EC6412_Orientation.pptx

download EC6412_Orientation.pptx

of 77

Transcript of EC6412_Orientation.pptx

  • 8/18/2019 EC6412_Orientation.pptx

    1/77

    LINEAR INTEGRATED CIRCUITSLABORATORYEC6412REGULATION: 2013

    2nd

     year 4th

     e!eterDe"art!ent #$ ECE

    %re"ared &y'

     (ayaee)an*('

    D+neh S,ndar* S'

    Br+-ht %ra&a.ar*%

    A+tant "r#$e#r #$ ECE

  • 8/18/2019 EC6412_Orientation.pptx

    2/77

    COURSE OBJECTIVES

     To expose the students to linear and integrated circuits

     To understand the basics of linear integrated circuits and

    available ICs

     To understand characteristics of operational apli!er"

     To appl# operational apli!ers in linear and nonlinear

    applications"

     To ac$uire the basic %no&ledge of special function IC"

     To use 'ICE soft&are for circuit design

  • 8/18/2019 EC6412_Orientation.pptx

    3/77

    COURSE OUTCO(ES

    At the end #$ the /#,re' the t,dent h#,)d &e a&)e t#:

     )esign oscillators and apli!ers using operational apli!ers"

     )esign !lters using Op*ap and perfor experient on

    fre$uenc# response"

    +nal#,e the &or%ing of '-- and use '-- as fre$uenc# ultiplier"

    )esign )C po&er suppl# using ICs"

    +nal#,e the perforance of oscillators and ultivibrators using

    S'ICE

  • 8/18/2019 EC6412_Orientation.pptx

    4/77

    -IST O. E/'ERI(E0TS1 C2C-E 3

    DESIGN AND TESTING O

    1* Inert+n-' N#n +nert+n- and D+erent+a) a!")+er*

    2* Inte-rat#r and D+erent+at#r*

    3* Intr,!entat+#n a!")+er

    4* A/t+e )#5"a' +-h5"a and &and5"a )ter*

  • 8/18/2019 EC6412_Orientation.pptx

    5/77

    -IST O. E/'ERI(E0TS1 C2C-E 4

    DESIGN AND TESTING O

    5" +stable 6 (onostable ultivibrators and Schitt Triggerusing op*ap"

    7" 'hase shift and 8ien bridge oscillators using op*ap"

    9" +stable and onostable ultivibrators using 0E555 Tier"

    :" '-- characteristics and its use as .re$uenc# (ultiplier"

    ;" )C po&er suppl# using -(

  • 8/18/2019 EC6412_Orientation.pptx

    6/77

    -IST O. E/'ERI(E0TS1 C2C-E <

    SI7ULATION USING S%ICE

    33" Siulation of Experients ?> 5> 7 and 9"

    34" )@+ and +@) converters ASuccessive approxiation

    3 0+0) and 0OR

  • 8/18/2019 EC6412_Orientation.pptx

    7/77

    -+B EUI'(E0T

    LAB E8UI%7ENT OR A BATC O 3 STUDENTS 92t,dent "er E"er+!ent;

    CRO A(in Resistors>

    Capacitors> diodes> Gener diodes> Bread Boards> Transforers>&ires> 'o&er transistors> 'otentioeter> +@) and )@+convertors> -E)s 5? 0ote1 Op*+ps u+9?3> -( -( -( -( +) 7

    -( 575 a# be used"

  • 8/18/2019 EC6412_Orientation.pptx

    8/77

    STUDY OF OP-AMP

    S t u d y o f o p - a m p

    B l o c k s c h e m a t i c o f o p - a m p

    1

    2

    4

    3 6

    7

      8

     N o n I n v e r t i n gi / p

     N / C

    O / p

    V +

    O f f s e t N u l l5

    O f f s e t N u l l

    I n v e r t i n g i / p

    V -

    I C 7 4 1

    D i f f

    ! p

    D i f f

    ! p

    " u f f e r # l e v e l

    t r n s l t o r

    O / p

    $ r i v e r+

    -V 2

    V 1 V%

  • 8/18/2019 EC6412_Orientation.pptx

    9/77

    E/" 0O1 3)ESIF0 +0) TESTI0F O. I0VERTI0F> 0O0*I0VERTI0F+0) )I..ERE0TI+- +('-I.IERS

    +i1

     To design Inverting> 0on*inverting and diHerential apli!ersusing op*ap and test its perforance"

