EE 350 / ECE 490 Analog Communication Systems

58
EE 350 / ECE 490 Analog Communication Systems Ch. 15 – Waveguides & Radar 4/20/2010 R. Munden - Fairfield University 1

description

EE 350 / ECE 490 Analog Communication Systems. Ch. 15 – Waveguides & Radar. Objectives. Differentiate among sending signals on transmission lines, antennas, and waveguides based on power and distance Describe basic modes of operation for rectangular waveguides - PowerPoint PPT Presentation

Transcript of EE 350 / ECE 490 Analog Communication Systems

Page 1: EE 350 / ECE 490 Analog Communication Systems

EE 350 / ECE 490Analog Communication

SystemsCh. 15 – Waveguides &

Radar

4/20/2010R. Munden - Fairfield University 1

Page 2: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

2

Objectives Differentiate among sending signals on transmission lines,

antennas, and waveguides based on power and distance Describe basic modes of operation for rectangular waveguides Calculate the cutoff wavelength for the dominant mode of

operation Provide a physical picture of waveguide propagation, including

the concepts of guide wavelength and velocity Describe other types of waveguides including circular, ridged,

flexible, bends, twists, tees, tuners, terminations, attenuators, and directional couples

Explain three methods for coupling energy into or out of a waveguide and the uses for cavity resonators

Calculate an object’s velocity when using a Doppler radar system Calculate the characteristic impedance for microstrip and

stripline.4/20/2010

Page 3: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

3

15-1 Comparison of Transmission Systems

Waveguides allow you to send much more power over short distances than you could with transmission lines or antennas

At long distances waveguides are less efficient than antennas

There is also a frequency dependence: transmission lines above DC, antennas above 100 kHz, waveguides above 300 MHz

4/20/2010

Page 4: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

44/20/2010

Power vs. Distance

F i g u r e 1 5 - 1 I n p u t p o w e r r e q u i r e d v e r s u s d i s t a n c e f o r fi x e d r e c e i v e r p o w e r.

Page 5: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

5

15-2 Types of Waveguides

Waveguide Operation

4/20/2010

Page 6: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

64/20/2010

Waveguide Construction

F i g u r e 1 5 - 2 Tr a n s f o r m i n g a t r a n s m i s s i o n l i n e i n t o a w a v e g u i d e .

Page 7: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

74/20/2010

Waveguide Dimensions

F i g u r e 1 5 - 3 Wa v e g u i d e d i m e n s i o n d e s i g n a t i o n .

The width, a, needs to be λ/2, while b is about half that. This is why waveguide is only used for high frequencies, otherwise the size would be far too large.

Page 8: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

84/20/2010

Modes

F i g u r e 1 5 - 4 E x a m p l e s o f m o d e s o f o p e r a t i o n i n r e c t a n g u l a r w a v e g u i d e s .

Multiple modes may travel down a waveguide simultaneously

Page 9: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

9

Falstad EM Waveguide Applet

4/20/2010

http://www.falstad.com/embox/guide.html

Page 10: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

10

Dominant Mode Operation

TE10 is the “natural” or dominant mode of operation TE10 has the lowest cut-off frequency and there is a

frequency “gap” before the next higher mode can be excited

TE10 allows the physically smallest waveguide for a given frequency

Cutoff wavelength: λco = 2a For X-band waveguide is 0.9 x 0.4 in, λco = 1.8 in or

