ECEN 615 Problem Set #5 Fall 2018 Due...

5
ECEN 615 Problem Set #5 Fall 2018 Due 11/13/18 1. Book problem 9.1. Assume a linear (dc power flow approximation) system model. That is, f(x) = Hx. a) 12 = 1 โˆ’ 2 0.2 ; 13 = 1 โˆ’ 3 0.4 ; 32 = 3 โˆ’ 2 0.25 ; =[ 5.0 2.5 0 โˆ’5.0 0 โˆ’4.0 ]; =[ 0.60 0.40 0.405 ]. ; 3 =0 =[ 4 ร— 10 โˆ’4 0 0 0 1 ร— 10 โˆ’4 0 0 0 4 ร— 10 โˆ’6 ] = [ โ€ฒ โˆ’1 ] โˆ’1 โ€ฒ โˆ’1 =[ 1 2 ]=[ 0.0174 โˆ’0.1013 ] b) Residual, () = ( 1 , 2 )= [ 12 โˆ’ 12 ( 1 , 2 )] 2 12 2 + [ 13 โˆ’ 13 ( 1 , 3 )] 2 13 2 + [ 32 โˆ’ 32 ( 2 , 3 )] 2 32 2 = 0.2345 Degrees of freedom (K) = Number of measurements โ€“ number of states = 3-2 = 1 Using a Chi distribution table, for a significant level (ฮฑ = 0.01) and K = 1, the threshold residual, = 6.635 Since J(x) << , it is safe to assume the likely absence of bad data in the measurements 2. Book problem 9.3. Again assume a linear system model. a) The network is unobservable since there are no known measurements that pertain to bus 4 13 = 1 โˆ’ 3 0.5 ; 31 = 3 โˆ’ 1 0.5 ; 12 = 1 โˆ’ 2 0.25 ; =[ 2 0 โˆ’2 โˆ’2 0 2 4 โˆ’4 0 ]; =[ โˆ’0.705 0.721 0.212 ] . ; 3 =0 =[ 1 ร— 10 โˆ’4 0 0 0 1 ร— 10 โˆ’4 0 0 0 4 ร— 10 โˆ’4 ] โ€ฒ โˆ’1 =[ 12000 40000 โˆ’80000 โˆ’4000 40000 0 โˆ’8000 0 80000 ] โ€ฒ โˆ’1 is singular (hence, invertible) because the system is unobservable b) If 3, is available, 34 = 31 + 34 = 3 โˆ’ 1 0.5 + 3 โˆ’ 4 34

Transcript of ECEN 615 Problem Set #5 Fall 2018 Due...

Page 1: ECEN 615 Problem Set #5 Fall 2018 Due 11/13/18overbye.engr.tamu.edu/wp-content/uploads/sites/146/2018/11/HW5_Solutions.pdfECEN 615 Problem Set #5 Fall 2018 Due 11/13/18 1. Book problem

ECEN 615 Problem Set #5 Fall 2018

Due 11/13/18

1. Book problem 9.1. Assume a linear (dc power flow approximation) system model. That is,

f(x) = Hx.

a) ๐‘€12 =๐œƒ1โˆ’๐œƒ2

0.2 ; ๐‘€13 =

๐œƒ1โˆ’๐œƒ3

0.4 ; ๐‘€32 =

๐œƒ3โˆ’๐œƒ2

0.25; ๐‘ฏ = [

5.02.50

โˆ’5.0

0โˆ’4.0

] ; ๐’›๐’Ž๐’†๐’‚๐’” = [0.600.40

0.405 ] ๐‘. ๐‘ข ; ๐œƒ3 = 0

๐‘น = [4 ร— 10โˆ’4 0 0

0 1 ร— 10โˆ’4 00 0 4 ร— 10โˆ’6

]

๐’™๐’†๐’”๐’• = [๐‘ฏโ€ฒ๐‘นโˆ’1๐‘ฏ]โˆ’1๐‘ฏโ€ฒ๐‘นโˆ’1๐’›๐’Ž๐’†๐’‚๐’”

๐’™๐’†๐’”๐’• = [๐œƒ1

๐œƒ2 ] = [

0.0174โˆ’0.1013

] ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘ 

b) Residual, ๐ฝ(๐‘ฅ) = ๐ฝ(๐œƒ1, ๐œƒ2) = [๐‘ง12โˆ’๐‘€12(๐œƒ1,๐œƒ2)]2

๐œŽ122 +

[๐‘ง13โˆ’๐‘€13(๐œƒ1,๐œƒ3)]2

๐œŽ132 +

[๐‘ง32โˆ’๐‘€32(๐œƒ2,๐œƒ3)]2

๐œŽ322 = 0.2345

Degrees of freedom (K) = Number of measurements โ€“ number of states = 3-2 = 1

Using a Chi distribution table, for a significant level (ฮฑ = 0.01) and K = 1, the threshold residual, ๐‘ก๐‘— = 6.635