    +pparatus re$uired1

    S*N

    #

    C#!"#nent Ran-e 8,ant+ty

    3" Op*ap IC 9?3 3 4" )ual trace suppl# A=*

  • 8/18/2019 EC6412_Orientation.pptx

    10/77

    + I0VERTI0F +('-I.IER1 C-OSE) -OO' CO0.IFUR+TIO0

    De+-n: 

    +C- K Vo@Vin K * Rf @ RinL

    +ssue +C- K 4=

      => * Rf @ Rin K *4= 

    0o& +ssue Rf K 44%M

    Rin K 3"3%M≈3%M

  • 8/18/2019 EC6412_Orientation.pptx

    11/77

    CIRCUIT )I+FR+( 6(O)E- FR+'D1

    (V)

    Vin

    Vo(V)

    t(sec)

    t(sec)

    Inverting amp

    CRO

    +

    ~

    +

     –

     –

    +12V

    7

    6

    4

    v0

    -12V

    Rf

    = 22k 

    IC741

    2

    3

    Rin

    = 1k 

    F.G

  • 8/18/2019 EC6412_Orientation.pptx

    12/77

    B) NON INVERTING AMPLIFIER: [CLOSED LOOP CONFIGURATION]

     Design:

     ACL = Vo / Vin = 1 + Rf / Rin;

     

     Assume ACL = 10;

     => 10 = 1 + Rf / Rin  Assume Rf = 10kΩ

     => Rin= 1.1kΩ

  • 8/18/2019 EC6412_Orientation.pptx

    13/77

    CIRCUIT DIAGRAM& MODEL GRAPH:

    CRO

    +

    ~

    +

     –

     –

    +12V

    7

    6

    4

    v0

    -12V

    2

    3

    F.G

    Rin

    = 1k 

    (V)

    Vin

    Vo(V)

    t(sec)

    t(sec)

    Non-Inverting amp

  • 8/18/2019 EC6412_Orientation.pptx

    14/77

    C) DIFFERENTIAL AMPLIFIER: [CLOSED LOOP

    CONFIGURATION]

    Design:

     To design an differential amplifier for a gain of 1.

     The voltage gain for an Non-inverting amplifier

    is Av= V out/Vin= (Rf/Ri) when Rf=R L; Rf= Rg

     For a gain of 1, Let RL =10KΩ

     1=Rf/10KΩ=>Rf= 10KΩ & Rg=10KΩ

  • 8/18/2019 EC6412_Orientation.pptx

    15/77

    CIRCUIT DIAGRAM

    IC741

    7

    4

    6

    2

    3

    R1 = 1k

    R1=1k

    R2=10k

    R2=10k

    D

    M

    M

    V1

    V2

    +12V

    -12V

  • 8/18/2019 EC6412_Orientation.pptx

    16/77

    EX.NO: 2

    DESIGN AND TESTING OF INTEGRATOR AND DIFFERENTIATOR Aim:

    To design Integrator and Differentiator using op-amp and test its performance.

