ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of...

24
ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of a Single Rigid Body Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 1 / 24

Transcript of ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of...

Page 1: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

ECE5463: Introduction to Robotics

Lecture Note 11: Dynamics of a Single RigidBody

Prof. Wei Zhang

Department of Electrical and Computer EngineeringOhio State UniversityColumbus, Ohio, USA

Spring 2018

Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 1 / 24

Page 2: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Outline

• Kinetic Energy of a Rigid Body

• Rotational Inertia Matrix

• Newton Euler Equation

• Twist-Wrench Formulation of Rigid-Body Dynamics

Outline Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 2 / 24

Page 3: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Robot Dynamic Model Can be Complicated

• Dynamic model of PUMA 560 Arm:

sin(q2 + q2 + 93). And when a product of several trigoDometric operations on the same joint variable appears we write GG2 to mean cos(q2) * cos(q2) and GS4 to mean cos(q4) * sin(q4). These final abbreviations, GS4 etc. , are considered to be factorizations; and the cost of computing these terms is included in the totals reported above.

The position of zero joint angles and coordinate frame at- tachments to the PUMA arm are shown in Figure 2 above. The modified Denavit-Hartenberg parameters, assigned according to the method presented in [Craig 851, are listed in Table A I .

1 2 = I3 =

Is =

I , =

I7 = Table A l . Modified Denavit - Hartenberg Parameters

i d; ai- 1 8; Qi-1

(degrees) (meters) (meters)

1

.2435 0 92 -90 2

0 0 ¶1 0 *'Ti ,4318

90 P0 i- -.

The equations of the PUMA model constants are presented in Table A2; these const,ants appear in the dynamic equations of Tables A4 through A7. Z,,;and mi refer to the second mo- ment of link i about the z axis of frame i and the mass of link i respectively. The terms a; and di are the Denavit-Barterberg parameters. Terms of the form rzi are the offsets to the center of gravity of link i in the ith coordinate frame. In Table A3 the values of the model constants are listed. The terms I,,,; are the motor and drive train contribution to inertia at joint i.

The equations for the elements of the kinetic energy matrix, A(q), are presented in Table A4. A(p) is symmetric, so only equations for elements on and above the matrix diagonal are pre- sented.

The equations for the elements of the Coriolis matrix, B(q) , are presented in Table A5. The Coriolis terms have been left in the form of a three dimensional array, with a convention for the indices that matches that of the Cristoffel symbols. Element multiples q k and ql to give a contribution to the torque at joint i . The Coriolis matrix may also be written as a 6 x 15 array, where the 15 columns correspond to the 15 possible combinations of joint velocities. The equations for the elements of the centrifugal matrix, C(q) , are presented in Table A6. And the equations for the terms of the gravity vector, g(p), are presented in Table A7.

A load can be represented in this model by attaching it to the g f h link. In the model the 6'h link is assumed to have a center of gravity on the axis of rotation, and to have Zzze = &e; these rest,rictions extend to a load represented by changing the 6'h link parameters. A more general, though computationclly more expensive, method of incorporating a load in the dynamic calculation is presented in [Izaguirre and Paul 19851.

Table A2. Expressions for the Constants Appearing in the Equations of Forces of Motion.

Part I. Inertial Constants I1 = IZz l + ml * rYl2 + mz * d2' + (m4 + m5 + m,) *

+mz * rzz2 + (ms + m4 + m5 + m6) * (d2 + dS)' +IZZZ + Iyys + 2 * m2 * d2 * rz2 + m2 * rYz2 + mS * rrlz +2 * ms * (d2 + d3) * rzS + I,,, + Iyy5 + Irz6 ;

Part 11. Gravitional Constants 81 = - g * ( ( m ~ + m 4 + m 5 + m ~ ) * a z + m 2 * r z 2 ) ;

gz = g * ( m . s * r y 3 - ( m 4 + m 5 + m 6 ) * d 4 - m 4 * r , 4 ) ;

g3 = g * m2 * ry2 ; 84 = - g * ( m 4 + m 5 + r n 6 ) * a s ;

g.5 = -g * m.5 * rZ6 ;

Table AS. Computed Values for the Constants Appearing

(Inertial constants have units of kilogram meters-squared) in the Equations of Forces of Motion.

