EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits...

74
EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A. Digital Signaling B. Logic Gates C. Gates at the Transistor Level D. CMOS Static Behavior E. CMOS Dynamic Behavior Textbook Reading Assignments 3.1–3.6 Practice Problems 3.1, 3.5, 3.7, 3.13, 3.27(a,c,e,g) Graded Components of this Module 2 homeworks, 2 discussions, 1 quiz (all online)

Transcript of EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits...

Page 1: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 1

EE 261 – Introduction to Logic Circuits

Module #3 - Digital Circuits

• Topics

A. Digital Signaling

B. Logic Gates

C. Gates at the Transistor Level

D. CMOS Static Behavior

E. CMOS Dynamic Behavior

• Textbook Reading Assignments

3.1–3.6

• Practice Problems 3.1, 3.5, 3.7, 3.13, 3.27(a,c,e,g)

• Graded Components of this Module 2 homeworks, 2 discussions, 1 quiz

(all online)

Page 2: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 2

EE 261 – Introduction to Logic Circuits

Module #3 - Digital Circuits

• What you should be able to do after this module

Draw the Symbols, Equation, and Truth Table for Basic Logic Gates Draw the transistor-level circuit of a CMOS Inverter, NAND-Gate, and NOR-Gate Describe CMOS Logic Static Behaviors (Noise Margins, Load Current, Fan-In/Out) Describe CMOS Logic Dynamic Behaviors (Delay, Power, SSN, ESD)

Page 3: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 3

Digital Signaling

• Digital Signaling

- A binary number system contains two symbols and a set of operations

- But what does a '0' or a '1' look like in real life?

- Many things can represents 0's and 1's, but we are interested in representing them using

"electrical signals"

• Logic Signals

- to represent a 0 or 1, we use an electrical signal (voltage or current)

- let's focus on voltage to begin with

Page 4: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 4

Digital Signaling

• Logic Signals

- a logic signal may look like this…

- we define a threshold to represent when we consider the signal a:

LOGIC 0 or LOGIC 1

t

v(t)

vthreshold

Page 5: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 5

Digital Signaling

• Logic Signals

- we say that the signal is:

LOW = when the voltage is < Vthreshold

HIGH = when the voltage is > Vthreshold

Positive Logic : when a LOW represents a 0 when a HIGH represents a 1

Negative Logic : when a LOW represents a 1 when a HIGH represents a 0

t

v(t)

vthreshold

Page 6: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 6

Digital Signaling

• Using Positive Logic

• Noise

- Digital signals have an advantage when noise is present

t

v(t)

vthreshold 0 1 0 1

t

v(t)

vthreshold 0 1 0 1

Page 7: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 7

Logic Gates

• Logic Circuit

- a circuit that produces logic outputs depending on the logic inputs

ex)

• Combinational Logic

- The outputs of the logic circuit depend ONLY on the current input values

Logic

Page 8: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 8

Logic Gates

• Truth Table

- a table that lists the output values for a given set of inputs in a logic circuit

- for "n" inputs, there are 2n possible input combinations

ex) n = 2

In1 In2 Output 0 0 0 0 1 0 1 0 1 1 1 0

- when designing a logic circuit, we typically start with the truth table

Page 9: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 9

Logic Gates

• Logic Gates

- the basic building blocks of digital logic

- these represent the most simple logic operations

• BUFFER Gate

- Out = In

01

Page 10: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 10

Logic Gates

• NOT Gate

- also called an inverter

- Out = In'

• AND Gate

- Out = A•B = AB

Page 11: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 11

Logic Gates

• OR Gate

- Out = A + B

Page 12: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 12

Logic Gates

• XOR Gate

- Out = A B

• NAND Gate

- Out = (A•B)'

Page 13: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 13

Logic Gates

• NOR Gate

- Out = (A + B)'

• XNOR Gate

- Out = (A B )'