     Apparatus required:

    S*N

    #

    C#!"#nent Ran-e 8,ant+ty

    3" Op*ap IC 9?3 3 4" )ual trace suppl# A=*

  • 8/18/2019 EC6412_Orientation.pptx

    17/77

  • 8/18/2019 EC6412_Orientation.pptx

    18/77

    CIRCUIT DIAGRAM& MODEL GRAPH:

    Vin

    RL

    R1

    +12V

    -12V

    Cf 

    Rf 

    Vo = -Rf C1[dVin/dt]

    Rcomp

    C1

    +

    -

    IC 741

    3

    2

    6

            7

            4

    0

    I V

    V  i n

    V  o

    t

    t

    - I V

    M o d e l g r a p h

    I V

    V  i n

    V  o

    t

    t

    - I V

    M o d e l g r a p h

    2 V

    - 2 V

  • 8/18/2019 EC6412_Orientation.pptx

    19/77

    B) INTEGRATOR:

    Design:

    Generally the value of the fa and in turn R1Cf and RfCf 

    values should be selected such that fa < fb. From the

    frequency response we can observe that fa is the

    frequency at which the gain is 0 db and fb is thefrequency at which the gain is limited. Maximum inputsignal frequency = 1 KHz.

    Condition is time period of the input signal is largerthan or equal to RfCf (i.e.) T

    fb = KHz ; fa = fb /10; Rf = 10R1;

    RCOMP = R1;RL & R1 = 10KΩ

     

      fa = 1/ [2πRfCf];RfCf = 1msec &; Cf = 1msec/100K

  • 8/18/2019 EC6412_Orientation.pptx

    20/77

    CIRCUIT DIAGRAM& MODEL GRAPH:

    Vin

    RL

    +12V

    -12V

    Rcomp = Rf 

    +

    -

    IC 741

    3

    2

    6

            7

            4

    0

    R1 = 1.5kΩ Cf  K ="3µ.

    Rf  = 15MΩ

    µ+9?3

    V  i n

    V  o

    t

    t

    M o d e l g r a p h

    t

    t

  • 8/18/2019 EC6412_Orientation.pptx

    21/77

    EX.NO:3

    DESIGN AND TESTING OF INSTRUMENTATION AMPLIFIER

     AIM:

    To design and test the operation ofInstrumentation Amplifier for various gainvalues.

     APPARATUS REQUIRED :

    IC 741 – 3 NO.

    Resistors

    RPS, DMM

  • 8/18/2019 EC6412_Orientation.pptx

    22/77

  • 8/18/2019 EC6412_Orientation.pptx

    23/77

    CIRCUIT DIAGRAM

    RESULT:

    Thus the instrumentation amplifier is designed,constructed and tested

    IC741

    7

    4

    6

    2

    3

    100k

    100k

    100k

    3

    100k

    D

    M

    M

    +12V

    -12V

    IC741

    7

    4

    6

    2

    3

    100k

    V1

    V2

    +12V

    -12V

    IC741

    7

    4

    6

    2

    3

    470k

    +12V

    -12V

    470k

  • 8/18/2019 EC6412_Orientation.pptx

    24/77

    EX.NO:4 (A)

    FREQUENCY RESPONSE OF 2ND ORDER LPF & HPF

     Aim:-

    To design and test the frequency response of asecond order LPF and HPF.

    Components Required:-

    S"0o Coponents Range uantit#3" Op*ap IC 9?3 34" Resistors

  • 8/18/2019 EC6412_Orientation.pptx

    25/77

    THEORY

    LPF:-

     A LPF allows only low frequency signals up to a certainbreak-point fH to pass through, while suppressing high

    frequency components. The range of frequency from 0 tohigher cut off frequency f

    His called pass band and the range

    of frequencies beyond fH is called stop band.

    The following steps are used for the design of active LPF,

    The value of high cut off frequency fH is chosen.