1.43 f 0.05 1.38 f 0.05 3.72~10-I f 0.31~10-~ 2.98xlO-' f 0 . 2 9 ~ 1 0 - ~ 2 . 3 8 ~ l O - ~ f 1 . 2 0 ~ 1 0 - ~

- 1 . 4 2 ~ 1 0 - ~ f 0 . 7 0 ~ 1 0 ~ ~

1 . 2 5 ~ 1 0 - ~ f 0 . 3 0 ~ 1 0 - ~ 6.42xlO-' f 3 . 0 0 ~ 1 0 - ~ 3 . 0 0 ~ 1 0 - ~ f 1 4 . 0 ~ 1 0 - ~

- I . O O X ~ O - ~ f 6 . 0 0 ~ 1 0 - ~ ~ . O O X I O - J + 2.00~10-5

-3.79~10-' f 0 . 9 0 ~ 1 0 - ~

(Gravitational constants have units of newton meters) gl = -37.2 f 00.5 gz = -8.44 f 0.20 gs = 1.02 f 0.50 g* = 2.49~10-' f 0.25XIO-' gs = -2.82~10-' f 0.56X10-2

516

b424 = 0 .

518

+I16 * (C223 * C5 - 5’223 * C4 * 5’5) + 121 * SC23 * CC4 +I20 * ( ( I + CC4) * SC23 * SS5 - (1 - 2 * SS23) * C4 * SC5) + I 2 2 * ((1 - 2 * 5’5’23) * C5 - 2 * SC23 * C4 * S5)) +Ilo * (1 - 2 * ss23) + (1 - 2 ss2) ;

N -2.76 * SC2 + 7.44XlO-’ * C223 + 0.60 * SC23 - 2 . 1 3 ~ 1 0 - ~ * (1 - 2 * SS23) .

bl13 = 2 {I5 * C2 * C23 + I7 * SC23 - I12 * C2 * 523 +Ils*(2*sc23*c5+(1-2*ss23)*c4*s5) +I16 * C2 * (C23 * C5 - S23 * C4 * 5’5) + 121 * SC23 * CC4 +I20 * ( ( 1 + CC4) * 5c23 * 555 - (1 - 2 * 5523) * C4 * 5c5) + I 2 2 ( ( 1 - 2 * 5523) * C5 - 2 * 5c23 * C4 * 55)} +I10 * (1 - 2 * SS23) ;

X 7 . 4 4 ~ 1 0 ~ ’ * C2 * C23 + 0.60 * SC23 + 2 . 2 0 ~ 1 0 - ~ * C2 * S23 - 2 . 1 3 ~ 1 0 - ~ * (1 - 2 * SS23) .

bl l r = 2*{-115*sc23*54*s5-116*c2*c23*s4*s5 +I18 * C4 * S5 - 120 * (SS23 * SS5 * SC4 - SC23 * 54 * SC5) -122 * CC23 * S4 * S5 - I21 * SS23 * SC4} ;

x - 2 . 5 0 ~ 1 0 - ~ * SC23 * S4 * S5 + 8 . 6 0 ~ 1 0 - ~ * C4 * 55 - 2.48xlO-’ * C2 * C23 * S4 * S5 .

6115 = 2 * { I 2 0 * (SC5 * (CC4 * (1 - CC23) - CC23) -SC23 * C4 * (1 - 2 * SS5)) - 115 (SS23 * S5 - SC23* 6‘4 * C5) -116*C2*(S23*S5-C23*C4*C5)+118*S4*C5 + I 2 2 * (CC23 * C4 * C5 - SC23 * S5) }

N -2 .50~10-~ * (SS23 * S5 - SC23 * C4 * C5) - 2 . 4 8 ~ lo-’ * C2 * (S23 * 55 - C23 * C4 * C5) + 8.EOxlO-4 * 54 * C5.

b116 = 0 .

b l z s = 2 * { - I b * s 2 3 + I l s * C 2 3 + 1 1 6 * s 2 3 * S 4 * s 5 +I18 * (C23 * C4 * S5 + S23 * C5) + 1 1 9 * C23 * SC4 +I20 * S4 * (C23 * C4 * CC5 - 523 * SC5) + I z 2 * G23 * S4 * S5) ;

x 2,67xlO-’ * S23 - 7.58x10-’ * C23 . 6124 = -118 * 2 * S23 * 5’4 * S5 + 119 * 523 * (1 - (2 * SS4))

+120*S23*(1 -2*SS4*CC5) -114*S23; % O w

b125 = I 1 , * C 2 3 * S 4 + I l 8 * 2 * ( s 2 3 * C 4 * C 5 + c 2 3 * s 5 ) +120*s4*(C23*(1-2*SS5)-s23*C4*2*SC5);

X 0 .