Page 14: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 14

Logic Gates

• Timing Diagram

- Real systems operate with respect to time

- When we draw out the logic waveforms vs. time it is called a "Timing Diagram"

t

A

B

Z

Page 15: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 15

Logic Gates

• Simple Logic Circuits

- we use the basic gates to construct more complex combinational circuits

- using our notation (•, +, , ') we can write the "logic expression" for complex circuits

Z = (A B) + C

Page 16: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 16

Logic Gates

• Delay

- There is delay through each gate. In order to have a valid output, we must wait for the signals to propagate through all the gates in the circuit

- this delay can be described using timing diagrams

• Conversion to Truth Tables

- From a circuit diagram, we can draw the timing diagram & truth table

- From the truth table, we can draw the timing diagram & circuit diagram

- From the timing diagram, we can draw the circuit diagram & truth table

Page 17: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 17

Gates at the Transistor Level

• Logic Gates

- we've seen the basic logic gates that we use to form more complex logic expressions

BUF, INV, AND, NAND, OR, NOR, XOR, XNOR

• Logic Signaling

- we've seen how we use an electrical signal to represent and transmit logic values

t

A

B

1 0 1 0 1

0 1 1 1 1

Page 18: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 18

Gates at the Transistor Level

• Logic Families

- now we want to see how we actually create these circuits and signals using electronics

- there are different ways (or circuits) to implement logic gates

- the circuits are designed to interface with other circuits with the same type of design

- a collection of IC's designed to interface with each other is called a

"Logic Family"

- the most common families we deal with in school are:

1) CMOS 2) TTL

Page 19: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 19

Gates at the Transistor Level

• MOSFET

- stands for Metal Oxide Semiconductor Field Effect Transistor

- there are two types of MOSFET's

1) NMOS 2) PMOS

- this is analogous to bipolar transistors (npn, pnp)

- a MOSFET is a 3 terminal device

- this device can be thought of as a "voltage controlled resistor"

- a change on the gate voltage changes the resistance between the Drain and Source

- we can turn ON/OFF the flow of current by altering the voltage on the Gate

Gate

Source

Drain

Page 20: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 20

Gates at the Transistor Level

• NMOS

- an NMOS will allow current to flow between the Drain and Source when:

VGS > 0

- When VGS = 0, no current flows

- Cross Section of NMOS Construction

D

S

G+

VGS

-

IDS

pn n

Oxide

Semiconductor

MetalSource

Gate

Drain

Page 21: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 21

Gates at the Transistor Level

• PMOS

- a PMOS will allow current to flow between the Drain and Source when:

VGS < 0

- When VGS = 0, no current flows

- Cross Section of PMOS Construction

S

D

G

-

VGS

+IDS

np p

Oxide

Semiconductor

MetalSource

Gate

Drain

Page 22: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 22

Gates at the Transistor Level

• Basic NMOS Operation

- we typically call the power supply VDD (+5v, +3.3v, +2.5v, +1.8v)

- We typically call the ground either GND or VSS (0v)

D

S

G OFF

VDD

GND

Logic 0

D

S

G ON

VDD

GND

Logic 1

Page 23: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 23

Gates at the Transistor Level

• Basic PMOS Operation

S

S

G ON

VDD

GND

Logic 0

S

D

G OFF

VDD

GND

Logic 1

Page 24: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 24

Gates at the Transistor Level

• CMOS

- we now have two complementary switches

S

S

G ON

VDD

GND

Logic 0

S

D

G OFF

VDD

GND

Logic 1

D

S

G OFF

VDD

GND

Logic 0

D

S

G ON

VDD

GND

Logic 1

PMOS

NMOS

Page 25: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 25

Gates at the Transistor Level

• CMOS

- CMOS = Complementary MOS

- The complementary structure gives a way to always connect the output to either VDD or GND