Since J(x) << ๐‘ก๐‘— , it is safe to assume the likely absence of bad data in the

measurements

2. Book problem 9.3. Again assume a linear system model.

a) The network is unobservable since there are no known measurements that pertain to bus

4

๐‘€13 =๐œƒ1 โˆ’ ๐œƒ3

0.5 ; ๐‘€31 =

๐œƒ3 โˆ’ ๐œƒ1

0.5 ; ๐‘€12 =

๐œƒ1 โˆ’ ๐œƒ2

0.25; ๐‘ฏ = [

2 0 โˆ’2โˆ’2 0 24 โˆ’4 0

] ; ๐’›๐’Ž๐’†๐’‚๐’” = [โˆ’0.7050.7210.212

] ๐‘. ๐‘ข ;

๐œƒ3 = 0

๐‘น = [1 ร— 10โˆ’4 0 0

0 1 ร— 10โˆ’4 00 0 4 ร— 10โˆ’4

]

๐‘ฏโ€ฒ๐‘นโˆ’1๐‘ฏ = [12000 40000 โˆ’80000โˆ’4000 40000 0โˆ’8000 0 80000

]

๐‘ฏโ€ฒ๐‘นโˆ’1๐‘ฏ is singular (hence, invertible) because the system is unobservable

b) If ๐‘€3,๐‘”๐‘’๐‘› is available, ๐‘€34 = ๐‘ƒ31 + ๐‘ƒ34=๐œƒ3โˆ’๐œƒ1

0.5+

๐œƒ3โˆ’๐œƒ4

๐‘ฅ34

Page 2: ECEN 615 Problem Set #5 Fall 2018 Due 11/13/18overbye.engr.tamu.edu/wp-content/uploads/sites/146/2018/11/HW5_Solutions.pdfECEN 615 Problem Set #5 Fall 2018 Due 11/13/18 1. Book problem

๐‘ฏ = [

2โˆ’24

โˆ’2

00

โˆ’40

โˆ’220

12

] ; ๐‘น = [

1 ร— 10โˆ’4

000

01 ร— 10โˆ’4

00

00

4 ร— 10โˆ’4

0

000

2.25 ร— 10โˆ’4

] ; ๐’›๐’Ž๐’†๐’‚๐’” = [

โˆ’0.7050.7210.2120.920

] ๐‘. ๐‘ข

๐‘ฏโ€ฒ๐‘นโˆ’1๐‘ฏ = [137780 โˆ’40000 โˆ’186670โˆ’40000 40000 0

โˆ’186670 0 720000]

๐‘ฏโ€ฒ๐‘นโˆ’1๐‘ฏ is now full-rank (hence, invertible) and thus observable

๐’™๐’†๐’”๐’• = [๐œƒ1

๐œƒ2 ] = [

โˆ’0.3358โˆ’0.38880.0207

] ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘ 

3. Do the next two iterations of the two bus, ac (i.e., nonlinear) state estimation example from

lecture 19.

๐‘ฟ๐Ÿ = [1.003โˆ’0.2

0.8775 ]; ๐‘ฟ๐Ÿ = [

1.030โˆ’0.2170.901

] ; ๐‘ฟ๐Ÿ‘ = [1.033

โˆ’0.2140.905

]

4. Using the Givens Rotation algorithm, manually perform a QR factorization of the matrix

given below. Show your work at each step.

Eliminate A(3,1): b =5, a = 3

๐‘ฎ๐Ÿ = [1.000 0 0

0 โˆ’0.515 0.8580 โˆ’0.858 โˆ’0.515

]; ๐‘ฎ๐Ÿโ€ฒ ๐‘จ = [

1.000โˆ’5.831

0

2.000โˆ’7.2029

0.343]

Eliminate A(2,1): b =-5.831, a = 1

๐‘ฎ๐Ÿ = [0.169 0.986 0

โˆ’0.986 0.169 00 0 1

]; ๐‘ฎ๐Ÿโ€ฒ ๐‘ฎ๐Ÿ

โ€ฒ ๐‘จ = [5.916

00

7.4370.7540.343

]

Eliminate A(3,2): b =0.343, a = 0.754

๐‘ฎ๐Ÿ‘ = [1.000 0 0

0 0.910 โˆ’0.4140 0.414 0.910

]; ๐‘ฎ๐Ÿ‘โ€ฒ ๐‘ฎ๐Ÿ

โ€ฒ ๐‘ฎ๐Ÿโ€ฒ ๐‘จ = [

5.91600

7.4370.828

0]

