Econometrics I 18

download Econometrics I 18

of 49

Transcript of Econometrics I 18

  • 7/25/2019 Econometrics I 18

    1/49

    Part 18: Maximum Likelihood Estimation8-1/49

    Econometrics I

    Professor William Greene

    Stern School of Business

    Deartment of Economics

  • 7/25/2019 Econometrics I 18

    2/49

  • 7/25/2019 Econometrics I 18

    3/49

    Part 18: Maximum Likelihood Estimation8-3/49

    Econometrics I

    Part 18 Maximum

    Likelihood Estimation

  • 7/25/2019 Econometrics I 18

    4/49

    Part 18: Maximum Likelihood Estimation8-4/49

    Maximum Likelihood Estimation

    !his defines a class of estimators "ased on the articulardistri"ution assumed to ha#e $enerated the o"ser#edrandom #aria"le%

    &ot estimatin$ a mean ' least s(uares is not a#aila"le

    Estimatin$ a mean )ossi"l*+, "ut also usin$ information

    a"out the distri"ution

  • 7/25/2019 Econometrics I 18

    5/49

    Part 18: Maximum Likelihood Estimation8-5/49

    -d#anta$e of !he MLE

    The main adanta!eof ML estimators is thatamon$ all Consistent Asymptotically NormalEstimators, MLEs ha#e o"timal as#m"toti$

    "ro"erties%The main disadanta!eis that the* are not

    ne$essaril# ro&ust to failures of thedistri"utional assumtions% !he* are #er*

    deendent on the articular assumtions%The o't $ited disadanta!eof their mediocre

    small samle roerties is o#erstated in #ie. ofthe usual aucit* of #ia"le alternati#es%

  • 7/25/2019 Econometrics I 18

    6/49

    Part 18: Maximum Likelihood Estimation8-(/49

    Proerties of the MLE

    )onsistent: &ot necessaril* un"iased, ho.e#er *s#m"toti$all# normall# distri&uted: Proof

    "ased on central limit theorems

    *s#m"toti$all# e''i$ient: -mon$ the ossi"leestimators that are consistent and as*mtoticall*

    normall* distri"uted ' counterart to Gauss/

    Marko# for linear re$ression +nariant: !he MLE of $)+ is $)the MLE of +

  • 7/25/2019 Econometrics I 18

    7/49Part 18: Maximum Likelihood Estimation8-,/49

    Settin$ 0 the MLE

    The distri&ution o' the o&sered randomaria&le is ritten as a 'un$tion o' the"arameters to &e estimated

    P)*idata,.+ 2 Pro"a"ilit* densit* arameters%

    The likelihood 'un$tion is $onstru$ted 'rom thedensit#

    3onstruction: 4oint ro"a"ilit* densit* functionof the o"ser#ed samle of data ' $enerall* theroduct .hen the data are a randomsamle%

  • 7/25/2019 Econometrics I 18

    8/49Part 18: Maximum Likelihood Estimation8-8/49

    )Lo$+ Likelihood 5unction

    f)*i,xi+ 2 ro"a"ilit* densit* of o"ser#ed *i

    $i#en arameter)s+ and ossi"l* data, xi%

    6"ser#ations are indeendent 4oint densit* 2 if)*i,xi+ 2 L)#0+ f)*i,xi+ is the contri"ution of o"ser#ation i to

    the likelihood% !he MLE of maximi7es L)#0+ In ractice it is usuall* easier to maximi7e

    lo$L)#0+ 2 ilo$f)*i,xi+

  • 7/25/2019 Econometrics I 18

    9/49Part 18: Maximum Likelihood Estimation8-9/49

    !he MLE

    !he lo$/likelihood function: lo$L)data+

    !he likelihood e(uation)s+:

    5irst deri#ati#es of lo$L e(ual 7ero at the MLE%

    )1n+9ilo$f)*ixi+MLE %

    am"le statisti$% )!he 1n is irrele#ant%+

    ;5irst order conditions< for maximi7ation

    - moment condition / its counterart is thefundamental theoretical result E=lo$L> 2 %