- Consider the following circuit

S

D

G

VDD

InputD

S

G

GND

Output

PMOS

NMOS

Page 26: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 26

Gates at the Transistor Level

• CMOS

- When the Input = 0, the Output is connected to VDD

S

D

G

VDD

Input = 0D

S

G

GND

Output=1

PMOS=ON

NMOS=OFF

Page 27: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 27

Gates at the Transistor Level

• CMOS

- When the Input = 1, the Output is connected to GND

- this is how we construct a CMOS Inverter

S

D

G

VDD

Input = 1D

S

G

GND

Output=0

PMOS=OFF

NMOS=ON

Page 28: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 28

Gates at the Transistor Level

• CMOS Inverter

- Graphically, this looks like:

t

GND = LOW

VDD = HIGH

Vout

Vin

Page 29: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 29

Gates at the Transistor Level

• MOSFET Level

- we have two complementary switches

S

S

G

VDD

GND

Input = 0, PMOS = ONInput = 1, PMOS = OFF

D

S

G

VDD

GND

Input = 0, NMOS = OFFInput = 1, NMOS = ON

Page 30: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 30

Gates at the Transistor Level

• MOSFET Level

- another way to draw these is as follows:

S

S

G

VDD

GND

Input = 0, PMOS = ONInput = 1, PMOS = OFF

D

S

G

VDD

GND

Input = 0, NMOS = OFFInput = 1, NMOS = ON

Page 31: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 31

Gates at the Transistor Level

• CMOS Gates

- NMOS and PMOS transistors can be used together to form logic gates- the complementary structure is desired because the output is always being driven with a MOSFET

- HIGH = a PMOS is ON and connecting the output to the VDD supply all of the NMOS's are OFF

- LOW = an NMOS is ON and connecting the output to the VSS supply (GND) all of the PMOS's are OFF

Page 32: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 32

Gates at the Transistor Level

• CMOS Inverter

Input = 0 Input = 1

S

S

G

VDD

D

S

G

GND

0

PMOS = ON

NMOS = OFF

ILOAD

1

S

S

G

VDD

D

S

G

GND

1

PMOS = OFF

NMOS = ON

ILOAD0

Page 33: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 33

Gates at the Transistor Level

• CMOS NAND Gate

- PMOS's in parallel provide an OR'ing structure for the connection to VDD

- NMOS's in series provide an AND'ing structure for the connection to GND

VDD

GND

A

Output

VDD

B

A

B

Page 34: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 34

Gates at the Transistor Level

• CMOS NAND Gate

- We can increase the number of inputs to the NAND gate by

- adding more PMOS's in parallel - adding more NMOS's in series VDD

A

Output

VDD

B

A

B

Page 35: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 35

Gates at the Transistor Level

• FAN-IN

- Can we increase the number of inputs infinitely?

- No, because….

- adding PMOS's in parallel decreases the ON resistance and will consume too much power

- the capacitance from all of the gates on a single input line will slow down the circuit

- We define "Fan-In" as the number of inputs that a given device can have

ex) CMOS NAND : Fan-In = 6

- the datasheet for the device will specify this

Page 36: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 36

Gates at the Transistor Level

• CMOS NOR Gate

- PMOS's in series provide an AND'ing structure for the connection to VDD

- NMOS's in parallel provide an OR'ing structure for the connection to GND

VDD

GND

A

OutputB

AB

GND

Page 37: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 37

Gates at the Transistor Level

• CMOS NOR Gate

- We can increase the number of inputs to the NOR gate by

- adding more PMOS's in series - adding more NMOS's in parallel - Again, Fan-In applies

GND

A

OutputB

AB

GND

Page 38: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 38

Gates at the Transistor Level

• Non-Inverting Gates

- What about AND, OR, and BUF?

- In CMOS, we use INV, NOR, NAND for everything

- BUF Gate = 2 Inverters

- AND Gate = NAND and Inverter

- OR Gate = NOR and Inverter

Page 39: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 39

HIGH

LOW

CMOS Static Behavior

• Logic Levels

- We need to define boundaries when the signal is considered HIGH or LOW

- what is the logic level in the middle region?

t

GND = LOW

VDD = HIGH

Vout

Vin

Page 40: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 40

CMOS Static Behavior

• CMOS Static Behavior

- "Static" or "DC" refers to the gate's operation when the inputs are NOT changing

- also called "Steady State"

- if we plotted Vout vs. Vin of an Inverter, we would get…

Logic HIGH

Vout

Vin

Logic LOW

Page 41: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 41

CMOS Static Behavior

• CMOS Static Behavior

- the region in the middle is not definitely a HIGH or a LOW because of:

- Power Supply Variation - Process - Noise

???

