallelectricmotorsbysector....................................37

    Figure12: Estimatedshareofglobalmotorelectricitydemandbyapplication(2009).................40

    Figure13: Estimatedoverallefficiencyandelectricityuseforalltypesofelectric

    motorsystems...............................................................................................................40

    Figure14: PartialloadefficiencyofIE3andIE1motors(4pole)...................................................47

    Figure15: Impactofpossibleareasofimprovementforinductionmotorperformance..............48

    Figure16: IE3PremiumEfficiencymotor......................................................................................50

    Figure17: HighefficiencyECmotorsfrom0.1kWto10kWforfans...........................................51

    Figure18: Twotransmissionsystems:rollerchainsandsynchronousbelts.................................52

    Figure19: Schematicvariablefrequencydrive..............................................................................53

    Figure20: Typicalefficiencyoflowvoltage,pulsewidthmodulatedfrequency

    convertersatfullload...................................................................................................55

    Figure21: Variablefrequencydriveefficiencyatfullandpartialload..........................................56

    Figure22: Fivemajorpumptypes(typicalpumpconfigurations).................................................57

    Figure23: Efficiencyofsinglestagepumpsaccordingtovariationofheadandflow...................57

    Figure24: Energysavingswithspeedcontrolforacentrifugalpumpwithout

    staticpressurehead......................................................................................................58

    Figure25: Highefficiencyelectronicallycommutatedmotorforpumps......................................58

    Figure26: GlandlesscirculationpumpwithECmotorandautomaticpoweradjustment............59

    Figure27: Electricitysavingsofcirculatorpumpinheatingsystem..............................................59

    Figure28: Reducedelectricpoweruseinindustrialsizepumpsystem........................................60

    Figure29: ECmotorsforfans.........................................................................................................62

    Figure30: FutureEUminimumenergyperformancestandards(MEPS)forfans/ventilation.......63

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    9/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|7

    Figure31: Centrifugalfans:energysavingswithdifferentmethodsofairflowcontrol...............64

    Figure32: Fanefficiencypotential reducedspecificpower......................................................66

    Figure33: Fanefficiencypotential reducedannualelectricityuse...........................................66

    Figure34: Systematiceliminationoflossesinanoptimaldrivesystem........................................69

    Figure35:

    Life

    cycle

    cost

    of11

    kW

    IE3

    motor

    with

    4000

    operating

    hours

    per

    year

    .....................

    72

    Figure36: Relativepricesofelectricmotorswithhigherefficiencyand

    variablefrequencydrives,Switzerland,2008...............................................................74

    Figure37: Systemlifecyclecostanalysisofan11kWmotor.......................................................74

    Figure38: Exampleofhowdownsizingcanpayforamoreefficientmotor.................................76

    Figure39: Policyinstrumentstoreduceobstaclestodiffusionofhighefficiency

    electricmotorsandmotorsystemsalongtheproductcycle........................................82

    Figure40: Conventional(static)paybackperiodandIRRofhighefficiencymotors

    comparedtonormalmotorsatdifferentyearlyoperatinghours................................88

    Figure41: Projectedglobalelectricmotorsystemelectricityconsumption...............................117

    Listoftables

    Table1: EDMSelectricityconsumptionbysector......................................................................11

    Table2: Proposedtimetableforimplementationofrecommendations....................................17

    Table3: EMDSapplicationsshowingrelationshipsbetweensystemsandservice....................21

    Table4: MotorsystemssalesintheUnitedStates(2003).........................................................22

    Table5: MotorsystemssalesintheEuropeanUnion(2005).....................................................22

    Table6: DistributionofmotorapplicationsintheUSindustrysector(1997)............................22

    Table7:Stock

    data

    for

    three

    applications

    inthe

    European

    Union

    (2005)

    .................................

    22

    Table8: Motorefficiencyclassesindifferentcountriesandthecorresponding

    internationalstandard..................................................................................................24

    Table9: Timelineforelectricmotorefficiencyclasses,testingstandardsandminimum

    energyperformancestandards.....................................................................................24

    Table10: ShareofmotorefficiencyclassIE3salesintheUnitedStates(200106)

    andCanada(2007)........................................................................................................26

    Table11: ShareofefficiencyclassIE3inelectricmotorsalesbysize,UnitedStates(2003).......26

    Table12: Estimateofglobalelectricitydemand(TWh)bysectorandenduse(2006)................33

    Table13: Estimatedglobalelectricityconsumptionbysectorin2006........................................34

    Table14: Electricityendusebysector,countryandestimateddemandforall

    electricmotors(2006)...................................................................................................36

    Table15: Estimatedelectricitydemandforthethreemajorgroupsofelectricmotors(2009)..38

    Table16: Applicationsofallkindsofelectricmotors...................................................................38

    Table17: Estimatedglobalmotorelectricitydemandbysectorandapplication(2006).............39

    Table18: Estimatedmotorelectricitydemandwithparticularfactorsfromthe

    bottomupmodelfor13countrieswithhighestelectricityconsumption....................43

    Table19: Comparisonofmotorelectricitydemandinbottomupandtopdownmodels

    andfiguresfromtheliteratureof12economies..........................................................44

    Table20:

    Nominal

    load

    efficiencies

    inIE3

    Premium

    Efficiency

    AC

    induction

    motors

    ..................

    47

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    10/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|8

    Table21: TypicallossesinanACinductionmotor........................................................................48

    Table22: Gearefficiency...............................................................................................................52

    Table23: Comparisonofannualelectricityuseincirculatorpumpsystems...............................60

    Table24: Comparisonofannualelectricityuseinindustrialsizepumpsystems........................61

    Table25: Majorfanproductcategoriesandcharacteristics........................................................62

    Table26: Measuresandpotentialsforreducingtheenergydemandoffans..............................64

    Table27: Optimisationstudyofafan...........................................................................................65

    Table28: Exampleoflossesinacompressedairsystem.............................................................67

    Table29: Areasofenergyefficiencyinelectricmotorsystems...................................................68

    Table30: Classificationofbarrierstoenergyefficiency...............................................................79

    Table31: Internalrateofreturnandpaybackperioddifferencebetweenrisk

    andprofitabilityanalysis...............................................................................................87

    Table32: Nominalminimumefficiencies()forelectricmotorsinEurope(50Hz)....................91

    Table33: MotortypessubjecttoMEPSintheUnitedStates

    1.....................................................93

    Table34: NominalminimumfullloadefficienciesforSubtypeIelectricmotors

    intheUnitedStates(60Hz)1.........................................................................................93

    Table35: Regulationsforelectricmotorsinsomeothercountries.............................................95

    Table36: EnergylabellingefficiencythresholdsforcirculatorpumpsintheEuropeanUnion....98

    Table37: Regulationsforpumpmotorsystemsinsomeothercountries.................................100

    Table38: Proposedtimetableforimplementationofrecommendations..................................119

    Table39: Keyinternationalstandards........................................................................................122

    Table40: Otherregionalstandards............................................................................................122

    Listofequations

    Equation1........................................................................................................................................34

    Equation2........................................................................................................................................41

    Equation3........................................................................................................................................42

    Equation4........................................................................................................................................63

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    11/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|9

    Acknowledgments

    ThispaperwaswrittenbyPaulWaide(formerlywiththeIEAandnowwithNavigantConsulting)

    and Conrad U. Brunner of A+B International in collaboration withMartin Jakob andMartin

    Meyer,TEPEnergy,Zurich,SwitzerlandaswellasEberhardJochem,BSRSustainability,Karlsruhe,Germany.ParticularthanksgotothefollowingIEAstaffandoutsidecolleaguesforthetimespent

    in reviewing and providing comments: Nigel Jollands, Shane Holt, Jungwook Park and Hugh

    Falkner.TheauthorswouldalsoliketoacknowledgeEditaZlaticforheradministrativeassistance,

    MarilynSmith,SusanCopelandandAurlienSaussayforeditorialassistance.

