Ecd Explanation

3
Detailed explanation of Equivalent Circulating Density calculation It is assumed that the drilling mud behaves like a Binghamplastic nonnewtonian fluid. First, the wellbore geometry must be defined with each drill string and wellbore section, including intermediate casing strings and openhole sections, such that all relevant outer and inner diameters, and length combinations are accounted the example figure shows one string and two wellbore sections. The annular area of each section can be calculated as: = !(! ! ! !! ! ! ) ! , Equation 1 where D o is the outer diameter (inner diameter of casing/openhole) and D i is the inner diameter (drill string). The annular fluid velocity within each section can be calculated as ! = ! ! , Equation 2 where Q is the volumetric flow rate. The hydraulic diameter associated with the annular section, ! = !! ! , Equation 3

description

ecd

Transcript of Ecd Explanation

Page 1: Ecd Explanation

Detailed  explanation  of  Equivalent  Circulating  Density  calculation  

 

It  is  assumed  that  the  drilling  mud  behaves  like  a  Bingham-­‐plastic  non-­‐newtonian  fluid.    First,  the  wellbore  geometry  must  be  defined  with  each  drill  string  and  wellbore  section,  including  intermediate  casing  strings  and  openhole  sections,  such  that  all  relevant  outer  and  inner  diameters,  and  length  combinations  are  accounted  -­‐-­‐  the  example  figure  shows  one  string  and  two  wellbore  sections.    The  annular  area  of  each  section  can  be  calculated  as:  

𝐴 = !(!!!!!!!)

!    ,     Equation  1  

where  Do  is  the  outer  diameter  (inner  diameter  of  casing/openhole)  and  Di  is  the  inner  diameter  (drill  string).    The  annular  fluid  velocity  within  each  section  can  be  calculated  as    

𝑣!  =!!,     Equation  2        

where  Q  is  the  volumetric  flow  rate.    The  hydraulic  diameter  associated  with  the  annular  section,    

𝐷! =!!!,   Equation  3      

Page 2: Ecd Explanation

where  P  is  the  wetted  perimeter  

𝑃 = 𝜋(𝐷! + 𝐷!).     Equation  4  

The  Reynold's  number  in  reference  to  the  hydraulic  diameter  is    

𝑅𝑒 = !!!!!!

,     Equation  5  

where  𝜌  is  the  fluid  density  and  𝜇  is  the  plastic  viscosity,  while  the  Hedstrom  number  is    

𝐻𝑒 = !!!!!!!!

,     Equation  6  

where  𝜏!  is  the  yield  point  (yield  strength)  of  the  fluid.    Using  Re  and  He,  the  laminar  friction  factor  fL  can  be  calculated  using  the  Swamee  and  Aggarwal  approximation  to  the  exact  solution,  

𝑓!  =!"!"+

!".!"  !  !.!"!" !"!"

!.!"#

!  !  !.!"#$ !"!"

!.!"!"

!"!"

,     Equation  7      

and  the  turbulent  friction  factor  fT:  

𝑓!  =  10!𝑅𝑒!.!"#  ,     Equation  8  

where    

𝑎   =  −1.47 1   +  0.146 exp −2.9 ∗ 10!!𝐻𝑒 .     Equation  9  

A  combined  friction  factor  f  for  all  flow  profiles  can  be  calculated  as,  

𝑓   =   𝑓!!  +  𝑓!!!!,     Equation  10  

where    

𝑚   =  1.7   +  !""""!"

.     Equation  11  

The  pressure  drop  through  each  annular  section  can  be  calculated  using  the  Darcy-­‐Weisbach  equation,    

∆𝑃 = !"!!!!!!!

,     Equation  12  

and  the  total  pressure  drop  through  all  sections  is  the  sum  of  all  subsequent  pressure  drops.    The  equivalent  circulating  density  is    

𝜌!"# =∆!!"!!"

+ 𝜌,     Equation  13  

where  g  is  the  gravitational  constant  and  H  is  the  vertical  depth  of  the  well.      

Page 3: Ecd Explanation

References  

Darby,  R.  and  Melson  J.(1981).  "How  to  predict  the  friction  factor  for  flow  of  Bingham  plastics".  Chemical  Engineering  28:  59–61.  

Swamee,  P.K.  and  Aggarwal,  N.(2011).  "Explicit  equations  for  laminar  flow  of  Bingham  plastic  fluids".  Journal  of  Petroleum  Science  and  Engineering.  doi:10.1016/j.petrol.2011.01.015.