Vout

Vin

Page 42: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 42

CMOS Static Behavior

• Specification

- we need to be able to guarantee operation of the gate over all possible conditions

- the limits on guaranteed operation are called "specifications"

- Specifications can give limits on the worst case situations

- Specifications can also give limits on typical situations

Page 43: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 43

CMOS Static Behavior

• Input Specifications

VIHmin : Minimum input voltage guaranteed to be recognized as a HIGH

VILmax : Maximum input voltage guaranteed to be recognized as a LOW

VDD

Vin

HIGHVIHmin

VSS

LOW

VILmax

Page 44: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 44

CMOS Static Behavior

• Output Specifications

VOHmin : Minimum output voltage guaranteed when driving a HIGH

VOLmax : Maximum output voltage guaranteed when driving a LOW

VDD

Vout

HIGHVOHmin

VSS

LOWVOLmax

Page 45: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 45

CMOS Static Behavior

• Noise Margin

HIGH State Noise Margin : (VOHmin - VIHmin)

LOW State Noise Margin : (VILmax - VOLmax)

VDD

Vout

HIGHVOHmin

VSS

LOWVOLmax

VDD

HIGHVIHmin

VSS

LOW

VILmax

Vin

Noise Margin

Noise Margin

Page 46: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 46

CMOS Static Behavior

• Leakage Current

- Ideally, a CMOS device driving another CMOS device will have ZERO output current

- However, in reality there is a small amount of current that flows due to the implementation of the MOS's in real materials

- there is a specification that tells us how much current can be expected to flow

IIH : Maximum current flowing when driving a HIGH

IIL : Maximum current flowing when driving a LOW

Page 47: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 47

CMOS Static Behavior

• Resistive Loads

- Sometimes we don't drive just CMOS loads

- we may have resistors that are attached to the receiver

- When resistors are attached, we must account for the voltage drop across the resistors when checking VILmax , VIHmin

Page 48: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 48

CMOS Static Behavior

• Driver Models

- We can model the MOSFET's as resistors

- They have different resistance when they are ON (low) versus when they are OFF (high)

- We can typically ignore the OFF resistance when considering the equivalent driver model

- We use the driver resistance along with the load resistors to find the Input Voltages (via KVL, KCL, Ohm's Law)

Page 49: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 49

CMOS Static Behavior

• CMOS DRIVING HIGH

CMOS Driving a HIGH Equivalent Driver Model

S

S

G

VDD

D

S

G

GND

0

PMOS = ON

NMOS = OFF

ILOAD

1

Rp

VDD

ILOAD

Page 50: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 50

CMOS Static Behavior

• CMOS DRIVING LOW

CMOS Driving a LOW Equivalent Driver Model

VSS

RnILOAD

S

S

G

VDD

D

S

G

GND

1

PMOS = OFF

NMOS = ON

ILOAD0

Page 51: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 51

CMOS Static Behavior

• CMOS Resistive Loads

- we need to find the voltage drop across the resistors to ensure we're meeting the input spec

VDD

Rp

VIN > VIHmin

RL

Page 52: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 52

CMOS Static Behavior

• Load Current

- there is a spec on how much current can be driven by the CMOS device

- in addition to verifying that we're meeting the input voltage spec of the receiver, we must also check to see that we're not exceeding the load current spec of the driver

IOH : Maximum current that can be sourced when driving a HIGH

IOL : Maximum current that can be sourced when driving a LOW

Page 53: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 53

CMOS Static Behavior

• CMOS Static Behavior

- Summary of static characteristics:

- Logic Levels - Noise Margin - Static DC Current - Resistive Loads - Output Current

- Summary of static specifications:

VIHmin : Minimum input voltage guaranteed to be recognized as a HIGHVILmax : Maximum input voltage guaranteed to be recognized as a LOW