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    12/132

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    13/132

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    14/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|12

    The largestproportionofmotorelectricityconsumption isattributabletomidsizemotorswith

    outputpowerof0.75kW to375kW.Manydifferentmotor technologiesanddesign typesare

    available,butasynchronousalternatingcurrent(AC) inductionmotorsaremostfrequentlyused

    and consume the most energy. These motors are either sold to original equipment

    manufacturers (OEMs) and integrated into prepackaged electromechanical products (such as

    pumps,fans,compressors,etc.)orsoldasstandalonemotorsthatfinalcustomersthenintegrate

    into a specific application on site. Such standalonemotors are produced in large volumes,

    accordingtostandardised inputpowerandsizespecifications,withvaryingchannels tomarket

    and integration into electromechanical systems. This has a significant impact on the type of

    barrierstoadoptionofenergyefficientsolutionsforEMDSand,hence,onthemostappropriate

    policypackagestoovercomesuchbarriers.

    Motors inthemidsize rangearemostcommonly found in industrialapplications,buttheyare

    also widely used in commercial applications, infrastructure systems and, less often, in the

    residential sector. Ingeneral, theirmainapplicationsaremechanicalmovement, compressors,

    pumpsandfans,which inturnhavemanytypesofsubapplication.Atpresent,mostOECDand

    manynonOECDeconomiesimposeMEPSonasynchronousmidsizeACmotorssoldasseparatecomponents.Veryfewcountrieshavesetsuchrequirementsforothertypesofelectricmotors,

    andtherequirementsarerarelyappliedspecificallytomotorsintegrateddirectlyintoapackaged

    systempriortosale.

    Largeelectricmotorswithmorethan375kWoutputpowerareusuallyhighvoltageACmotors

    thatarecustomdesigned,builttoorderandassembledwithinanelectromechanicalsystemon

    site.Theycomprisejust0.03%oftheelectricmotorstock intermsofnumbers,butaccountfor

    about23%ofallmotorpowerconsumption,makingthemverysignificantconsumersofglobal

    power(about10.4%).ThesemotorsarenotcurrentlysubjecttoMEPSinanypartoftheworld.

    Inelectricmotordrivensystems,someenergylossesoccurinthemotoritself,butenergylosses

    are greater in the rest of the mechanical system to which themotor is coupled. A typical

    electromechanicalsystem involvesamotor,anelectricalcontrolsystem,avariablespeeddrive

    (VSD)andamechanicalload.Themagnitudeofenergylossesdependsontheapplicationandthe

    degree towhichanadvancedtechnicalsolution isused.Foranygivenpower rating, there isa

    differenceofonlyafewpercentagepointsinenergyefficiencybetweenaveragemotorsandthe

    mostefficientmotorsonthemarket.

    Smallmotors are less efficient than higherpoweredmotors. Large losses can occur due to

    mismatches between the output power of fixedspeed motors and the mechanical power

    demands of the electromechanical system. This is especially true whenmotors are used in

    mechanicalapplicationswithvariablemechanicalpowerneeds,whichhaveahighlynonlinear

    relationshipbetween inputpowerandmechanical load (torqueandspeed)andanexponential

    relationshipbetweeninputpowerandmechanicalpower(e.g.pumps,fansandcompressors).In

    thiscase,therecanbeverysignificantsavingsfromusingvariablefrequencydrives(VFDs)with

    intelligent control, which regulate the output torque and speed of themotor tomatch the

    systemmechanicalloads.However,suchcontrolsystemsneedasignificantamountofpowerto

    operateandshouldnotbeusedinfixedoutputpowerapplications.Insuchapplications,theywill

    incurmoreenergylossesandimposehighercoststhanaproperlysizedfixedspeedsystem.

    Foranygivenoutputpower rating, there is currentlya spreadof severalpercent inefficiency

    betweenthemostandleastefficientmotorsonthemarket.Despitebeingslightlymorecostlyto

    purchase than standard motors, higherefficiency motors (HEMs) with over 1000hours of

    operationperyeararemorecosteffectiveoverthesystem lifeforendusers inallapplications,

    becausemotorenergy costs typically account for over 95% of amotors lifecycle cost. The

    internalrateofreturn(IRR)fromtheuseofaHEMcomparedtoastandardmotor isoftenwell

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    15/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|13

    over 100%,but endusers rarelydemandHEM applications,due to ahostofmarketbarriers.

    Mandatory regulations are usually the best way to ensure significant and timely market

    penetrationofHEMs.

    Policyintervention

    can

    stimulate

    significant

    savings

    Overall,thisanalysisfindsthatusingthebestavailablemotorswilltypicallysaveabout4%to5%

    ofallelectricmotorenergyconsumption.Linkingthesemotorswithelectromechanicalsolutions

    thatare costoptimised for theenduserwill typically saveanother15%to25%.Thepotential

    exists to costeffectively improve energy efficiency ofmotor systems by roughly 20% to30%,

    whichwouldreducetotalglobalelectricitydemandbyabout10%.

    Thethreemajorroutestoachievingthesesavingsare:

    Useofproperlysizedandenergyefficientmotors.

    Useofadjustablespeeddrives(ASDs)2,whereappropriate,tomatchmotorspeedandtorque

    to the systemmechanical load requirements. Thismakes it possible to replace inefficientthrottling devices and, in some cases with directdrive, to avoid wasteful mechanical

    transmissionsandgears.

    Optimisation of the complete system, including correctly sized motor, pipes and ducts,efficient gears and transmissions, and efficient enduse equipment (fans, pumps,

    compressors,traction,andindustrialhandlingandprocessingsystems)todelivertherequired

    energyservicewithminimalenergylosses.

    Withoutpolicyintervention,manybarriersmakeitdifficultorimpossibletorealisethesesavings

    in thecurrentmarketenvironment. Inunregulatedmarkets,purchasers tend tounderinvest in

    higherefficiencyoptionsandchooseelectricmotorsystemswithalowfirstcost.Thisoccursfora

    varietyofreasons,including:

    Lackofawarenessamongmotorpurchasersof thepotential forenergyandcostsavingsbyusingmoreefficientmotorswithinenergyefficientEMDS.

    Company organisational structures that manage their equipment procurement budgetseparatelyfromoperationsandmaintenancebudgets.

    The factthatmotorsareoften integrated intoequipmentproducedbyOEMsbeforesaletothefinalenduser.

    To overcome these barriers,many countries (now comprising over onethird of the worlds

    population)haveadoptedMEPSforthemainclassof industrialelectricmotors.Morecountries

    areintheprocessofdevelopingsuchrequirements.Thispolicyinstrumenthasbeenshowntobe

    practicable to implement and a costeffective means of saving energy. The average energy

    efficiencyofnewmotorsincountriesapplyingMEPSisnotablyhigherthanincountrieswithout

    suchrequirements.ItisestimatedthatifallcountriesadoptedbestpracticeMEPSforindustrial

    electricmotors,by2030approximately322TWhofannualelectricitydemandwouldbesaved,

    givingrisetocorrespondingsavingsof206MtofCO2emissions.

    2 Anadjustablespeeddrive(ASD)orvariablespeeddrive(VSD)isequipmentusedtocontrolthespeedofmachinery.Many

    industrial processes such as assembly lines must operate at different speeds for different products.Where process

    conditionsdemandadjustmentofflowfromapumporfan,varyingthespeedofthedrivemaysaveenergycomparedwith

    othertechniquesforflowcontrol.Wherespeedsmaybeselectedfromseveraldifferentpresetranges,usuallythedriveis

    saidtobe"adjustable"speed.Iftheoutputspeedcanbechangedwithoutstepsoverarange,thedriveisusuallyreferred

    toas"variablespeed".Avariablefrequency

    drive

    (VFD) isasystemforcontrollingtherotationalspeedofanalternating

    current(AC)electricmotorbycontrollingthefrequencyoftheelectricalpowersuppliedtothemotor.