  • 7/25/2019 Econometrics I 18

    10/49Part 18: Maximum Likelihood Estimation8-1/49

    -#era$e !ime 0ntil 5ailure

    Estimatin$ the a#era$e time until failure, , of li$ht "ul"s%*i2 o"ser#ed life until failure%

    f)*i+ 2 )1+ex)/*i+

    L)+ 2 ? if)*i+2 -nex)/9*i+

    lo$L)+ 2 /nlo$ )+ / 9*iLikelihood e(uation: lo$L)+2 /n@ 9*iA2

    Solution: MLE 2 9*i n% &ote: E=*i>2 &ote, lo$f)*i+2 /1@ *iA

    Since E=*i>2 , E=lo$f)+>2%)6ne of the Ce$ularit* conditions discussed "elo.+

  • 7/25/2019 Econometrics I 18

    11/49Part 18: Maximum Likelihood Estimation8-11/49

    !he Linear )&ormal+ Model

    Definition of the likelihood function / oint densit* of theo"ser#ed data, .ritten as a function of the arameters.e .ish to estimate%

    Definition of the maximum likelihood estimator as that

    function of the o"ser#ed data that maximi7es thelikelihood function, or its lo$arithm%

    5or the model: *i 2 xi @ i, .here i &=,A>,the maximum likelihood estimators of and A are&2 )00+/10# and sA2 een%!hat is, least s(uares is ML for the sloes, "ut the#ariance estimator makes no de$rees of freedomcorrection, so the MLE is "iased%

  • 7/25/2019 Econometrics I 18

    12/49Part 18: Maximum Likelihood Estimation8-12/49

    &ormal Linear Model

    !he lo$/likelihood function

    2 ilo$ f)*i+

    2 sum of lo$s of densities%

    5or the linear re$ression model .ith normall* distri"uted

    distur"ances

    lo$L 2 i= /Flo$ A / Flo$ A / F)*i' xi+AA>%

    2 /nA=lo$A@ lo$A @ sAA>sA2 een

  • 7/25/2019 Econometrics I 18

    13/49Part 18: Maximum Likelihood Estimation8-13/49

    Likelihood E(uations

    !he estimator is defined "* the function of the data that e(uateslo$/Lto % )Likelihood e(uation+

    !he deri#ati#e #ector of the lo$/likelihood function is the score function% 5or there$ression model,

    ! 2 =lo$L, lo$LA>2 lo$L 2 i=)1A+xi)*i/ xi+> 0/2%

    lo$LA 2i=-1)AA+ @ )*i/ xi+A)AH+> 2 /&AA=1 ' sAA>

    5or the linear re$ression model, the first deri#ati#e #ector of lo$L is

    )1A+0)# - 0+ and )1AA+ i=)*i/ xi +AA / 1> )1+ )11+

    &ote that .e could comute these functions at anyand A% If .e comutethem at &and e

    en, the functions .ill "e identicall* 7ero%

  • 7/25/2019 Econometrics I 18

    14/49Part 18: Maximum Likelihood Estimation8-14/49

    Information Matrix

    !he ne$ati#e of the second deri#ati#es matrix of the lo$/

    likelihood,

    /6 2

    forms the "asis for estimatin$ the #ariance of the MLE%

    It is usuall* a random matrix%

    2

    log'

    ii

    f

  • 7/25/2019 Econometrics I 18

    15/49Part 18: Maximum Likelihood Estimation8-15/49

    Jessian for the Linear Model

    7ote that the o'' dia!onal elements hae ex"e$tation ero%

    A A

    AA

    A A

    A A A

    iAi i

    AA

    i iA Hi i

    lo$L lo$L

    lo$L 2 /

    lo$L lo$L

    1)* +

    1

    2 1 1)* + )* +

    A

    i i i i

    i i i

    x x x x

    x x x

  • 7/25/2019 Econometrics I 18

    16/49Part 18: Maximum Likelihood Estimation8-1(/49

    Information Matrix

    ).hich should look familiar+% !he off dia$onal terms $o to

    7ero )one of the assumtions of the linear model+%

    !his can "e comuted at an* #ector and scalar A% Koucan take exected #alues of the arts of the matrix to $et