VOHmin : Minimum output voltage guaranteed when driving a HIGHVOLmax : Maximum output voltage guaranteed when driving a LOW

IIH : Maximum current flowing when driving a HIGHIIL : Maximum current flowing when driving a LOW

IOH : Maximum current that can be sourced when driving a HIGHIOL : Maximum current that can be sourced when driving a LOW

Page 54: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 54

CMOS Static Behavior

• FAN-OUT

- the Maximum # of devices that a gate can drive

- depends on IOH and IOL

- It may differ for driving HIGH vs. driving LOW (we always take the minimum #)

- NOTE: We are only considering DC Fan Out

Page 55: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 55

CMOS Static Behavior

• Datasheets

- a datasheet is a document that a device manufacture provides

- this lists all of the specifications for the part

- the conditions for each specification are listed

- we use datasheets to understand the operation of a part and whether it will work in our design

Page 56: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 56

CMOS Static Behavior

• ESD

- Electrostatic Discharge

- moving objects accumulate charge

- CMOS devices are very sensitive to ESD

- if a large amount of ESD is discharged onto a device, it can destroy the device

- the ESD has the energy to

- re-diffuse doped regions - blow metal traces - fuse materials together to form a new compound

- to avoid, we can:

- use ESD protection circuitry within the device

- discharge ourselves before touching the device

Page 57: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 57

CMOS Static Behavior

• Latch-Up

- there are parasitic bipolar transistors within the MOSFET structure (npn, pnp)

- if given enough energy, these bipolar transistors can get into a positive feedback configuration and begin to conduct current through the silicon

- this is a problem because a large amount of current will flow and cannot be turned off

- latch up will typically burn out the IC

Page 58: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 58

CMOS Static Behavior

• Latch-Up Prevention

- at manufacturing, the npn / pnp paths are isolated from each other using guard rings

Page 59: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 59

CMOS Dynamic Behavior

• CMOS Dynamic Behavior

- We've looked at the following static characteristics:

- Logic Levels - Noise Margin - Static DC Current - Resistive Loads - Output Current

- Dynamic Behavior refers to when the Inputs/Outputs are switching

- Also called "AC" performance

- Dynamic behavior describes:

1) Speed 2) Power

Page 60: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 60

CMOS Dynamic Behavior

• Speed

- The speed of a gate depends on

(i) Transition Time (ii) Propagation Delay

• Transition Time

- the time it takes for the Output to change between logic levels

Page 61: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 61

HIGH

LOW

CMOS Dynamic Behavior

• Speed : Transition Time

- we can define the "rise time and "fall time" as the time it takes to pass through the uncertainty region

Vout

ttrise tfall

Page 62: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 62

CMOS Dynamic Behavior

• Speed : Transition Time

- transition time depends on

1) The ON Resistance of the driver 2) The capacitance of the load

- for AC analysis, the DC resistance and Voltage of the load have no effect

- the capacitance comes from

a) Output driver b) Wiring/Interconnect c) Input circuit

VDD

Rp

RLCLCintCP

Page 63: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 63

CMOS Dynamic Behavior

• Speed : Transition Time

- we can model the AC circuit as one RC

- the Time Constant is RC

= RC

VIN R

C

VOUT

Page 64: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 64

CMOS Dynamic Behavior

• Speed : Transition Time

Rising Edge

"Exponential Approach"

VOUT = VIN·(1 – e(-t/RC) ) - we assume the capacitor is NOT charged

Falling Edge

"Exponential Decay"

VOUT = VIN·e(-t/RC)

- we assume the capacitor is fully charged

- We set VIN to its steady state value at t=0 (i.e., VIN=VDD)

VIN R

C

VOUT

Page 65: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 65

CMOS Dynamic Behavior

• Speed : Propagation Delay

- the time it takes for a change on the Input to result in a change on the output

- we use an inverter model for this delay where:

tpLH = Δt from input falling edge to output rising edge tpHL = Δt from input rising edge to output falling edge

- we use the midpoints of the transitions

Vin

ttpLH

Vout

tpHL

Page 66: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 66

CMOS Dynamic Behavior

• Power Consumption

- there are two components of power consumption

1) DC Power : when inputs are static (quiescent)

- typically low in CMOS - this is also called "leakage"

2) AC Power : when outputs are switching

- largest contributor to overall power

(i) Short Circuit Power (ii) Load Power

Page 67: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 67

CMOS Dynamic Behavior

• Power Consumption

- Short Circuit Power

- at the moment of time when an output is half way through its transition, both the PMOS and NMOS are on.