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    16/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|14

    Policiesneededforoptimisingpackagedsystems

    Important as these savings are, much larger savings would accrue if all EMDS were properly

    optimised.Realisingthisobjectiveislessstraightforwardfromapolicyperspective,butitispossible

    tomakeheadwayinthemorecomplexdomainofEMDSbycarefullysegmentingtheapplicationsin

    whichmotorsareused,andbytargetingregulatorypoliciesatpackagedmotorsystemsapplications

    withlargesavingspotentials(e.g.certainkindsofpumps,fansandcompressors).Itispracticable

    to set MEPS and energy labelling requirements for a range of core motordriven systems,

    including fans,pumpsand compressors. In some cases, similarMEPS canbeapplied toentire

    motordrivensystemapplications(e.g.formunicipalwaterpumping,elevatorsandescalators).

    Regulatorymeasuresshouldnotnecessarilybeconfinedtodevicesandcomponentsthatdirectly

    consume power;policies could also eventually target the large potential energy savings from

    improvedenergyperformanceofmechanicalcomponents(suchasgearsanddrivebelts).Certain

    commontechnologies(suchaswormdrivesandVbelts)arefundamentallyinefficientandcould

    potentiallyberegulatedoutofthemarketinfavourofmoreefficientoptions.

    As some aspects of motorsystem energy use do not lend themselves to simple regulatory

    approaches, softer policymeasures can be beneficial. It is especially important to strengthen

    marketawareness througheducationalefforts targetingmultipledecisionmaking levels (OEM,

    system specifier, plant manager, energymanager and senior manager/executive level). This

    would includeuserfriendly technicalassistance throughenhanced technical standards, system

    specificationandoperational/energymanagementtoolsandservices.Thereisalsoaneedtobetter

    alignfiscalandfinancialincentivesthroughoutthevaluechain,whichcouldbecomplementedby

    welltargetedeconomicassistancetoencouragetheuptakeofenergyefficientEMDS.

    Figure1:Projectedglobalelectricmotorsystemelectricityconsumption

    Abbreviation:LLCC=leastlifecyclecost.

    Notes:

    Referencescenario:whenthecurrentsituationismaintainedwithoutadditionalpolicymeasures.

    Policyscenario:whenallcountriesadoptabroadbasedandrigorouspolicypackageonEMDS.

    LLCCscenario:whenallEMDSaremovedtowardtheleastlifecyclecostlevel.Source: IEAestimate.

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    2005 2010 2015 2020 2025 2030

    Motorsystem

    electricityconsumption(TWh)

    Policyscenario

    LLCCscenarioMotor

    sys

    tem

    electricity

    consumption

    Reference

    scenario

    20%

    30%

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    17/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|15

    Aboveall,itisessentialtoscaleuptheoperationsandresourcescommittedtorealisingthevast

    savingspotentialofoptimisedEMDS.Bycomparisonwithothersustainableenergyopportunities,

    the energy efficiency of EDMS has been relatively neglected, and nowhere do such systems

    currentlybenefit from the scale of support that isoffered to sustainable supplysideoptions.

    While governments are starting to become more proactive on this issue, and many have

    implemented someusefulpolicymeasures,nonehas yetput inplace the resourcesorpolicy

    processeslikelytorealisesubstantialsavings.

    Ifabroadbasedandrigorouspolicypackagewereput inplace, it isestimatedthatglobally,by

    2030,itwouldsavesome24000TWhinelectricitydemand,avoidsome16GtofCO2emissions,

    andgeneratecostsavingsofaboutUSD1.7trillion(Figure1).Thesesavingswouldcomeat less

    costthansupplying thisenergy.Annualsavings in2030wouldbe in theorderof2800TWh in

    electricitydemand,1790MtofCO2emissionsandUSD190billioninelectricitycosts.

    IfitwerepossibletomoveallEMDStowardstheleastlifecyclecostlevelasrapidlyastechnically

    possible,itisestimatedthatsome42000TWhofelectricitydemand,29GtofCO2emissionsand

    USD2.8trillioninelectricitycostswouldbesavedgloballyby2030.Annualsavingsin2030would

    be of the order of 3890TWh in electricity demand, 2490Mtof CO2 emissions and

    USD264billioninelectricitycosts.

    Comprehensiveintegratedpolicypackage

    To help realise the tremendous potential for costeffective energy savings in electric

    motordriven systems, governments should consider, as a firstmeasure, adoptingmandatory

    MEPSforelectricmotors,inlinewithinternationalbestpractice,subjecttodueprocessandcost

    effectivenessanalysis.

    These standards shouldapply toasmany typesand sizesofelectricmotor as it is feasible to

    address and should not be confined to midsize asynchronous AC motors sold as separatecomponents.Thelevelofthesestandardsshouldbesetatnolowerthantheleastlifecyclecost,

    which isgenerallyat IE33orhigherformidsizeasynchronousAC inductionmotors.Even larger

    energy savings canbeachievedbyusingVFDs,whichdynamicallymatch theoutputpowerof

    motor systems to thepowerdemandedby thedrive train.Furthersavingscanbeachievedby

    using efficient transmission and gear systems, and through better sizing andmanagement of

    electricmotordrivensystems.

    Overallitisestimatedthatitiscosteffectivetosaveabout20%to30%oftotalglobalelectricmotor

    demand (i.e.roughly 10%of all globalelectricity consumption) through theuseofmore efficient

    electricmotorsanddrives.Achievingsuchsavingswillrequireindividualandconcertedactiononthe

    partofallplayers,includingregulators,policymakersandstandardsdevelopmentagencies.

    It is proposed that IEA member countries and nonmember economies apply a market

    transformation package based on the portfolio of energy performance policies set out in the

    followingpackageofpolicyrecommendations:

    Regulatorypolicymeasures

    1. MEPSshouldbe introduced in IEAmembercountries in linewith internationalbestpractice

    for allmajor classes of electricmotors. They should not be set at levels less than IE3 for

    asynchronous motors. These requirements should apply to motors sold individually or

    integratedintoprepackagedelectricmotordrivensystems,andshouldapplytomotorswith

    aswidearangeofoutputpowerasispracticable(100Wto1000kW).

    3PremiumefficiencylevelasdefinedwithinIEC6003430andIEC6003431.

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    18/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|16

    2. Regulatorymeasures,suchasMEPSandenergylabelling,shouldbeintroducedforpackaged

    integrated motordriven energy enduses between 100W and 1000kW, including fans,

    pumps,circulationpumpsandcompressorsthatareproducedinsufficientlylargevolumesto

    havesignificantenergyconsumption.

    3. Regulators, policymakers and standardsdevelopment agencies should ensure that energy

    performancetestproceduresaredevelopedforallmotortypesthatusesignificantamounts

    ofelectricityandarenotcoveredbyexistinginternationallyagreedtestprocedures.

    4. Regulators, policy makers and standards development agencies should commission the

    development and application of energyperformance test procedures to cover other

    essential components of electricmotordriven systems, including transmissions, gears and

    system controldevices (e.g.VFDs). In addition,efforts should bemade todevelop energy

    performance test procedures and guidelines that apply to whole electric motor system

    applications,suchasutilitywaterpumping,lifts(elevators),escalators,conveyors,etc.

    5. Regulators should explore the feasibility of developing minimum energy performance

    standardsforcertainclassesofgearsandtransmissionstodiscourage(andlaterprohibit)the

    useofinefficientsolutionssuchaswormgearsandVbelts.

    Nonregulatorypolicymeasures

    6. Largescaleawarenessprogrammesshouldbedevelopedandputinplacetoinformindustrial

    andcommercialelectricityusersofthesignificantsavingspotentialspossiblethroughtheuse

    ofefficientelectricmotordrivensystems.Theseprogrammesshouldtargetthoseresponsible

    for procurement of electric motors and motordriven systems, including operations and

    maintenance managers, production and plant managers, and company executives and

    decisionmakersresponsibleforoverallcompanypolicyonenergy,carbonandcostreduction.

    7. Incentiveschemesshouldbedevelopedandappliedtoencourageadoptionanduseofbest

    practicemotor sizing,managementand integration, including theappropriateuseofVFDs.