4.56 cm fco = 6.56 GHz, with the next highest mode being

TE20 at 13.1 GHz, so the recommended range of operation is 8.2 – 12.4 GHz

4/20/2010

Page 11: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

11

Waveguide Bands / Sizes

4/20/2010

Range Internal InternalGHz (inches) (mm. approx) U.S. (EIA) Narda1.12 - 1.7 6.5 x 3.25 165.0 x 83.0 WR650 L1.45 - 2.2 5.1 x 2.55 131.0 x 65.0 WR5101.7 - 2.6 4.3 x 2.15 109.0 x 55.0 WR430 LS2.2 - 3.3 3.4 x 1.7 86.0 x 43.0 WR3402.6 - 3.95 2.84 x 1.34 72.0 x 34.0 WR284 S3.3 - 4.9 2.29 x 1.145 59.0 x 29.0 WR229 A(7.5cm)3.95 - 5.85 1.872 x 0.872 48.0 x 22.0 WR187 C4.9 - 7.05 1.59 x 0.795 40.0 x 20.0 WR1595.85 - 8.2 1.372 x 0.622 35.0 x 16.0 WR137 XN7.05 - 10.0 1.122 x 0.497 29.0 x 13.0 WR112 XB8.2 - 12.4 0.9 x 0.4 23.0 x 10.0 WR90 X10.0 - 15.0 0.75 x 0.375 19.0 x 9.5 WR7512.4 - 18.0 0.622 x 0.311 16.0 x 7.9 WR62 KU15.0 - 22.0 0.510 x 0.255 13.0 x 5.8 WR5118.0 - 26.5 0.420 x 0.170 11.0 x 4.3 WR42 K22.0 - 33.0 0.340 x 0.170 8.6 x 4.3 WR3426.5 - 40.0 0.280 x 0.140 7.1 x 3.6 WR28 V33.0 - 50.0 0.224 x 0.112 5.7 x 2.9 WR22 Q40.0 - 60.0 0.188 x 0.094 4.8 x 2.4 WR1950.0 - 75.0 0.148 x 0.074 3.8 x 1.9 WR15 M60.0 - 90.0 0.122 x 0.061 3.1 x 1.6 WR12 E75.0 - 110.0 0.100 x 0.050 2.4 x 1.3 WR1090.0 - 140.0 0.080 x 0.040 2.0 x 1.0 WR8 N110.0 - 170.0 0.065 x 0.0325 1.7 x 0.82 WR7140.0 - 220.0 0.051 x 0.0255 1.3 x 0.65 WR5 A(7.5cm)170.0 - 260.0 0.043 x 0.0215 1.1 x 0.55 WR4220.0 - 325.0 0.034 x 0.017 0.87 x 0.44 WR3 R

Page 12: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

12

15-3 Physical Picture of Waveguide Propagation

You can imagine EM waves bouncing off the walls of the waveguide, much like total internal reflection. The lower the frequency the more perpendicular to the walls the waves must travel to reflect and interfere properly, eventually, below the cutoff frequency the waves travel entirely perpendicular, and no energy propagates down the wavegude.

4/20/2010

Page 13: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

134/20/2010

Wave paths

F i g u r e 1 5 - 5 P a t h s f o l l o w e d b y w a v e s t r a v e l i n g b a c k a n d f o r t h b e t w e e n t h e w a l l s o f a w a v e g u i d e .

Page 14: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

14

Wavefront propagation Group Velocity:

Guide Wavelength:

4/20/2010

2

21sin

ac

Vg

F i g u r e 1 5 - 6 Wa v e f r o n t r e fl e c t i o n i n a w a v e g u i d e .

As frequency goes down, wavelength goes up. As this approaches the cutoff wavelength, the wave must be travelling more perpendicular (theta near zero), which lowers the group velocity, eventually stopping propagation of energy when theta = 0 and Vg =0. At this condition in TE10 mode you have one half wavelength of E field across the a direction of the guide.

sin1

space in wavelengthguide in wavelength

g

Page 15: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

154/20/2010

Wavefront Reflection

Page 16: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

16

15-4 Other Types of Waveguides

Rectangular is by far the most common, but special applications may require use of special waveguide configurations

4/20/2010

Page 17: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

174/20/2010

Circular Waveguide

F i g u r e 1 5 - 8 C i r c u l a r - t o - r e c t a n g u l a r t a p e r.

F i g u r e 1 5 - 7 C i r c u l a r w a v e g u i d e r o t a t i n g j o i n t . Circular waveguide

Advantages:Simple to manufactureRotationally symmetric – ideal for rotating radar installationsDisadvantages:Twice the cross-section necessaryExpensiveOnly 15% bandwidth as opposed to 50% BW for dominant mode

Page 18: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

184/20/2010

Ridged Waveguide

F i g u r e 1 5 - 9 R i d g e d w a v e g u i d e s .

Allow longer wavelengths (lower frequencies) with smaller outside dimensions. Allow larger bandwidth. More expensive to manufacture, so only used when space is a premium (i.e. satellites).

Page 19: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

194/20/2010

Flexible Waveguide

F i g u r e 1 5 - 1 0 F l e x i b l e w a v e g u i d e .

Spiral wound ribbons of metal allow continuous flexing for special applications. Usually coated with rubber to maintain seal, and are often pressurized to prevent water or dust buildup or are coated with silver or gold to prevent corrosion

Page 20: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

20

15-5 Other Waveguide Considerations

Waveguide Attenuation Waveguides can propagate up to 1 MW at 1.5 fco in

air. Generally waveguide losses are highest below fco Above fco, the waveguide supports some travelling

waves which have attenuation due to skin effect of walls and the dielectric losses.