- this creates a path from VDD to GND

PSC = PT = CPD · VDD · f

- CPD is the "Power Dissipation Capacitance" (given by MFN)

S

S

G

VDD

D

S

G

GND

PMOS = ON

NMOS = ON

ISC

VDD/2

Page 68: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 68

CMOS Dynamic Behavior

• Power Consumption

- Load Power

- the power is takes to charge & discharge the load capacitance

PL = CL · VDD2 · f

- CL is the sum of all load capacitance

(driver + interconnect + receiver)

S

S

G

VDD

D

S

G

GND

PMOS = ON

NMOS = OFF

ILCL

Page 69: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 69

CMOS Dynamic Behavior

• Power Consumption

- Total Power

PD = (CPD + CL) · VDD2 · f

- CL tends to dominate

S

S

G

VDD

D

S

G

GND

PMOS = ON

NMOS = OFF

ILCL

ISC

Page 70: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 70

CMOS Dynamic Behavior

• Simultaneous Switching Noise (SSN)

- What happens when we switch logic levels with a capacitive load?

- the capacitor looks like a short at AC (or when transitioning)

S

S

G

VDD

D

S

G

GND

PMOS = ON

NMOS = OFF

ILCL

Page 71: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 71

CMOS Dynamic Behavior

• Simultaneous Switching Noise (SSN)

- this causes a large instantaneous current to be drawn from the power supply

- the power supply cannot supply this sudden change in current because it has a much slower response

- we can think of the power supply as a large capacitor that stores our charge. The interconnect that supplies this charge to our device tends to be inductive and resistive.

- when we draw current quickly through the interconnect, there is voltage drop

- as a result, the power supply voltage will begin to "droop" as seen by our device

Page 72: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 72

CMOS Dynamic Behavior

• Simultaneous Switching Noise (SSN)

- "Decoupling Capacitors"

- we can put decoupling (or bypass) capacitors near our device to provide the faster, instantaneous current draw due to switching logic levels.

S

S

G

VDD

D

S

G

GND

PMOS = ON

NMOS = OFF

ILCL

CDecoupling

R,L

Page 73: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 73

CMOS Dynamic Behavior

• Simultaneous Switching Noise (SSN)

- "Ground Bounce"

- when the interconnect on the IC is inductive, we will get a voltage drop when instantaneous current is drawn.

VL = L (di/dt)

- this causes the VDD (or GND) on-chip to be different from the VDD (or GND) in the system.

- this is called "Ground Bounce"

- this leads to inadvertent switching of logic circuits

- this problem becomes more sever when multiple signals share the same VDD

or GND pin

S

S

G

VDD

D

S

G

GND

PMOS = ON

NMOS = OFF

ILCL

L+VL

-

Page 74: EE 261 – Introduction to Logic Circuits Module #3 Page 1 EE 261 – Introduction to Logic Circuits Module #3 - Digital Circuits Topics A.Digital Signaling.

EE 261 – Introduction to Logic Circuits Module #3Page 74

Module Overview

• Topics

- Truth Tables- Logic Gates- Simple Logic Circuits- Timing Diagrams- MOSFETS - NMOS, PMOS, CMOS- CMOS Inverter- CMOS NAND- CMOS NOR- CMOS AND,OR,BUF

- CMOS Static Behavior - Input Specs - Output Specs - Noise Margin - Leakage - Resistive Loads - Fan-In / Fan-Out - Latch-Up

- CMOS Dynamic Behavior- transition time / propagation

delay - power consumption (SC & Load) - Decoupling - Ground Bounce / SSN