    A i

    H

    1

    /E= >2n

    A

    i ix x 2

    6

    2

  • 7/25/2019 Econometrics I 18

    17/49

  • 7/25/2019 Econometrics I 18

    18/49Part 18: Maximum Likelihood Estimation8-18/49

    )om"utin! the *s#m"toti$ arian$e

    We .ant to estimate /E=6>N/1 !hree .a*s:

    )1+ 4ust comute the ne$ati#e of the actual second deri#ati#es matrixand in#ert it%

    )A+ Insert the maximum likelihood estimates into the kno.n exected

    #alues of the second deri#ati#es matrix% Sometimes )1+ and )A+ $i#ethe same ans.er )for examle, in the linear re$ression model+%

    )O+ Since E=6> is the #ariance of the first deri#ati#es, estimate this .iththe samle #ariance )i%e%, mean s(uare+ of the first deri#ati#es, thenin#ert the result% !his .ill almost al.a*s "e different from )1+ and)A+%

    Since the* are estimatin$ the same thin$, in lar$e samles, all three.ill $i#e the same ans.er% 3urrent ractice in econometrics oftenfa#ors )O+% Stata rarel* uses )O+% 6thers do%

  • 7/25/2019 Econometrics I 18

    19/49

  • 7/25/2019 Econometrics I 18

    20/49Part 18: Maximum Likelihood Estimation8-2/49

    -lication: Doctor isits

    German Indi#idual Jealth 3are data: n2A,AOQ

    Model for num"er of #isits to the doctor: Poisson re$ression )fit "* maximum likelihood+

    Income, Education, Gender

  • 7/25/2019 Econometrics I 18

    21/49Part 18: Maximum Likelihood Estimation8-21/49

    Poisson Model

    [ ]'

    ensit of 3bserve*

    exp( )Prob! " # + $ "

    Log Li0eli1oo*

    logL( + % ) " log log

    Li0eli1oo* E.uations " erivatives of log li0eli1oo*

    exp( ) exp( ) "

    j

    i ii i

    n

    i i i ii

    i i ii

    j

    y y=

    +

    = =

    x

    y X

    x xx

    [ ]

    [ ]

    '

    ' '

    log "

    " "

    i i

    n

    i i i ii

    n n

    i i i i ii i

    L y

    y

    =

    = =

    + =

    x

    x x 0

    x x

  • 7/25/2019 Econometrics I 18

    22/49

    Part 18: Maximum Likelihood Estimation8-22/49

    -s*mtotic ariance of the MLE

    4ariance of t1e first *erivative vector:

    3bservations are in*epen*ent 5irst *erivative vector

    is t1e sum of n in*epen*ent terms 61e variance is t1e

    sum of t1e variances 61e variance of eac1 term is

    4

    ar! ( )$ " 4ar! $ "

    -umming terms

    log4ar

    i i i i i i i i i i

    ni i ii

    y y

    L=

    = =

    x x x x x

    x x XX

  • 7/25/2019 Econometrics I 18

    23/49

    Part 18: Maximum Likelihood Estimation8-23/49

    Estimators o' the *s#m"toti$ )oarian$e

    *s#m"toti$ )oarian$e Matrix

    ( )

    Conventional Estimator / 7nverse of t1e information matrix

    89sual8

    8ern*t% ;all% ;all% ;ausman8 (;;;)

    !( ) $!( ) $

    n

    i i ii

    n n

    i i i i i i i ii i

    y y

    =

    = =

    =

    =

    x x XX

    g g x x

    2

    ( )

    n

    i i i iiy

    = = x x

  • 7/25/2019 Econometrics I 18

    24/49

    Part 18: Maximum Likelihood Estimation8-24/49

    :o&ust Estimation

    andi$h Estimator

    6

    -1

    ;; 6

    -1

    +s this a""ro"riate< =h# do e do this

  • 7/25/2019 Econometrics I 18

    33/49

    Part 18: Maximum Likelihood Estimation8-33/49

    !estin$ the Model(%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(

    ) Poisson Aeression )