    These shouldbe targetedat the systemsproducing thehighestbenefit,namely forpumps,

    fansandotherapplicationswithvariablemechanicalloads(wheretorqueincreasesnearlyas

    thesquareoftherotationalspeedofthemotor).Inmostcases,costeffectivesavingscanalso

    be achievedwhenVFDs are used for conveyors, hoists, escalators and similar applications

    (wheretorque ismoreor less independentofthemotorspeed). Incentiveschemesarealso

    likelytobebeneficialfortheseapplications.

    8. Internationalcapacitybuildingeffortsshouldbesubstantiallyexpandedtocreatepermanent

    support structures,ata scale sufficient to supportongoingneeds in thedomainofenergy

    efficientelectricmotordrivensystems.

    9. Globalmarket

    monitoring should be established at defined intervals, to support national

    regulationandincentiveprogrammeswithmarkettransformationdata.

    Puttingideasintopractice

    Realising these savings opportunities by 2030 will require a clear a plan of action and rapid

    implementationofaneffectivesetofstructuralandconsensusbuildingendeavours.Itisproposed

    that IEA member countries establish a timetable for implementation of the nine policy

    recommendations.Toaidthatprocess,theauthorshaveidentifiedtimelinesforcompletionofthe

    stepsnecessarytoprogressEMDStowardtheidentifiedenergysavingsgoalsby2030(Table2).

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    19/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|17

    Table2:Proposedtimetableforimplementationofrecommendations

    RecommendationsPhase 1In 2011

    Phase 22012-15

    Phase 32016-20

    Phase 42021-25

    Phase 52026-30

    Regulatory policy measures

    Implementation of MEPSfor all major classes ofelectric motors.

    COMMENCE COMPLETED

    Regulatory measures forpackaged integratedmotor-driven energyend-uses.

    COMMENCE COMPLETED

    Development ofinternational testprocedures for otherelectric motor types.

    COMMENCE CONTINUE COMPLETED

    Development of

    international testprocedures for otherelectric motor systemcomponents.

    COMMENCE COMPLETED

    Regulatory measures forgears andtransmissions.

    COMMENCE COMPLETED

    Non-regulatory policy measures

    Development of large-scale awarenessprogrammes.

    DEVELOP ROLL-OUT ROLL-OUT ROLL-OUT

    Development ofincentive schemes.

    DEVELOP IMPLEMENT

    International capacity-building efforts andcreation of a permanentsupport structure.

    COMMENCE COMPLETE ROLL-OUT ROLL-OUT ROLL-OUT

    Global marketmonitoring (to supportnational regulation andincentive programmeswith market-transformational data).

    COMMENCE REPORT 2015 REPORT 2020REPORT2025

    REPORT 2030

    To support theunderpinning recommendation regarding theadoptionofmandatoryminimum

    energy performance standards for electricmotors, it is proposed that IEAmember countriesadoptapolicypositionasquicklyaspossible,withanIEAreportonitbefore2015.IEAmember

    countries can then bepositioned as lead actors in apush for globally coordinated actionon

    motors,withsupportingprojectworktoengagewithmajormotormanufacturingcountries(such

    asChina,Brazil,Indiaandothers).

    Inaddition,itisproposedthattheIEAimmediatelyundertakeacomprehensivestudy,completed

    in 2011, to assistmember countries in their efforts to implement thesemeasureswithin the

    proposedtimeframes.AsbindingpolicydecisionsaretakenbyIEAmembercountries,thisstudy

    shouldevolveintoaregularupdateonimplementationplans.

    TheIEASecretariatshouldalsoworkwiththenonmembereconomiesthatproduceandexport

    significantvolumesofelectricmotorsandelectricmotordrivencomponentstoensurethatthis

    coordinatedplanwillgaintheirsupport.

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    20/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|18

    1.Introduction

    Thisreportexploresthecomplexandchallengingworldofelectricmotordrivensystems(EDMS)

    andmakesrecommendationsforfuturepolicysettingstoreduceelectricitydemandforEMDSin

    atimelyandcosteffectivemanner.

    Electricmotors areused in awide rangeof industrial applications,but also inmany typesof

    applications in the commercial, residential, agricultural and transportation sectors. Typically

    electricmotorsareacomponent inamotorsystem,responsibleforconvertingelectricalpower

    intomechanicalpower.Consumptionofamotorsystemcorrespondstoelectricityconsumption

    ofitsmotorsplusasmalladditionalquantitytopowersystemcontrols.

    Priortotheanalysispresentedinthisreport,therehavebeenveryfewattemptstoestimatethe

    overallelectricityconsumptionofelectricmotorsandnosystematicattempt toproduceglobal

    estimates.However, backoftheenvelope calculations have typically estimated thatmotors

    useover40%ofallelectricity(in2005,morethan6000TWhatthegloballevel).Infact,electric

    motordriven systemsappear tobe the largestsourceofelectricityuse, farexceeding lighting,thenextlargestenduse(about19%ofglobalelectricitydemand).

    It issurprisinghow fewconcertedstudieshavebeendirectedatquantifyingtheenergyuseof

    EMDS.Thisreportattemptstoprovideasounderbasisfortheseestimates,usingbothtopdown

    andbottomupanalysestoincreaseconfidenceinthefindings.Itbuildsuponimportantregional

    studies such as the EuropeanUnions Lot 11 studies for the EcodesignDirective (DeAlmeida

    etal.,2008a[motors];Falkner,2008a[pumps];Falkner,2008b[circulatorpumps];Radgen,2008

    [fans]),USDepartmentofEnergysponsored investigations (DOE,2002),otherNorthAmerican

    sources(Elliot,2007;Boteler,2007;NRCan,2009),Japanesestudies(JWG,2007),Chinesestudies

    (Zhao,2007)andotherregionaldatasources.

    Electricmotorsarefoundintheindustrial,commercial,residential,agriculturalandtransportation

    sectors.

    In the residential sector, motors are used for compression (in refrigerators and airconditioners), ventilation (to power fans); pumping (to power central heating system

    circulation andhot and coldwater pumps); cooking appliances (foodmixers,whisks,oven

    fans, extractorhoods); laundry; cleaning; ICT (hard disks and fans) and garden appliances.

    Somelesswidespreadresidentialapplications(suchasautomaticgatesandshutters)alsouse

    motors.

    In the commercial building sector, motors are used for heating, ventilating and airconditioning (HVAC); pumping; ICT (hard drives and fans); escalators; lifts (elevators) and

    hoists;laundry;cleaningandcooking.

    Intheagriculturalsector,motorsareusedforpumpingandconveyanceactivities.

    Intransportation,motorsareusedformotivepowerforelectrictrains,trucks,carsandmotorbikesandrelatedcooling;ventilationandauxiliarydevices;fluidpumping invehiclesshippingand

    planes;HVACapplications;servomechanismsinaviationandseveralotherapplications.

    Yetitisinindustrythatelectricmotorsdominateandaccountforthelargestamountoftotalelectricityconsumption.Inindustrialapplications,motorsareusedforpumping;fans;airand

    liquid compression; conveyance; and other forms ofmechanical handling and processing.

    Electricmotordrivensystems (EMDS)areby farthemost important typeofelectric load in

    industry.IntheEuropeanUnion,forexample,theyareestimatedtoaccountforabout70%of

    allindustrialelectricityconsumption.

    Ineachof theapplicationsmentionedabove, theelectricmotor isonlyonepartof thewholeelectromechanical system. Themotor (togetherwith the controller) is theonlypart thatuses

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    21/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|19

    electricity, but the amount of electricity required to fulfil its function is determined by the

    amountofmechanicalpowerrequiredandthemagnitudeofthelossesthatoccurinthedelivery

    ofthatpower.Those lossesoccurnotonlywithinthemotor itselfbutalsoandusuallymore

    significantly in themechanical system that distributes power from themotor to the final

    mechanicalapplication.