6126 = - Iz s* (S23*C5+C23*C4*S5) ; x O .

613, = 6124 - 6135 = b l z s * 6156 = b126 *

bl45 = 2 * {I15 * S23 * C4 * C5 + 1 1 6 * C2 c C4 * C5 + I l s * c 2 3 * s 4 * c 5 + 1 2 2 * C 2 3 * c 4 * C 5 } + I 1 7 * s 2 3 * C 4 -I*o * (s23 * c4 * (I - 2 * SS5) + 2 * C23 :: SC5) ;

X O .

6146 = I23 * 5’23 * S4 * 55 ; N 0 . b156 = -123 * (6’23 * 5’5 + ,523 * C4 * c 5 ) ; X 0 .

b212 = 0 . b2ls 0 .

b z l r = I l t * S23 + 119 * S23* (1 - (2* SS4)) +2*{-Il5*C23*C4*S5+116*S2*C4*S5 +I20 * (523 * (CC5 * CC4 - 0.5) + C23 * C4 * SC5) + I 2 2 * S23 * G4 t S5) ;

X 1.64X10-s * 5’23 - 2 . 5 0 ~ 1 0 - ~ * C23 * C4 * S5 + 2.48~10-’ * S2 C4 * S5 + 0.30~10-’ * 523 * (1 - (2 * ss4)) .

bzla =2*{ -115*C23*S4*C5+122*S23*S4+C5 +116*S2*S4*C5}-I17*C23*s4 +rzo~(C23~s4~(1-2~ss5)-2~s23~sC4~SC5);

- 6.42x10-’ * C23 * 5 4 . X -2.50~10-’ * C23 * S 4 * C5 + 2 . 4 8 ~ 1 0 - ~ * 5 2 * 5 4 * c5

b216 = -6126 *

b223 =2*{-112*S3+I~*C3+116*(C3*C5-53*C4*S5))j a 2 . 2 0 ~ 1 0 - ~ * S 3 + 7.44x10-’ * C3 .

517

Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 3 / 24

Page 4: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Kinetic Energy

• Consider a point mass m with {s}-frame coordinate p(t), its kinetic energy isgiven by

K =1

2m‖p‖2

• Note: m denotes moment (vector) and m denotes mass (scalar).

• Question: given a moving rigid body with configuration T (t) = (R(t), p(t)),how to compute its kinetic energy?

- Rigid body consists of infinitely many “particles” with different {s}-framevelocities

K ≈ 1

2

∑imi‖pi‖2

- Velocities of particles pi are caused by the rigid body velocity (twist)

- The overall kinetic energy should depend on the rigid body velocity as well as thegeometry and mass distribution of the body

Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 4 / 24

Page 5: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Recall: Rigid Body Velocity

Given rigid body T (t) = (R(t), p(t)):

• Spatial twist:

• Body twist:

Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 5 / 24

Page 6: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Recall: Rigid Body Velocity

• Consider a particle i on the body with {b}-frame coordinate ri and {s}-framecoordinate pi- Velocity of particle i:

- Acceleration of particle i:

- Velocity of the origin of {b}:

Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 6 / 24

Page 7: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Rigid Body Kinetic Energy

• Kinetic Energy: Given a rigid body T (t) = (R(t), p(t)) with body twistVb = (ωb, vb). Suppose the {b}-frame origin coincides with the center ofmass of the body. Then its kinetic energy is given by:

K =1

2m‖vb‖2 +

1

2ωTb Ibωb, with Ib =

Bρ(r)[r]T [r]dV

where Ib is the rotational inertia matrix in body frame

Derivation: Divide the body into small point masses, where point i has mass mi,{b}-frame coordinate ri, and {s}-frame coordinate pi

Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 7 / 24

Page 8: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Derivation of Kinetic Energy (Continued)

Kinetic Energy Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 8 / 24

Page 9: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Outline

• Kinetic Energy of a Rigid Body

• Rotational Inertia Matrix

• Newton Euler Equation

• Twist-Wrench Formulation of Rigid-Body Dynamics

Rotational Inertia Matrix Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 9 / 24

Page 10: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Rotational Inertia Matrix in Body Frame

Ib ,∫

Bρ(r)[r]T [r]dV

• Individual entries of Ib:

Ib =

Ixx Ixy IxzIyx Iyy IyzIzx Izy Izz

where

Ixx =

∫B(y2 + z2)ρ(x, y, z)dV, Iyy =

∫B(x2 + z2)ρ(x, y, z)dV

Izz =

∫B(x2 + y2)ρ(x, y, z)dV, Ixy = Iyx = −

∫Bxyρ(x, y, z)dV

Ixz = Izx = −∫Bxzρ(x, y, z)dV Iyz = Izy = −

∫Byzρ(x, y, z)dV

• If the body has a uniform density, then Ib is determined exclusively by theshape of the rigid body

Rotational Inertia Matrix Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 10 / 24

Page 11: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Principal Axes of Inertia

Let v1, v2, v3 and λ1, λ2, λ3 be the eigenvectors and eigenvalues of Ib,respectively. They are called the principal axes of inertia

• The principal axes of inertia are in the directions of v1, v2, v3

• The principal moments of inertia about these axes are λ1, λ2, λ3

• All the eigenvalues are nonnegative. The largest one maximizes the momentof inertia among all the axes passing through the center of mass of the body.

• If the principal axes of inertia are aligned with the axes of {b}, theoff-diagonal terms of Ib are all zero.

Rotational Inertia Matrix Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 11 / 24

Page 12: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Examples of Inertia Matrix286 8.2. Dynamics of a Single Rigid Body

w

h

x

y

z

xy

z

h rx y

z

a b

c

rectangular parallelepiped: circular cylinder: ellipsoid:volume = abc, volume = πr2h, volume = 4πabc/3,

Ixx = m(w2 + h2)/12, Ixx = m(3r2 + h2)/12, Ixx = m(b2 + c2)/5,Iyy = m(`2 + h2)/12, Iyy = m(3r2 + h2)/12, Iyy = m(a2 + c2)/5,Izz = m(`2 + w2)/12 Izz = mr2/2 Izz = m(a2 + b2)/5

Figure 8.5: The principal axes and the inertia about the principal axes for uniform-density bodies of mass m. Note that the x and y principal axes of the cylinder are notunique.

the minimum principal moment of inertia is equal to the maximum principalmoment of inertia.

If the principal axes of inertia are aligned with the axes of {b}, the off-diagonal terms of Ib are all zero, and the eigenvalues are the scalar moments ofinertia Ixx, Iyy, and Izz about the x-, y-, and z-axes, respectively. In this case,the equations of motion (8.23) simplify to

mb =

Ixxωx + (Izz − Iyy)ωyωzIyyωy + (Ixx − Izz)ωxωzIzzωz + (Iyy − Ixx)ωxωy

, (8.25)

where ωb = (ωx, ωy, ωz). When possible, we choose the axes of {b} to be alignedwith the principal axes of inertia, in order to reduce the number of nonzeroentries in Ib and to simplify the equations of motion.

Examples of common uniform-density solid bodies, their principal axes ofinertia, and the principal moments of inertia obtained by solving the inte-grals (8.24), are given in Figure 8.5.

An inertia matrix Ib can be expressed in a rotated frame {c} described bythe rotation matrix Rbc. Denoting this inertia matrix as Ic, and knowing thatthe kinetic energy of the rotating body is independent of the chosen frame, we

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

The principal axes and the inertia about the principal axes foruniform-density bodies

Rotational Inertia Matrix Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 12 / 24

Page 13: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Inertia Matrix in a Different Frame

• Consider another frame {c} with relative orientation Rbc

• The origin of both frames is located at the CoM of the body. The rotationalinertia matrix in {c} frame is defined as Ic =

∫B ρ(rc)[rc]