    ) Maximum >iBelihood 5stimates )

    ) ependent varia*le @C42+ )

    ) Num*er of o*servations 3. )

    ) 2terations completed )) >o liBelihood function %10.1 ) >o liBelihood

    ) Num*er of parameters - )

    ) Aestricted lo liBelihood %10/..#1 ) >o >iBelihood with onl a

    ) Mc'adden Pseudo A%sDuared #0&13 ) constant term#

    ) Chi sDuared -/3#/3 ) 7lo> E lo>F0G

    ) erees of freedom 3 )

    ) Pro*7Chi+Dd 9 value = #0000000 )

    (%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(

    Likelihood ratio test that all three sloes are 7ero%

  • 7/25/2019 Econometrics I 18

    34/49

    Part 18: Maximum Likelihood Estimation8-34/49

    Wald

    !est--> M*T:+0 ? List ? &1 &2@4 ? 11 ar&2@42@4 ? A1BC11>A1DMatrix H1 Matrix 411

    has 3 rows and 1 columns# has 3 rows and 3 columns

    1 1 3

    (%%%%%%%%%%%%%% (%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    1) #31&- 1) #-/&.&%0- %#-&&.0.%0. #1.&%0&

    ) %#&-. ) %#-&&.0.%0. #000-/ %#1.0&&/%0&3) %#0-/ 3) #1.&%0& %#1.0&&/%0& #//-.&%0&

    Matrix Aesult has 1 rows and 1 columns#

    1

    (%%%%%%%%%%%%%%

    1) -./#3/ >A statistic was -/3#/3

  • 7/25/2019 Econometrics I 18

    35/49

    Part 18: Maximum Likelihood Estimation8-35/49

    3ho. St*le !est for Structural 3han$e

    oes t1e same mo*el appl to 2 (e use* t1e 8C1o>8 (5) test

    5or mo*els fit b maximum li0eli1oo*% >e use a

    test base* on t1e li0eli1oo* function 61e same

    mo*el is fit t

    ( )'

    o t1e poole* sample an* to eac1 group

    C1i s.uare* " 2 log log

    egrees of free*om " (

  • 7/25/2019 Econometrics I 18

    36/49

    Part 18: Maximum Likelihood Estimation8-3(/49

    Poisson Ce$ressions%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    Poisson Aeression

    ependent varia*le @C42+

    >o liBelihood function %0//#01&3 FPooled, N = 3.G

    >o liBelihood function %-3/.#-01 FMale, N = 1--3G

    >o liBelihood function %-.&/#00 F'emale, N = 130/3G

    %%%%%%%%(%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    4aria*le) Coefficient +tandard 5rror *6+t#5r# P7)8)9: Mean of hs = ocvis ; Ahs = < $

    Calc ; >male = lol $

    Poisson ; 'or 7female = 1 ; >hs = ocvis ; Ahs = < $Calc ; >female = lol $

    Calc ; K = ColFist

    ; ChisD = F>male ( >female % >poolG

    ; Ct*F#&,BG $

    (%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(

    ) >isted Calculator Aesults )

    (%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(C"2+L = 00#01.01

    Aesult= 1#&1&/

    Jhe hpothesis that the same model applies to men and

    women is reected#

  • 7/25/2019 Econometrics I 18

    38/49

    Part 18: Maximum Likelihood Estimation8-38/49

    Pro"erties o' the

    Maximum Likelihood EstimatorWe .ill sketch formal roofs of these results:

    !he lo$/likelihood function, a$ain!he likelihood e(uation and the information matrix%

    - linear !a*lor series aroximation to the first order conditions:

    !)ML+ 2 !)+ @ J)+ )ML - +

    )under re$ularit*, hi$her order terms .ill #anish in lar$e samles%+6ur usual aroach% Lar$e samle "eha#ior of the left and ri$ht hand sides is the same%* Proo' o' $onsisten$#% )Proert* 1+!he limitin$ #ariance of n)ML - +% We are usin$ the central limit theorem here%Leads to as#m"toti$ normalit# )Proert* A+% We .ill deri#e the as*mtotic #ariance of

    the MLE%Estimatin! the arian$eof the maximum likelihood estimator%E''i$ien$#).e ha#e not de#eloed the tools to ro#e this%+ !he 3ramer/Cao lo.er