    This report examinesmarkets and use of electricmotordriven systems and estimates their

    electricityconsumptionbysector,applicationandcountryaswellasataglobal level.Itreviews

    the types of EDMS and analyses the different technologies in use and the potential to save

    energy through better design, configuration and operation. It presents estimates of potential

    energysavingsandreductionofCO2emissionsandexplorescostefficiencyissuesassociatedwith

    differentmotorsystem choices. It also examines barriers to the adoption and use ofmore

    efficientEMDSand the various standards thathavebeendeveloped tomeasureand improve

    motorsystemelectricitydemand.Itreviewsexistingandpendingpolicysettingsformotorsand

    motordrivensystemsandmakesrecommendationsforfuturepolicysettings.

    The findings of the report are consistentwith and buildupon the findings of earlier regional

    studies.Bydrawingattentionto thewidevarietyofmeans to increaseefficiencyofEMDS,the

    study attempts to set out practicable pathways to increase energy savings and exploit

    opportunitiesmoreeffectivelythanundercurrentpolicysettings.Itproposespolicymeasuresto

    stimulateenergyefficiencyimprovementsinmotorsystemcomponents,coremotorsystemsand

    dedicated motorsystem applications and future activities to build international capacity to

    identifyandaccesssignificantsavingsinEDMS.

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    22/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|20

    2.ElectricMotorDrivenSystemsandApplications

    This chapterdescribes technologiesandapplicationsofelectricmotordriven systems (EMDS),

    summarises availablemarket data (including information on sales and stocks ofmotors and

    motordrivensystemsasafunctionoftheirefficiency),andexplorestheadoptionofcontrollersthatmatchoutputtoload,suchasvariablespeeddrives(VSDs).

    Motorsystemtypesanddefinitions

    Anelectricmotorisadevicethatconvertselectricalenergyintomechanicalenergy.Motorscome

    inoutputpower ranging froma fewwattsuptomanyhundredsofkilowatts. IntherecentEU

    studyundertheDirectiveonEcodesignofEnergyUsingProducts,theproductgroupisdescribed

    aselectricmotorsintheoutputpowerrangeof1kWto150kW.However,thestudyconsidered

    a lowerboundof0.75kWandanupperboundof200kWtotake intoaccountstandardpower

    sizesandthenewproposedInternationalElectrotechnicalCommission(IEC)6003430efficiency

    classification standard onmotor efficiency.Almost allmotors in this power range are of lowvoltage.Mediumvoltagemotorsaretypicallyused inveryhighpowerapplicationsof>500kW;

    astheyareofnonstandarddesign,theyaresoldinverysmallnumbersandarenotyetincluded

    in any targeted energyefficiency policies. Electricmotors are classified according to type of

    powersupplyandothercriteria(DeAlmeidaetal.,2008a)(Figure2).

    Figure2:Electricmotorcategories

    Abbreviations:ACalternatingcurrent;DCdirectcurrent;ECelectronicallycommutated;

    PMpermanentmagnet.Source:DeAlmeidaetal.,2008a.

    EMDSApplications

    Motorsareusedinamyriadofapplications,whicharebroadlycategorisedasfollows:

    Industrialapplications:pumps, fans, compressedairdelivery, conveyors,motivepower forothermachinery,etc.

    Buildingapplications:pumps, fans,conveyors, lifts,compressors inheating,ventilationandairconditioningsystems,etc.

    Appliance

    applications: refrigerators, air conditioners, personal computer and laptop fans,harddrives,cookingappliances,ovenfans,extractorfans,gardenappliances,poolpumps,etc.

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    23/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|21

    Table3:EMDSapplicationsshowingrelationshipsbetweensystemsandservice

    Electric motors

    Application

    Pumps Drinking water Water/refrigerant Sewage Oil

    Rotatingmachines

    Closedloop

    Closed watersupply system

    Heating, coolingand chilling

    system

    Pressure sewagesystem

    Hydraulicpumps

    Openpipe Water supplysystem Irrigation, coolingtower Sewage system Pipeline

    Fans Air Gas

    Room air supplyand exhaust,

    blowers

    Natural gassystems

    Compressors Refrigerant Air Gas

    Coolingmachines for airconditioning and

    commercialfreezers,

    refrigerators andfreezers

    Compressed-airstorage anddistribution

    system, pneumaticsystems

    Liquificationsystems

    Rotating/mix/stir

    Roller, rotors Extruder Textile handlingMixers,stirring

    SolidMetal, stone,

    plasticsAluminium,

    plasticsWeaving, washing,

    dryingFood, colour,

    plastics

    LiquidFood colour,

    plastics

    Transport People Goods Vehicles

    VerticalPassenger

    elevatorGoods elevator,cranes, hoists

    Inclined Escalator ConveyorCog wheel train,

    cable car, ropeway

    Horizontal

    Conveyor Conveyor

    Train, tram, trolley,cars, buses,

    electric cars, bikes

    and bicycles

    Linear motors Open/close Sort Grab and place

    Back and forthmovement

    Valve Robot

    Stepper motor Open/close Position

    Angular position Valve Servo

    Source:A+BInternational,2009.

    Motor

    market

    data

    Following a reviewofdataonmotor sales, efficiency and stocks, this report considersmotor

    usage by enduse system applications and examinesmarket penetration of adjustablespeed

    drives (ASD) and variablefrequency drives (VFD). Although few sources are available to

    determinedistributionofelectricmotorsbyenduseapplication,datafromtheUnitedStatesand

    the European Union on differentmotor applications are included. Literature about different

    applications is rarely available for other countries, except for some sales data for Japan and

    Taiwan.Regionaldatasetsarenoteasilycomparable,astheyhavedifferentscopesofstudyand

    applydifferentdefinitions(forexample,definitionsmayvaryregardingwhetheracompressoris

    usedforcoolingorcompressedairapplications).

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    24/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|22

    Marketvolumesbyapplication

    TheshareofmotorsalesbyenduseapplicationintheUnitedStatesappearsquitedifferentfrom

    the situation in theEuropeanUnion (Tables4and 5). Figures forUSpump sales includeonly

    pumps and vacuumpumpsused in industry, anddonot cover pumps used in commercial or

    buildingsectors.Compressordataappliesonlytostationarycompressors.Thetotalisthesumof

    thesethreeapplications.Nodataforanyotherapplicationsispresented.

    Table4:MotorsystemssalesintheUnitedStates(2003)

    Pumps Vacuum pumps Compressors Total

    No. of units (thousands) 12 143 200 1 301 13 645

    Sales value(USD millions)

    2 637 103 1 534 4 275

    Note:Numbersmaynotsumtototalduetorounding.

    Source:USCensusBureau.

    Table5:

    MotorsystemssalesintheEuropeanUnion(2005)4

    Pumps Circulators Fans Total

    No. of units (millions) 1 800 14 000 8 927 24 727

    Market share 7% 57% 36% 100%

    Sources:Falkner,2008a(pumps);Falkner,2008b(circulatorpumps);Radgen,2008(fans).

    In theUnited States,more than 40% of generalpurpose industrialmotors are used to drive

    materialprocesses,representingthelargestshareofmotorapplications.Otherlargegroupsare

    pumpsandmaterialhandlingapplications;compressors(compressedair,refrigeration)andfans

    representonlyminorshares(Table7).

    Table6:DistributionofmotorapplicationsintheUSindustrysector(1997)

    Pumps FansCompressed

    airRefrigeration

    Material

    handling

    Material

    processOther All

    Share of stock 19.7% 11.2% 5.1% 0.8% 16.8% 42.2% 4.2% 100.0%

    Source:DOE,2002.

    Table7:StockdataforthreeapplicationsintheEuropeanUnion(2005)

    Pumps Fans Circulators Total

    No. of units (millions) 17 104 10 131

    Share of stock 13% 79% 8% 100%

    Sources:Falkner,2008a(pumps);Falkner,2008b(circulatorpumps);Radgen,2008(fans).