Generally attenuation drops approaching fco, then is a broad minimum, and gradually rises as frequency increases

4/20/2010

Page 21: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

214/20/2010

Waveguide Bends and Twists

F i g u r e 1 5 - 1 1 Wa v e g u i d e b e n d s a n d t w i s t s .

H lines are bent E lines are bent E lines polarization plane is changed

These are used to mechanically move the wave around corners, or to change its polarization. Often governed by “plumbing” considerations.

Page 22: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

224/20/2010

Waveguide Tees

F i g u r e 1 5 - 1 2 S h u n t , s e r i e s , a n d h y b r i d t e e s .

Shunt – A+B add in phase to C, or C splits equally into A & B

Series – D splits equally, but opposite phase, into A and B. D can be used with a piston for a short circuit stub.

Hybrid or Magic Tee – combines the two previous forms, many interesting applications

Page 23: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

234/20/2010

Magic Tee

F i g u r e 1 5 - 1 3 H y b r i d - t e e T R s w i t c h .

Page 24: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

244/20/2010

Tuners

F i g u r e 1 5 - 1 4 Tu n e r s .

Similar to shorted stub in a transmission line.If less than ¼ wave it looks capacitive, if longer it looks inductive.

Can be used to match loads.a) Is like a single-stub tuner

b) Is like a double-stub tuner

Page 25: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

25

15-6 Termination and Attenuation

Characteristic Wave Impedance (depends on frequency):

4/20/2010

377)2/(1 20

L

La

Z

Page 26: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

264/20/2010

Termination

F i g u r e 1 5 - 1 5 Te r m i n a t i o n f o r m i n i m u m r e fl e c t i o n s .

Graphite Sand or a high resistance rod or wedge at the end will serve to dissipate the energy as heat, preventing reflections back up the waveguide

Page 27: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

274/20/2010

Attenuators

F i g u r e 1 5 - 1 6 A t t e n u a t o r s .

a) Flap attenuator, insertion of a resistive card causes attenuation, this is varied by how much the card is inserted.

b) Vane attenuator positions the vanes near the edges for low attenuation or the center for high attenuation

Page 28: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

28

15-7 Directional Coupler Power moving from left to right couples into the

secondary, while power moving from right-to-left is dissipated in the secondary’s vane.

4/20/2010

F i g u r e 1 5 - 1 7 Tw o - h o l e d i r e c t i o n a l c o u p l e r.

out

in

PPdBcoupling log10)(

Page 29: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

29

15-8 Coupling Waveguide Energy and Cavity Resonators

Coupling into the waveguide is accomplished by Probe, Loop, or Aperture coupling.

4/20/2010

Page 30: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

304/20/2010

Probe Coupling

F i g u r e 1 5 - 1 8 P r o b e , o r c a p a c i t i v e , c o u p l i n g .

The coax probe should be at the center of a and a ¼ wavelength from the end of the guide for maximum coupling

Page 31: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

314/20/2010

Loop Coupling

F i g u r e 1 5 - 1 9 L o o p , o r i n d u c t i v e , c o u p l i n g .

Page 32: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

324/20/2010

Aperture Coupling

F i g u r e 1 5 - 2 0 A p e r t u r e , o r s l o t , c o u p l i n g .

Provide electric, magnetic, or EM field coupling

Page 33: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

334/20/2010

Cavity Resonators

F i g u r e 1 5 - 2 1 R e c t a n g u l a r w a v e g u i d e r e s o n a t o r.

Cavity Resonators are used at microwave frequencies in place of standard LC resonant circuits, just like transmission lines can be used in place of LC resonators in RF applications.

Page 34: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

344/20/2010

Cavity Tuning

F i g u r e 1 5 - 2 2 C a v i t y t u n i n g b y v o l u m e .

Cavity volume can be tuned. Decreasing d increases f, and increasing d decreases f

Tuning can also be accomplished by inserting a non-ferrous screw or paddle near maximum H to increase or decrease the inductance inversely decreasing or increasing f.

Page 35: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

35

15-9 Radar

Radio Detection and Ranging Fundamentally a microwave transmitter and

receiver Measures waves reflected from an object such as a

plane Uses a directional antenna to determine range and

distance to the object Generally the larger the antenna, the better the

resolution

4/20/2010

Page 36: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

364/20/2010

Radar Waveform and Range Determination

F i g u r e 1 5 - 2 3 R a d a r p u l s e s .