    "ound for efficient estimation )an as*mtotic #ersion of Gauss/Marko#+%+narian$e% )- VERYhand* result%+ 3ouled .ith the Slutsk* theorem and the delta

    method, the in#ariance roert* makes estimation of nonlinear functions ofarameters #er* eas*%

  • 7/25/2019 Econometrics I 18

    39/49

    Part 18: Maximum Likelihood Estimation8-39/49

    Ce$ularit* 3onditions

    Deri#in$ the theor* for the MLE relies on certain ;re$ularit*1ere an*

    MLE

    n n

    MLE i ii i

    i i

    i i

    f f

    = =

    = =

    H g

    H g

    g H

  • 7/25/2019 Econometrics I 18

    41/49

    Part 18: Maximum Likelihood Estimation8-41/49

    )onsisten$#

    ( ) ( ) ( )

    ( ) ( ) ( )

    '

    ' '

    '

    ' '

    @

    ivi*e bot1 sums b t1e sample sie

    ' ' '@ " o

    61e approximation is no> exact because of t1e 1ig1er or*er termAs n

    n n

    MLE i ii i

    n n

    MLE i ii in n n

    = =

    = =

    +

    H g

    H g

    ( ) ( ){ }

    ( ) ( )

    ''

    '

    '

    % t1e t1ir* term vanis1es 61e matrices in brac0ets are sample

    means t1at converge to t1eir expectations

    '% a positive *efinite matrix

    ' % one of

    n

    i ii

    ni ii

    En

    En

    =

    =

    =

    H H

    g g 0

    ( )

    t1e regularit con*itions

    61erefore% collecting terms%

    @ @ or plim "MLE MLE 0

  • 7/25/2019 Econometrics I 18

    42/49

  • 7/25/2019 Econometrics I 18

    43/49

    Part 18: Maximum Likelihood Estimation8-43/49

    *s#m"toti$ arian$e

  • 7/25/2019 Econometrics I 18

    44/49

    Part 18: Maximum Likelihood Estimation8-44/49

  • 7/25/2019 Econometrics I 18

    45/49

    Part 18: Maximum Likelihood Estimation8-45/49

  • 7/25/2019 Econometrics I 18

    46/49

    Part 18: Maximum Likelihood Estimation8-4(/49

    *s#m"toti$ istri&ution

  • 7/25/2019 Econometrics I 18

    47/49

    Part 18: Maximum Likelihood Estimation8-4,/49

    E''i$ien$#@ arian$e Aound

  • 7/25/2019 Econometrics I 18

    48/49

    Part 18: Maximum Likelihood Estimation8-48/49

    In#ariance

    !he maximum likelihood estimator of a function of

    , sa* h)

    + is h)MLE+% !his is not al.a*s true ofother kinds of estimators% !o $et the #ariance of

    this function, .e .ould use the delta method%

    E%$%, the MLE of F2).T+ is &)een+

  • 7/25/2019 Econometrics I 18

    49/49

    Estimatin$ the !o"it Model

    + = >

    i i

    x x n ii ii=1

    i i i

    Log likelihood for the tobit model for estimation of and :

    y1logL= (1-d)log d log

    d 1 if y 0, 0 if y = 0. Derivatives are very comlicated,

    !essian is

    ( ) ( )( )

    ( ) ( )

    + + + + +

    i ii i

    = -

    x x

    x x

    n

    i i ii=1

    "

    i i i

    nightmarish. #onsider the $lsen transformation%:

    =1& , =- & . ($ne to one' =1& , &

    logL= log (1-d)log d log y

    log (1-d) log d(log (1 & ")log" (1& ") y )

    ( )

    ( )

    =

    =

    =

    =

    i

    i

    i

    xx

    x

    n

    i=1

    n

    i i ii 1

    n

    i i ii 1

    logL(1-d) de

    logL 1d ey

    %ote on the ni*+eness of the L in the obit odel,/ conometrica, 12.