    In the case of the EuropeanUnion, the figure for circulators includes only large standalone

    circulators, and the figure for fans includes only building ventilation (no fans for process

    ventilationetc.areincluded).Inthislimitedcontext,fansaccountforthelargestsharealmost

    80%oftheinstalledmotorbase(Table7).Significantdifferencesinthescopeofavailablestock

    data onmotor applicationsmake it difficult to draw direct comparisons between theUnited

    StatesandtheEuropeanUnion.

    4 On1January2007,theEuropeanUnionexpandedfrom25to27memberstates.Dataupto2006isforEU25;startingin

    2007,dataisforEU27.

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    25/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|23

    Marketsharebyefficiency

    Electricmotorefficiency istheratioofmechanicaloutputpowertoelectrical inputpower.The

    weightedaverageefficiencyoftherunningelectricmotorstockdependson:

    sizedistributionofthemotorstock;

    relativesharesofenergyefficiencyclasses;

    mandatory energy performance standards (MEPS) and other policy measures in place(e.g.voluntaryagreements)andtheirperiodofintroduction/reinforcement.

    Figure3:EfficiencyclassesforfourpolemotorsofstandardIE3,IE2andIE1classes,andthenewIE4class

    Electric motors efficiency classes (4-pole 50 Hz)

    70

    75

    80

    85

    90

    95

    100

    0.1 1 10 100 1000

    Motor output in log scale (kW)

    Nominalefficiency(%)

    IE3

    IE2

    IE1

    IEC 60034-31:2009

    IEC 60034-30:2008

    IE3

    IE2

    IE1

    IE4

    Source:IEC6003430andIEC6003431,draft2009.

    Theefficiencyofmotorsdependsbothon their sizeand theirefficiencyquality,which canbe

    characterised by efficiency classes. For small motors, size is the most important factor in

    determiningefficiency;forlargemotors,efficiencyclassesarerelativelymoreimportant.In2008,

    inIEC6003430,theInternationalElectrotechnicalCommissionintroducedthepreciselydefined

    andopenended internationalefficiencyclassificationschemeusing IE1, IE2, IE3and IE45asthe

    classificationsystem(Figure3).

    In recentyears,market shareofmoreefficientmotorshasbeen increasing inmany regionsand

    countries(BorgandBrunner,2009).ThiswasparticularlythecasefortheUnitedStates,Chinaand

    other countries, and, to a certain extent, for Europe. Tounderstand thisdiffusion pattern, it is

    usefultorelatedifferentefficiencyclassificationsystemstoeachother,andtorelatediffusionto

    MEPS andother policymeasures. Four standardised efficiency classes are currently recognised,

    althoughdefinitionsandclassificationschemesvaryslightlyfromcountrytocountry(Table8).

    5SuperpremiumefficiencylevelasdefinedwithinIEC6003430andIEC6003431.

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    26/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|24

    Table8:Motorefficiencyclassesindifferentcountriesandthecorrespondinginternational standard

    Motorefficiencyclass

    InternationalUnitedStates

    EuropeanUnion(old system1998

    1)

    EuropeanUnion(new system2009)

    China Australia

    Premium IE3NEMA

    Premium IE3

    High IE2 EPAct Eff1 IE2Grade 1 (underconsideration)

    AU2006MEPS

    Standard IE1 Eff2 IE1 Grade 2AU2002

    MEPS

    Belowstandard

    IE0 (used onlyin this paper)

    Eff3 Grade 3 (current

    minimum)

    Abbreviations:EPActUSEnergyPolicyAct,1992;MEPSminimumenergyperformancestandard;

    NEMAUSNationalElectricalManufacturersAssociation.

    Source:A+BInternational,2009.

    Note:1.With thebackingof theEuropeanCommission,manufacturers representing80%of theEuropeanproductionof standard

    motors,agreedtoestablishthreeefficiencybandsorclassesdesignatedEFF1,EFF2,andEFF3,withEFF1beingthehighestband.

    Whenanewandhighermotorefficiencyclass is introduced, itdiffusesslowly intothenational

    market.Therateofdiffusiondependsonnationalmotorproducers,additionalprice,electricity

    cost,financialincentives,MEPS,etc.

    Table9:Timelineforelectricmotorefficiencyclasses,testingstandardsandminimumenergyperformance

    standards

    Efficiency levels Efficiency classes Testing standard Performance standard

    IEC 60034-30 IEC 60034-2-1 Mandatory MEPS

    Global definition of motorefficiency classes, IEC, 2008

    Including stray load losses 2007 Policy goal

    Premium efficiency* IE3Low uncertainty United States 2001

    Europe 2011

    High efficiency IE2

    United States

    Canada

    Mexico

    Australia

    New Zealand

    Korea

    Brazil

    China 2011

    Switzerland 2011

    Europe 2011 with VSD

    Standard efficiency IE1

    Medium uncertainty China

    Brazil

    Costa Rica

    Israel

    Taiwan

    Switzerland 2010

    Below standard

    Source:A+BInternational,2009.

    The United States and Canada are international leaders in terms of setting motor energy

    efficiency standards, as they introduced regulations formotors in the late 1990s.As early as

    2002,ChinadefinedMEPSforelectricmotors.TheEuropeanUnionpassedMEPS legislationforelectricmotors in2009asan implementingmeasureundertheEcodesignDirective;thesewill

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    27/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|25

    replacethepreviousindustrialvoluntaryagreement.Australia,Korea,Brazil,Mexico,Taiwanand

    some other countries with large electricity consumption frommotors have already adopted

    MEPS,ashave some smallereconomies suchasCostaRica, IsraelandNew Zealand (Table9).

    However, some largemotorusing economies, such as India, Japan and Russia, have not yet

    adoptedMEPS(suchmeasuresareunderstoodtobeunderconsideration).

    IntheUnitedStates,marketpenetrationofenergyefficientmotorshasbeenincreasingsincethe

    late 1990s particularly since 1998 when MEPS were enforced. In 2001, EPAct motors

    (equivalent to IE2) reached amarket share of about twothirds; this figure has since steadily

    declined, as the US National Electrical Manufacturers Association (NEMA) Premium motors

    startedgainingmarketshare(Figure4).

    Figure4:MarketshareofefficiencyclassesintheUnitedStates(200106)

    Source:Boteler,2007.

    In Canada, the energy efficiency of motors is the responsibility of the ministry of Natural

    Resources Canada (NRCan). In 1994, the Energy Efficiency Actwas implemented and in 1997

    Canadas EnergyEfficiencyRegulations forGeneral Purpose IndustrialMotors came into effect

    (Figure5).In1999,explosionproofandintegralgearmotors(whicharenotcoveredintheUnited

    States)were also included. Formotors in the range of 0.75 kW to 150kW (1hp to 200hp),

    regulationinCanadacorrespondsinprincipletotheMEPSofEPActoftheUnitedStates.However,

    Canadaalsohassomespecificregulations,suchasallowingtheuseof75%loadtopassMEPS.

    IntheUnitedStates,marketintroductionofthemostefficientclassIE3(NEMAPremium)started

    in2002andmarketsharehasgrownsteadily(Table10).Itwasintroducedasavoluntaryproduct

    but has been supported since 2006 by a federal procurement decision (the Federal Energy

    ManagementProgram[FEMP]).

    Market penetration of different efficiency classes varies considerably between countries. The

    shareofthemostefficientclass(IE3)hasreached20%intheUnitedStates,butitisvirtuallyzero

    intheEuropeanUnion. IntheUnitedStates, theshareofefficiencyclassesgenerally increases

    withmotorsize(Table11).Theshareofthemostefficientclass(IE3)reached75%ofsalesforthe

    largestmotorclass;itwasonlyabout10%forsmallermotors.Thediffusionofmotorswithhigher

    efficiencystartsearlierforlargermotorsthanforsmallerones,sincemoreengineeringtimeand

    money isusually spent in the search for thebestmatchingmotorwhena largemotorhas to

    berenewed.