    The value of capacitor C is selected such that its value is

    ≤1µF. By knowing the values of fHand C, the value of R can be

    calculated using

    Finally the values of R1 and Rf are selected depending on

    the designed pass band gain by using   

     

     

     

     +=

    1

    1 R

     f   R

     A

  • 8/18/2019 EC6412_Orientation.pptx

    26/77

    CIRCUIT DIAGRAM& MODEL

    GRAPH

    + 1 0 V

      +

      -

    L M 7 4 1 C3

    26

           7 1

           4 5

    R = 7 . 9 5 k

    R f = 1 0 k

    R

    0 . 0 1 u f  

    R = 7 . 9 5 k

    F u n c i o n ! " n " # $ o #

    - 1 0 V

    V o

    0 . 0 1 u f  

    R = 1 0 k

       &     i  n   i  n   $   '

    fre in ()f ()

    4% $'/ $e*$e

  • 8/18/2019 EC6412_Orientation.pptx

    27/77

    DESIGN& TABULATION

  • 8/18/2019 EC6412_Orientation.pptx

    28/77

    SECOND ORDER HPF

    Theory:-

    The high pass filter is the complement of thelow pass filter.

    Thus the high pass filter can be obtained byinterchanging R and C in the circuit of low passconfiguration.

     A high pass filter allows only frequenciesabove a certain bread point to pass through andat terminates the low frequency components.

    The range of frequencies beyond its lower cutoff frequency fL is called stop band.

  • 8/18/2019 EC6412_Orientation.pptx

    29/77

    CIRCUIT DIAGRAM& MODEL

    GRAPH

       +

       -

    L M 7 4 1 C3

    2

    6

                 7 1

                 4 5

    F u n c i o n ! " n " # $ o #  

    R = 1 0 k

    0 . 0 1 u f  

    R f = 1 0 k

    R

    - 1 0 V

    0 . 0 1 u f  

    R = 7 . 9 5 k R = 7 . 9 5 k

    + 1 0 V

    V o

       &     i  n   i  n   $   '

    fre in()

    f+

    4% $'/$e*$e

  • 8/18/2019 EC6412_Orientation.pptx

    30/77

  • 8/18/2019 EC6412_Orientation.pptx

    31/77

    PROCEDURE

    LPF:-

    1. Connections are given as per the circuit diagram.

    2. Input signal is connected to the circuit from the signal generator.

    3. The input and output signals of the filter channels 1 and 2 of the CRO are connected.

    4. Suitable voltage sensitivity and time-base on CRO is selected.

    5. The correct polarity is checked.

    6. The above steps are repeated for second order filter. 

    HPF:-

    7. Connections are given as per the circuit diagram.

    8. Input signal is connected to the circuit from the signal generator.

    9. The input and output signals of the filter channels 1 and 2 of the CRO are connected.

    10.Suitable voltage sensitivity and time-base on CRO is selected.11.The correct polarity is checked.

    12.The above steps are repeated for second order filter.

    Result:-

    Thus the second order Low pass filter and High pass filter were designed using Op-ampand its cut off frequency was determined

  • 8/18/2019 EC6412_Orientation.pptx

    32/77

    EX.NO:4 (B)

    FREQUENCY RESPONSE OF 2ND ORDER BSF & BPF

     Aim:-

    To design and test the frequency response of asecond order LPF and HPF.

    Components Required:-

    S"0o Coponents Range uantit#3" Op*ap IC 9?3 <4" Resistors

    O"=5µf  4?" CRO 3

    5" 'o&er Suppl# N 35V 37" 'robe 4

    9" Bread Board 3

  • 8/18/2019 EC6412_Orientation.pptx

    33/77

    THEORY

    BSF:-

    BSF is the logical inverse of band pass filter which does not allows aspecified range of frequencies to pass through. It has two pass bands inthe range of frequencies between 0 to fL and beyond fH. The band

    between fL and fHis called stop band. BSF is also called Band Reject

    Filter (BRF) or Band Elimination Filter (BEF).