T [rc]dV

• Kinetic energy is independent of reference frames ⇒ Ic = RTbcIbRbc

• Steiner’s Theorem: The inertia matrix Iq about a frame aligned with {b},but at a point q = (qx, qy, qz) in {b}, is related to Ib by

Iq = Ib + m(qT qI − qqT

)

Rotational Inertia Matrix Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 13 / 24

Page 14: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Outline

• Kinetic Energy of a Rigid Body

• Rotational Inertia Matrix

• Newton Euler Equation

• Twist-Wrench Formulation of Rigid-Body Dynamics

Newton Euler Equation Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 14 / 24

Page 15: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Newton Euler Equation

• Recall that for a point mass m with a fixed-frame coordinate p(t), Newton’ssecond law of motion: f = mp(t)

• A rigid body consists of infinitely many point masses. The collective motionof these particles depend on the linear and rotational velocities of the body,and on the total force and moment acting on the body.

• Euler-Newton Equation of Motion: Given rigid body T (t) = (R(t), p(t))with rotational inertia matrix Ib and body twist Vb = (ωb, vb):

{mb = Ibωb + ωb × Ibωbfb = mvb + ωb × mvb

(1)

- m: mass of the body; assume origin of {b} = CoM

- fb,mb: total force and moment (expressed in {b}) acting on the body

- mvb: is the linear momentum of the body

- Ibωb: is the angular momentum of the body

Newton Euler Equation Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 15 / 24

Page 16: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Derivation of Newton Euler Equation

Newton Euler Equation Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 16 / 24

Page 17: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Derivation of Newton Euler Equation (Continued...)

Newton Euler Equation Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 17 / 24

Page 18: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Outline

• Kinetic Energy of a Rigid Body

• Rotational Inertia Matrix

• Newton Euler Equation

• Twist-Wrench Formulation of Rigid-Body Dynamics

Twist-Wrench Formulation Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 18 / 24

Page 19: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Lie Bracket

• Lie Bracket: Given two twists V1 = (ω1, v1) and V2 = (ω2, v2), the Liebracket of V1 and V2, written as [adV1 ]V2, is defined as follows:

[adV1 ]V2 =

[[ω1] 0[v1] [ω1]

] [ω2

v2

]∈ R6

where [adV ] ,

[[ω] 0[v] [ω]

]for any V = (ω, v) ∈ se(3)

• Lie Bracket can be viewed as a generalization of the cross-product operationof two vectors to two twists

• Given a twist V = (ω, v) and a wrench F = (m, f), we define the mapping:

[adV ]T F =

[[ω] 0[v] [ω]

]T [mf

]

Twist-Wrench Formulation Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 19 / 24

Page 20: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Twist-Wrench Formulation

• Rigid body with body twist Vb = (ωb, vb) and body wrench Fb = (mb, fb)

• Spatial inertia matrix Gb ∈ R6×6: Gb =[Ib 00 mI

]

• Spatial momentum Pb ∈ R6: Pb = GbVb

• Kinetic energy: K = 12VTb GbVb

Twist-Wrench Formulation Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 20 / 24

Page 21: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Twist-Wrench Formulation

• Newton-Euler Equation (1) can be written in twist-wrench form:

Fb = GbVb − [adVb ]T Pb = GbVb − [adVb ]

T GbVb

Twist-Wrench Formulation Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 21 / 24

Page 22: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

Dynamics in Other Frames

• Our derivation of dynamics relies on using CoM {b} frame. We can alsowrite dynamics in another frame, say {a}, with relative configuration Tba

• Kinetic energy is independent of reference frame: 12VTb GbVb = 1

2VTa GaVa• This implies that the spatial inertia matrix Ga is related to Gb by

Ga = [AdTba]T Gb [AdTba

]

• One can show the Newton-Euler equation (1) can be written equivalently inframe {a} as:

Fa = GaVa − [adVa ]T GaVa

Twist-Wrench Formulation Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 22 / 24

Page 23: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

More Discussions

Twist-Wrench Formulation Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 23 / 24

Page 24: ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of …zhang/RoboticsClass/docs/LN11... · 2018-04-09 · ECE5463: Introduction to Robotics Lecture Note 11: Dynamics of

More Discussions

Twist-Wrench Formulation Lecture 11 (ECE5463 Sp18) Wei Zhang(OSU) 24 / 24