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    28/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|26

    Figure5:MotorefficienciesinCanadabeforeandafterintroductionin1997ofEnergyEfficiencyRegulations

    forGeneralPurposeIndustrialMotors

    Table10:

    ShareofmotorefficiencyclassIE3salesintheUnitedStates(200106)andCanada(2007)

    2001 2002 2003 2004 2005 2006 2007

    United States 10% 13% 20% 21% 24% 27%

    Canada 39%

    Sources:Boteler,2007;NRCan,2009.

    InEurope,electricmotorsbetween1.1kWand 90kWare included in a voluntaryagreement

    between the European Committee of Manufacturers of Electrical Machines and Power

    Electronics (CEMEP)and the EuropeanUnion. Since thisagreementwas initiated in1999, the

    marketshareoftheclassEff3hasbeenfallingduetoincreasingmarketpenetrationofthemore

    efficientclassEff2(IE1)(Figure6).TheevenmoreefficientclassEff1(IE2)hasalsobeengaining

    marketshare,albeitatamuchslowerrate.

    Table11:ShareofefficiencyclassIE3inelectricmotorsalesbysize,UnitedStates(2003)

    Motor size (kW) Horsepower Sales (thousands) Market share of IE3 (%)

    0.75 - 3.75 1 - 5 932 9.8

    4.5 - 15.0 6 - 20 410 27.6

    15.0 - 37.5 21 - 50 116 48.1

    37.5 - 75.0 51 - 100 41 55.1

    75 - 150 101 - 200 22 69.2

    150 - 375 201 - 500 11 75.0

    Total 1 532 20.0

    Source:USCensusBureauascitedbyElliott,2007.

    InAustralia sinceOctober 2001,manufactured or imported threephase electricmotors from

    0.73kW to

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    29/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|27

    Figure6:MarketshareofefficiencyclassesinEuropeundertheCEMEPvoluntaryagreement

    Source:CEMEP,2008.

    BrazillauncheditsfirstregulationoftheEnergyEfficientActforelectricmotorsin2002.Thisact

    establishedtwosetsofMEPS,forstandard (mandatory)andhighefficiency (voluntary)motors.

    Anupdated regulation from theendof2005 (Edict 553/2005), established theprevioushigh

    efficiencyMEPSasmandatoryforallmotors intheBrazilianmarket.ThesenewBrazilianMEPS

    arecompatiblewith those implemented inothercountries.Brazilianmotormanufacturershad

    already set a highefficiency line in 2006, accounting for about 10% of total production.

    Nevertheless,itisexpectedthattheexpansionofthisshareto100%wouldhavealargeimpact

    onmanufacturersandtheirpresuppliers,mainlyfortechnicalreasons(Garciaetal.,2007).

    South Korean data on themarket share of highly efficientmotorswere reported byHuseok

    (2007).Aftercrosscheckingwithrelevantexperts,ithasbeendeterminedthatthetermhighly

    efficientwasusedtorefertomotorsattheIE2efficiencylevel.

    MarketpenetrationofVFDtechnology

    Motorsaresometimessoldtogetheror latermatchedwithavariablefrequencydrive (VFD) to

    enablegreaterefficiencywhenoperatingatpartialloads.ThefractionofmotorssoldwithaVFD

    isincreasing,but isnotclearlyreportedbecausemotorsandVFDsareoftenmanufactured,and

    mostlysold,bydifferentmanufacturers,andare integratedafterpurchaseat theplaceofuse.

    DataonVFDuseisverysparse.

    AmarketoverviewofVFDuseinEU15in1998estimatedthat1.3millionVFDsweresold,witha

    market valueofEUR1.05billion (DeAlmeida etal.,2000), TheVFDsweremainly0.75kW to

    4kWinoutputsize.MorerecentindustrybasedestimatesinGermanyshowthat30%ofelectric

    motorsarenow sold togetherwithaVFD. Smallpumpsand fansarealso increasingly sold in

    integratedpackagesthatincludeaVFD.

    EuropeandJapanarethemajorcentresofmotorproductionintheOECD.Japanproducesover

    15millionelectricmotorsperyearofwhichabout8millionareintheintegralmotorpowerrange

    (the rest are very smallmotors). The energy efficiency of the Japanese newmotormarket is

    slightly lowerthan intheEuropeanUnion,andsignificantly lowerthan intheUnitedStatesand

    Canada.However,Japanisthegloballeaderinproductionanduseofinverters(VSDs/VFDs),andthusmay well be using electromotive power more efficiently on average than other OECD

    Eff3

    Eff2 = IE1

    Eff1 = IE2

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    30/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|28

    economies.Salesof inverters inJapanbegan inthe1980sandbythemid1990saccounted for

    about 75% of the sales volume of electricmotors, which implies that a high proportion of

    applicationswereusing inverters.Pricesof invertersdroppedby60%from1990to2002.Japan

    hasbeenusingtax incentives toencourage theuptakeof inverterssince the late1980s; ithas

    beenestimatedthatthesemayhaveledtopowersavingsof>1GW,i.e.theoutputofanuclear

    powerplant(JWG,2007).

    InnonOECDeconomies,VSD/VFD (inverter)use is thought tobequite lowdue to thehigher

    initialcostofinverterbasedtechnologies.

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    31/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|29

    3.GlobalElectricityConsumptionandCO2Emissions

    ofElectricMotorDrivenSystems

    Theglobalelectricityconsumptionbyelectricmotordrivensystems (EMDS)hasnotpreviouslybeenmeasuredorestimated inaconsistentway,and few reliabledataexistonwhich tobase

    suchestimates.Theauthorsusedalternatetopdownandbottomupmethodologicalapproaches

    to develop estimates of global electricity consumption and CO2 emissions from EMDS. These

    analysesdrawondispersedand inconsistentdataonstockandsalesofelectricmotors,electric

    motor power and electricity demand, and attempt to organise the available data within a

    consistent analytical framework.A comparison of the estimates of energy and CO2 emissions

    produced by these two methodologies determines the degree of agreement between the

    disparatedatasetsand servesasameasureofuncertainty inoverallestimates.Globalenergy

    demandandCO2estimatesarereportedbyefficiencyclasses,motorsize,applicationandsector.

    Scopeand

    methodology

    Anelectricmotorsystemcomprisesthreelayersofequipment(Figure7):

    1. Electricmotor:afullyfunctioningelectricmotorrunfromtheelectricgrid.

    2. Coremotorsystem:theelectricmotoranditsdrivenpieceofmechanicalequipment(fanor

    pumpwheel,compressor,etc.)plusthenecessaryinterconnection(clutch,gear,transmission

    belt)and a variablespeeddrive (VSD) systembetween the gridand themotor to control

    torqueandspeed.

    3. Totalmotorsystem:thecoremotorsystemplustheeventualapplicationofpower(awater

    heatingpipingsystem,anairventilationductingsystem,acoolingsystemwithitscoldwater

    network and the cooling tower, a compressed air pipe system and the storage tank, a

    conveyor belt installation, an elevator for people or goods, etc.), as well as electric

    equipment between the grid and the motor (such as uninterruptible power supply,

    transformers,powerfactorcompensation,etc.).

    Figure7:Totalmotorsystem,coremotorsystemandelectricmotor

    Source:A+BInternational,2008.

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    32/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|30

    In an EMDS, themotor itself is the only part that directly consumes energy; however,when

    consideringtheenergyefficiencyofthesystem,thetotaloratleastthecoresystemisrelevant.

    Thisstudyconsiderstheenergyusedbyalltypesofelectricmotorsaroundtheworld,butparts

    oftheanalysisfocusdifferentlyonsomemotortypesasafunctionoftypeandapplication.