     

    BPF:-

    The BPF is the combination of high and low pass filters and this allowsa specified range of frequencies to pass through. It has two stop bandsin range of frequencies between 0 to fL and beyond fH. The band b/w fL 

    and fHis called pass band. Hence its bandwidth is (fL-fH). This filter hasa maximum gain at the resonant frequency (fr) which is defined as

    The figure of merit (or) quality factor Q is given by

     L H r    f   f   f    =

     BW 

     f  

     f   f  

     f  Q   r 

     L H 

    r  =−

    =

  • 8/18/2019 EC6412_Orientation.pptx

    34/77

    CIRCUIT DIAGRAM& SAMPLE

    GRAPH- BPF

    %7%7V

    V

       &     i  n   i  n   D   "

    fre in 3

    stop 'n$  pss 'n$ stop 'n$C = 0 . 0 1

           C

         =       0

     .       0       1

    R f = 1 0

    f n ! " n

    C = 0 . 0 1R = 7 . 9 5

    V o

    R = 1 0

           C

         =       0

     .       0       1

    R = 1 0

           R

         =       7

     .       9       5

    R = 7 . 9 5

      +

      -

    L M 7 4 1

    3

    26

           7 1

           4 5

    R = 1 0

    R = 1 0

           R

         =       7

     .       9       5

      +

      -

    L M 7 4 1

    3

    26

           7 1

           4 5

  • 8/18/2019 EC6412_Orientation.pptx

    35/77

    DESIGN

    BSF:-

    fH=200Hz

    fL=1kHz

    Low pass section:-fH=200Hz

    Let C1=0.05µfThen,

      f  C 

     K  R

     R

    c  f   R

     H 

     µ 

    π  

    π  

    %5%

    .15

    ,1%%5%,-2%%-2

    1

    2

    1

    1

    1

    6

    1

    1

    1

    =

    Ω=

    ×=

    =

  • 8/18/2019 EC6412_Orientation.pptx

    36/77

    High Pass Section:-

    Gain, Av=2 for each section

    ( )ΚΩ=

    ××=

    =

    =

    ΚΗΖ =

    ./15

    1%%1/%1%1-21

    2

    1

    %1/%

    1

    6,3

     R

    C   f   R

      f  C 

      f  

     L

     L

    π  

    π  

     µ 

    ΚΩ====∴   1%11

    11   f    f     R R R R

  • 8/18/2019 EC6412_Orientation.pptx

    37/77

    CIRCUIT DIAGRAM& SAMPLE

    GRAPH- BSF

       +

       -

    L M 7 4 1

    3

    26

               7 1

               4 5

       +

       -

    L M 7 4 13

    26

               7 1

               4 5

               C

            =

               0

      .           0

               5

    R = 1 0C = 0 . 0 5

    R = 1 5 . 9

    R f = 1 0

    R = 1 5 . 9

               R

            =

               1

               5

      .           9

    f n ! " n

    C = 0 . 0 1C = 0 . 0 1

               R

               L

            =

               1

               0

    R = 1 0

    R = 1 0

    V o

    R = 1 0

    R = 3 . 3

    R f = 1 0

               R

            =

               1

               5

      .           9

    R = 1 0

       +

       -

    L M 7 4 1

    3

    26

               7 1

               4 5

    1141

    V2

       &     i  n   i  n   D   "

    fre in 3

    ree*t 'n$  pss 'n$ pss 'n$

  • 8/18/2019 EC6412_Orientation.pptx

    38/77

    TABULATION

  • 8/18/2019 EC6412_Orientation.pptx

    39/77

    PROCEDURE

    BSF,BPF:-

    The input signal is connected to the circuit fromthe signal generator.

    The input and output signals are connected tothe filter.

    The suitable voltage is selected.

    The correct polarity is checked.

    The steps are repeated.Result:-

    Thus the frequency response of second orderBPF and BSF filter was designed and tested.