Thus, ๐‘ฎ๐Ÿ๐‘ฎ๐Ÿ๐‘ฎ๐Ÿ‘๐‘ฎ๐Ÿ‘โ€ฒ ๐‘ฎ๐Ÿ

โ€ฒ ๐‘ฎ๐Ÿโ€ฒ ๐‘จ = ๐‘ธ๐‘ผ = [

0.169 0.897 โˆ’0.4080.507 0.276 0.8170.845 โˆ’0.345 โˆ’0.408

] [5.916

00

7.4370.828

0]

1 2

3 4

5 6

A

Page 3: ECEN 615 Problem Set #5 Fall 2018 Due 11/13/18overbye.engr.tamu.edu/wp-content/uploads/sites/146/2018/11/HW5_Solutions.pdfECEN 615 Problem Set #5 Fall 2018 Due 11/13/18 1. Book problem

Depending on the order of zero-ing the lower, non-diagonal, matrix entry, other approximate QU

matrices will include:

๐‘ธ๐‘ผ = [โˆ’0.169 0.897 0.408โˆ’0.507 0.276 โˆ’0.817โˆ’0.845 โˆ’0.345 0.408

] [โˆ’5.916

00

โˆ’7.4370.828

0]

๐‘ธ๐‘ผ = [0.169 โˆ’0.897 0.4080.507 โˆ’0.276 โˆ’0.8170.845 0.345 0.408

] [5.916

00

โˆ’7.4370.828

0]

5. Not graded

6. Using the data for the B7Flat_DC PowerWorld case from Problem Set 4, manually create an

equivalent eliminating buses 2, 3, and 6. Give the bus admittance matrix for the modified

system, and the impedance of the new equivalent lines.

๐’€๐’†๐’† = [โˆ’52.778 5.556 16.667

5.556 โˆ’43.056 016.667 0 โˆ’25.000

]

๐’€๐’†๐’” = [16.667 5.556 8.333 0.04.1667 33.333 0.0 0.0

0.0 0.0 0.0 8.333 ]

๐’€๐’”๐’† = ๐’€๐’†๐’”โ€ฒ

๐’€๐’”๐’” = [

โˆ’20.833 0.0 0.0 0.00.0 โˆ’43.056 4.167 0.00.0 4.167 โˆ’29.167 16.667

0.0 0.0 16.667 โˆ’ 25.000

]

๐’€๐’†๐’’ = ๐’€๐’”๐’” โˆ’ ๐’€๐’”๐’†๐’€๐’†๐’†โˆ’1๐’€๐’†๐’”

๐’€๐’†๐’’ = ๐‘— [

โˆ’13.2027.3673.5012.334

7.367โˆ’14.877

6.1721.337

3.5016.173

โˆ’27.47117.797

2.3341.337

17.797โˆ’21.469

]

New bus index for equivalent system: {1,4,5,7} = {1โ€™,2โ€™,3โ€™4โ€™}, thus

Line ๐’€๐’†๐’’(๐’Š, ๐’‹) ๐‘ฟ๐’†๐’’(๐’Š, ๐’‹) = โˆ’๐Ÿ/ ๐’€๐’†๐’’(๐’Š, ๐’‹)

1'-2' j 7.367 j 0.136

1'-3' j 3.501 j 0.286

1'-4' j 2.334 j 0.428

2'-3' j 6.173 j 0.162

2'-4' j 1.337 j 0.748

3'-4' j 17.797 j 0.056

7. In PowerWorld Simulator using the Aggieland37_HW5 case, first calculate the line flows

and bus voltage magnitudes for the contingent opening of both of the transformers between

Page 4: ECEN 615 Problem Set #5 Fall 2018 Due 11/13/18overbye.engr.tamu.edu/wp-content/uploads/sites/146/2018/11/HW5_Solutions.pdfECEN 615 Problem Set #5 Fall 2018 Due 11/13/18 1. Book problem

buses 41 and 44. You may wish to store these results in a spreadsheet. Then, reopen the case

(i.e., without the contingency) and in PowerWorld create an equivalent eliminating all the

buses with bus numbers less than 21. Then, repeat the previous contingency, and compare

the results with the full system (obviously only comparing for the retained buses and lines).

Fig. 1. Base Case

Fig. 2. Equivalenced Case

Page 5: ECEN 615 Problem Set #5 Fall 2018 Due 11/13/18overbye.engr.tamu.edu/wp-content/uploads/sites/146/2018/11/HW5_Solutions.pdfECEN 615 Problem Set #5 Fall 2018 Due 11/13/18 1. Book problem

Barring small differences, the values for the power system states- bus voltages and line MVA

percentages - in both figures are very similar. It shows the close similarity of the equivalenced, 4-bus

case and the actual, 7-bus case. Also, the line overload between WEB138-WEB69 is retained in the

smaller, 4-bus case. Selected states of large-scale systems can be easily and quickly analyzed if smaller,

equivalent systems (which retains original grid dynamics and containing the region of interest) are used.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Bus per unit voltages before and after equivalencing -elimination of first 13 buses

Base Case Equivalent Case