    Thereisnocommonlyaccepteddefinitionofanelectricmotorsystem.Theauthorsbelievethatamoreprecisedefinitionshouldbethesubjectoffutureresearch.Thecurrentlackofclaritymakes

    itdifficult to account for sales, installedbase and running stockofelectricmotor systems. In

    principal,thesumofallelectricmotorswithinthescopeofthestudyshouldbeequivalenttothe

    sum of all those in enduse applications (pumps, fans, compressors, material handling and

    processing,andtraction).Inpractice,dataonmotorstocksandsalesdoesnotalwaysaddupthis

    waybecausetherearethreewaystomanufacture,sellandinstallanelectricmotor:

    a) Anelectricmotormaybemanufacturedintegrallywithitspump,fanorcompressorwheel.In

    thiscase, itcannotbeseparatedandcountedasasinglepiece.This istypicallythecasefor

    motorsofupto2kWusedinsmallpackagedapplications.

    b) Anelectricmotormaybemanufactured inparallelwithapieceofapplicationequipment,

    either in the same manufacturing plant or in a different plant. An eventual match is

    preconceivedbystandardisedhardwareinterconnectionandsoftwarecompatibility.

    c) Astandardelectricmotor(asbasedon IECclassificationsforframetypeandsize,outputsize

    andperformance categories)maybemanufacturedbya company,advertised in catalogues

    andmadeavailableonshortnoticefromstockwithouttheeventualuserandapplicationbeing

    known.Relatedcomponentstobeusedwiththemotor inthefinalapplication(suchasfans,

    pump wheels,etc.) may be manufactured by other specialised companies without their

    knowingwhat typeandsizeofmotor theywilleventuallybedrivenby.Similarly, themotor

    maybedirectlyintegratedbyanoriginalequipmentmanufacturer(OEM)intoalargermachine

    orproductbeforebeingsoldtoanenduser.Inthiscase,themotorwillnolongerbeseparately

    visiblefromthemachineasawholeandcannolongerbetreatedortestedassuch.

    Scopeanddefinitions

    Smallmotorswithapowerratingofupto0.75kWaccountforabout90%ofallelectricmotorsinthe

    globalstock,butforonlyabout9%ofthetotalelectricityusedbyelectricmotors.Theyareusedin

    appliances,smallpumpsand fans.Thesemotorsareoftensinglephaseandare induction,shaded

    pole,orshuntwoundmotortypes,whicharetypicallycustommadeinlargeseriestobeintegrated

    intospecificmachinesorappliances.Theyoftenoperateat,oratlessthan,mainsvoltage.

    About68%oftheelectricityconsumedbyelectricmotorsisusedbymediumsizemotors,those

    in the 0.75kW to 375kW input power range. For themost part, these are asynchronous AC

    induction motors of 2,4,6or8 poles, but some are special motors (e.g.direct current,

    permanentmagnet [PM], switched reluctance, stepperand servomotors).Theyarepolyphase

    motorsoperatingatvoltagesof200Vto1000V,manufacturedinlargeseries,usuallywithshort

    delivery lead times,according to standard specifications that canbeordered from catalogues.

    Thesemotorsaccount forabout10%ofallmotorsandareused inpumps, fans,compressors,

    conveyors,andindustrialhandlingandprocessingapplications.

    Largemotorswitharatedpowerof375kWto100000kWarepolyphase,highvoltagemotors

    operatinginthe1kVto20kVrange.Theyarecustomdesigned,synchronousandassembledon

    site. They account for only about 0.03%of the stock of all electricmotorsbut about 23% of

    energyuse.Mostandareusedinindustrialandinfrastructuralapplications.

    Theassociationoftheinputpowerrangeswithmotorsizedefinitionsgivenabovecorrespondsto

    those used in international technical standards. Specifically, the IEC 6003430 Standard for

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    33/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|31

    rotating electrical machines Part 30: Efficiency classes of singlespeed, threephase, cage

    inductionmotorsappliesto:

    Lowvoltage(375kW),generallyrunatmidandhighvoltage,whicharemanufacturedondemandinrelativelysmallquantitiesaccordingtospecificrequirementsofindustrialusers.

    Smallermotors (

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    34/132

    Energyefficiencypolicyopportunitiesforelectricmotordrivensystems OECD/IEA2011

    Page|32

    Electricmotors in vehicles (trains, trams, cable cars,motor carsandairplanes).They serveeither as main traction systems (electric trains, trams, trolley buses,etc.) or as auxiliary

    motorswithinfuelsystems(cars,trucks,buses,dieseltrains,airplanes)tooperateallkindsof

    devices (windshield wipers, window motors, servo motors for brakes and steering, air

    conditioning,etc.).

    Electricmotors integrated inhouseholdappliances, consumergoodsandofficeequipment.These smallmotors typically have low operating hours and are treated as components in

    systems that often already have test standards, energyefficiency classes and labelling

    schemesapplyingatthewholesystemlevel.

    Theanalysisfocusesonelectricitydelivereddirectlyfromthegridtothemotor,excludingspecial

    applicationsrunfromfossildrivengeneratorsorbatteries.

    Methodology

    Currentlytherearefewreliablestatisticsorinformationabouttheglobalelectricityuseofelectric

    motors.Neitherdatafromindividualcountriesnordataavailableonagloballevelarebasedon

    harmonisedandconsistentmethods,oronpublisheddata.Therefore, ithasbeennecessaryto

    developandapplyamethodologytomakeabestestimateofelectricmotorelectricityusefrom

    theavailabledatasets.Twodifferentapproachestoestimateglobalelectricitydemandofelectric

    motorsareappliedtoexaminetheuncertaintyintheoverallestimates:

    Atopdownapproach:Themethodologyappliedinvolvesestimatingallnonmotorelectricityusesandassuming the residualpartof totalelectricityconsumption is thatusedbyelectric

    motors.Explicitly,theapproachlooksatsectorlevelelectricityuseinsome55largecountries

    andassumesanaveragefractionofelectricmotorusageineachsector.

    A bottomup approach: The national energy use of electricmotors is calculated based onavailable data (annual sales, running stock) and estimates of the average size, efficiency,

    running hours and load factorof themotor stock,which is thenused to calculatemotorsystempowerandelectricitydemand.

    The authors of the study compared the results of the two approaches to ascertain their

    plausibilityandrobustnessanddeterminethelevelofuncertainty.

    Topdownestimatesofelectricityuse

    Demandbyenduse

    According to IEA statistics, global electricity productionwas 19000TWh in 2006 and annual

    electricity consumption forallenduse sectorswas15600TWh. Informationaboutnonmotorelectricityconsumptionisavailablefromseveralotherstudies:lighting(Waide,2006);residential

    consumerelectronics (Ellis,2009);officeelectronics ICT (TheClimateGroup,2008);spaceheat

    andprocessheat (A+B Internationalestimatesbasedonglobal industryprocessheat);and rail

    transport (UIC,2008).Deducting these figures from totalelectricity consumption results inan

    estimateoftotalelectricityuseforelectricmotorsinallsectors(industry,commercial[including

    vehicles]),smallrefrigerationandhouseholdappliances)of7200TWhperyear.Thisrepresents

    46%ofallenduseelectricityconsumption(Table12andFigure9).

  • 7/26/2019 EE Policy Opportunities for EM-Driven Systems Paul_Waide

    35/132

    OECD/IEA2011 Energyefficiencypolicyopportunitiesforelectricmotordrivensystems

    Page|33

    Table12:Estimateofglobalelectricitydemand(TWh)bysectorandenduse(2006)

    Sector All Light Electronics Electrolysis Heat Standby Motors

    Industry 6 500 500 200 500 800 100 4 400

    Transport 300 100 0 0 0 0 200

    Residential 4 300 900 700 0 1 600 200 900

    Commercial and publicservices

    3 700 1 300 500 0 300 200 1 500

    Agriculture, forestry andfishing

    400 0 100 0 200 0 100

    Others 500 100 100 0 200 0 200

    Total 15 700 2 900 1 600 500 2 900 500 7 200

    Share of total (%) 18.6% 10.0% 3.2% 18.7% 3.3% 46.2%

    Source:A+BInternational,2009.

    Figure9:Estimatedshareofglobalelectricitydemandbyenduse(2006)

    Light

    19%

    Electronics

    10%

    Electrolysis

    3%

    Heat

    19%Standby

    3%

    Motors

    46%

    Source:A+BInternational,2009.

    Demandbymotorsector