  • 8/18/2019 EC6412_Orientation.pptx

    40/77

    EX. NO:5 

     ASTABLE AND MONOSTABLE MULTIVIBRATORS USING OP-AMP

     Aim

    To design Astable and monostable Multivibrators &Schimitt Trigger using op-amp and to plot its

    waveforms. Apparatus Required:

    S"0o Coponent Range uanti

    t#

    3" Op ap IC 9?3 3

    4" )TS A=*

  • 8/18/2019 EC6412_Orientation.pptx

    41/77

    DESIGN

    1. Monostable Multivibrators:

    β = R2 /R1+R2 [β = 0.5 & R1 = 10 K]

    Find R2 = ; R3 = 1K; R4 = 10K;

    Let F =_____KHz ; C= 1mfd; C4 = 0.1mfd

    Pulse width, T = 0.69RC

    Find R =

    Procedure:

    Make the connections as shown in circuit diagram.

     A trigger pulse is given through differentiator circuitthrough pin no.3

    Observe the pulse waveform at pin no.6 using CRO andnote down the time period.

    Plot the waveform on the graph.

  • 8/18/2019 EC6412_Orientation.pptx

    42/77

    CIRCUIT DIAGRAM & MODEL GRAPH

    C R O

    +

     –

    + 1 0 V

    7

    4

    - 1 0 V

    2

    3

    I C 7 4 1

    R

    V  s a t

    C 4 D 2

    R 4

    D 1C

    V C

    6R 3

    V O

    R 1

    R 2

    V in

    V in

    V C

    V O

    V s a t

    V  s a t

    V D

    t

    t

    t

    T – V s a t

    T P

  • 8/18/2019 EC6412_Orientation.pptx

    43/77

    2. Astable Multivibrators:

    Design:

    T = 2RC

    R1= 1.16 R2

    Given fO= _______KHz

    Frequency of Oscillation fo = 1 / 2 RC if R1 = 1.16R2 

    Let R2 = 10 K Ohm  R1= 10Ohm

    Let C = 0.05 Micro F

    R = 1 / 2 fC = 1/ (2 )

    Procedure:

    Make the connections as shown in the circuit diagram

    Keep the CRO channel switch in ground and adjust the horizontal line on the x axis so that

    it coincides with the central line.Select the suitable voltage sensitivity and time base on the CRO.

    Check for the correct polarity of the supply voltage to op-amp and switch on power supply

    to the circuit.

    Observe the waveform at the output and across the capacitor. Measure the frequency of

    oscillation and the amplitude. Compare with the designed value.

    Plot the Waveform on the graph.

  • 8/18/2019 EC6412_Orientation.pptx

    44/77

    CIRCUIT DIAGRAM & MODEL GRAPH

    2

    + 1 0 V

    I C 7 4 1

    R

    +

    C R O

    C

    3

     – 1 0 V

    1 0  

    R 1

    R 2

    1 1 . 6 

    V O4

    7 –

    6

    1 0 k 

    0 . 0 5  µ f 

    V o % $ ! " i n & o % '

    V o % $ ! " $ c # o ' ' ( " c $ p $ c i o #  

    ) m ' " *

    & o

  • 8/18/2019 EC6412_Orientation.pptx

    45/77

    DESIGN

    3) Schmitt Trigger:

     Design

     VCC= 12 V; VSAT = 0.9 VCC;R1= 47KΩ; R2 = 120Ω

     VUT = + [VSAT R2] / [R1+R2] & VLT = - [VSAT R2] / [R1+R2] &

    HYSTERSIS [H] = VUT - VLT Procedure

    Connect the circuit as shown in the circuit

    Set the input voltage as 5V (p-p) at 1KHz. (Input should bealways less than Vcc)

    Note down the output voltage at CROTo observe the phase difference between the input and theoutput, set the CRO in dual Mode and switch the triggersource in CRO to CHI.

    Plot the input and output waveforms on the graph.

  • 8/18/2019 EC6412_Orientation.pptx

    46/77

    CIRCUIT DIAGRAM & MODEL GRAPH

    Result:

    Thus Astable & MonostableMultivibrators and Schimitt trigger were

    designed using op-amp and the waveforms

    were plotted.