Speed of light, c = 186000 mi/s or 162000 nautical mi/s (6076 ft/s)Radar mile is 2000 yards (6000 ft). Range found from time, 6.18us to travel 1 radar mile. Range = t/12.36Can be calculated from speed of light

Page 37: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

374/20/2010

Radar System Parameters

F i g u r e 1 5 - 2 4 S e c o n d r e t u r n e c h o .

Max unambiguous range = PRT/12.2Minimum Range = 150 PWDuty cycle = PW / PRT

Page 38: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

38

F i g u r e 1 5 - 2 5 D o u b l e r a n g e e c h o .

4/20/2010

Page 39: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

39

F i g u r e 1 5 - 2 6 R a d a r s y s t e m b l o c k d i a g r a m .

4/20/2010

Page 40: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

40

15-10 RFID - Radio Frequency Identification

Powering the Tag Frequency of Operation Communications (Air Interface) Protocol

4/20/2010

Page 41: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

41

F i g u r e 1 5 - 2 7 B a s i c b l o c k d i a g r a m o f a n R F I D s y s t e m .

4/20/2010

Page 42: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

42

F i g u r e 1 5 - 2 8 E x a m p l e s o f ( a ) s i n g l e - d i p o l e a n d ( b ) d u a l - d i p o l e R F I D i n l a y s . ( 2 0 0 7 S y m b o l Te c h n o l o g i e s , I n c . Re p r i n t e d w i t h p e r m i s s i o n . )

4/20/2010

Page 43: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

43

F i g u r e 1 5 - 2 9 T h e G 2 C 5 0 1 a c t i v e R F I D t a g f r o m G 2 M i c r o s y s t e m s . ( C o u r t e s y o f G 2 M i c r o s y s t e m s . )

4/20/2010

Page 44: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

44

F i g u r e 1 5 - 3 0 T h e f r e q u e n c y b a n d s u s e d b y R F I D t a g s .

4/20/2010

Page 45: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

45

15-11 Microintegrated Circuit Waveguiding

4/20/2010

Page 46: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

46

F i g u r e 1 5 - 3 1 S t r i p l i n e a n d m i c r o s t r i p .

4/20/2010

Page 47: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

47

F i g u r e 1 5 - 3 2 C h a r a c t e r i s t i c i m p e d a n c e .

4/20/2010

Page 48: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

48

F i g u r e 1 5 - 3 3 M i c r o s t r i p c i r c u i t e q u i v a l e n t s .

4/20/2010

Page 49: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

49

F i g u r e 1 5 - 3 4 D i e l e c t r i c w a v e g u i d e a n d d i e l e c t r i c - fi l l e d w a v e g u i d e .

4/20/2010

Page 50: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

50

15-12 Troubleshooting

4/20/2010

Page 51: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

51

F i g u r e 1 5 - 3 5 V S W R t e s t .

4/20/2010

Page 52: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

52

F i g u r e 1 5 - 3 6 L o s s t e s t .

4/20/2010

Page 53: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

53

15-13 Troubleshooting w/ Multisim

4/20/2010

Page 54: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

54

F i g u r e 1 5 - 3 7 T h e c i r c u i t e x a m p l e o f a l o w - l o s s w a v e g u i d e s e c t i o n c o n n e c t e d t o a n e t w o r k a n a l y z e r.

4/20/2010

Page 55: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

55

F i g u r e 1 5 - 3 8 T h e s i m u l a t i o n o f a l o w - l o s s w a v e g u i d e a s v i e w e d w i t h t h e n e t w o r k a n a l y z e r.

4/20/2010

Page 56: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

56

F i g u r e 1 5 - 3 9 T h e s i m u l a t i o n o f a v e r y l o s s y w a v e g u i d e .

4/20/2010

Page 57: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

57

F i g u r e 1 5 - 4 0 A n e x a m p l e o f a t e s t o n t h e M u l t i s i m s a m p l e l o s s y t r a n s m i s s i o n l i n e .

4/20/2010

Page 58: EE 350 / ECE 490 Analog Communication Systems

R. Munden - Fairfield University

58

F i g u r e 1 5 - 4 1 T h e s i m u l a t i o n r e s u l t s o f t h e l o s s y t r a n s m i s s i o n l i n e p r o v i d e d b y E W B M u l t i s i m .

4/20/2010