    V i n

    + 1 2 V

    R 1

    - 1 2 V

    R 2

    0

    +

    -

    3

    26

                    7

                     4

    R L = 1 0

  • 8/18/2019 EC6412_Orientation.pptx

    47/77

    EXP.NO: 6

    MULTIVIBRATORS USING IC 555

     Aim:

    To design and test an Astable and MonostableMultivibrators using 555 timer with duty cycles ratio.

     Apparatus Required:

    S*N

    #

    C#!"#nen

    t

    Ran-e 8,ant+t

    y3" 555 TI(ER 34" Resistors

  • 8/18/2019 EC6412_Orientation.pptx

    48/77

     ASTABLE MULTIVIBRATORS USING 555

    Pin diagram: 

    DESIGN:

    Design an Astable Multivibrators for a frequency of ______KHz with a duty

    cycle ratio of D = 50fo = 1/T = 1.45 / (R A+2RB)C

    Choosing C = 1 F;R A = 560

    D = RB / R A +2RB= 0.5 [50%]

    RB = ______

    V C C

    D i s ! " a # $ %

    T " # % s " & ' (

    C & n t # & ' V & ' t a $ %

    T # i $ $ % #  

    O ) t * ) t

    R % s % t

    G # & ) n (

  • 8/18/2019 EC6412_Orientation.pptx

    49/77

    CIRCUIT DIAGRAM & MODEL GRAPH

    V OD

    R ,

    6 . k

    V ! !

    + V

    0 . 0 1 µ F

    0 . 1 µ F

    R

    3 . 3 k

    7

    2

    6

    1

    4

    3

    V !

    t / s 1

    V 2 T

    V 2 T

    t " i $ "

    t '& 3

    t / s 1

    V O

  • 8/18/2019 EC6412_Orientation.pptx

    50/77

    CIRCUIT DIAGRAM & MODEL GRAPH

    V O

    R ,

    1 0 k

    V ! !

    + V

    0 . 0 1 µ F

    0 . 1 µ F

    7

    6

    1

    4

    3

    2T # i $ $ % # i *

    0 . 0 1 µ F

    V ! !

    0 V

    / i 1 T # i $ $ % # i n * ) t

      / i i 1 O ) t * ) t

      / i i 1 C a * a ! i t & #

    V & ' t a $ %

    0 V

    0 V

    V ! !

  • 8/18/2019 EC6412_Orientation.pptx

    51/77

    MONOSTABLE MULTIVIBRATORS

    USING 555

    Design:

    Given a pulse width of duration of 100s

    Let C = 0.01 mfd; F = _________KHz

    Here, T= 1.1 R AC So, R A =

    Result:

    Thus the Astable Multivibrators and

    Monostable Multivibrators using 555 timer isdesigned and tested.

  • 8/18/2019 EC6412_Orientation.pptx

    52/77

    EXP.NO.:7

     OSCILLATORS USING OPERATIONAL AMPLIFIER

     Aim:To design the following sine wave oscillators WeinBridge Oscillator with the frequency of 1 KHz. RCPhase shift oscillator with the frequency of 200 Hz.

    Components Required:

    S*N#

    C#!"#nent Ran-e 8,ant+ty

    3" Op*ap IC 9?3 34" )ual trace suppl# A=*

  • 8/18/2019 EC6412_Orientation.pptx

    53/77

    WEIN BRIDGE OSCILLATOR:

    Design:

    Gain required for sustained oscillation is Av = 1/β = 3

    (PASS BAND GAIN) (i.e.) 1+Rf /R1 = 3

    ∴ Rf = 2R1

    Frequency of Oscillation fo = 1/2π R C

    Given fo = 1 KHz

    Let C = 0.05µF∴ R = 1/2π foC

    R = 3.2 KΩ

    Let R1 = 10 KΩ ∴ Rf = 2 * 10 KΩ

  • 8/18/2019 EC6412_Orientation.pptx

    54/77

    CIRCUIT DIAGRAM & MODEL GRAPH

    C R O

    +

     –

    + 1 0 V

    7

    6

    4

    - 1 0 V

    2

    3

    I C 5 4 1

    R 1 = 1 0 k  R f = 2 0 k 

    3 . 2 k R

    C

    0 . 0 µ f 

    3 . 2 k R =C 0 . 0

     µ

    V O

    t

    + V *

    V O

    – V *

  • 8/18/2019 EC6412_Orientation.pptx

    55/77

    RC PHASE SHIFT OSCILLATORS:

    Design:

    Frequency of oscillation fo = 1/(√6*2*Π*RC)

     Av = [Rf/R1] = 29

    R1 = 10 R

    Rf = 29 R1

    Given fo = 200 Hz.

    Let C = 0.1µF

    ( )

    ( )6

    1 / 6 2 fo C

    1/ 6 2 2%% %1 1%

    8o prevent te lo$ing of !plifier '9 C net:or;0 1 1% 

    1 1% 7  

  • 8/18/2019 EC6412_Orientation.pptx

    56/77

    CIRCUIT DIAGRAM & MODEL GRAPH

    C R O

    +

     –

    + 1 0 V

    7

    6

    4

    - 1 0 V

    2

    3

    I C 7 4 1

    R 1 1  

    3 . 3 k 

    C

    V O  0 . 0 1 µ f 

    CC

    RRR 3 . 3 k 3 . 3 k 

    0 . 0 1 µ f   0 . 0 1 µ f 

    3 2 k 

    3 3 k  R f 

    D R

    V O

    t

  • 8/18/2019 EC6412_Orientation.pptx

    57/77

    Observation:

    Peak to peak amplitude of the sine wave = Volts

    Frequency of Oscillation (obtained) =Hz.

    Result: 

    Thus wien bridge oscillator and RC Phaseshift oscillator was designed using op-amp andtested.

  • 8/18/2019 EC6412_Orientation.pptx

    58/77

    EXP.NO.:8

     VOLTAGE REGULATION USING IC LM723

     AIM :

    To design a high current, low voltage and highvoltage linear variable dc regulated power supplyand test its line and load regulation.

    COMPONENTS REQUIRED :S"0O CO('O0E0TS S'ECI.IC+TIO0 U+0TIT2

    3" Transistors TI'344>40

  • 8/18/2019 EC6412_Orientation.pptx

    59/77

    430

    1k

    0.52N3055Unregulated

    DC Poer

    !u""l#   12 11

    $

    5

    R1

    R2

    V+ V%Vo

    C&

    C!

    'NV

    C()PV-

    N'

    Vref

    0*1

    U

    ,'P122

    100"

    R-%

    10

    2

    3

    .

    13/

    &oad

    + -

    V

    +

    -

     

    I L 

    V 0 V 0 

    V in 

    Lo$, #"!u%$ion Lin" #"!u%$ion 

  • 8/18/2019 EC6412_Orientation.pptx

    60/77

    DESIGNDESIGN:Output voltage VO

    Reference voltage VrefR-protect Minimum Resistance to protect the output from short circuit.

    Low Voltage Regulator :

    Given : Vo=5V, Vref = 7.15 V

    To calculate R1, R2 ,R3 and Rsc.

     Vo = Vref ( R2 / ( R1 + R2 ) )

    5 / 7.15 = ( R2 / ( R1 + R2 ) )

    ( R1 + R2 ) 0.699= R2

    0.699R1 = 0.301 R2 ,R1 = 0.4306 R2

    SelectR2 = 1 K 

    R1 = 1 KΩ * 0.4306 = 430ΩR1 = 430 

    R3 = R1 * R2 / ( R1 + R2) , R3 = 430.6 *1000 /(430.6+1000 )

    R3 = 300 

    Rsc = Vsense / Ilimit= 0.5 /1A = 0.5Ω ,Rsc = 0.5 Result :

    Thus the line and load regulation of a high current, low voltage and high voltage linear variable dcregulated power supply was designed and tested.

    S"0o -o& Voltage Regulator Digh Voltage

    RegulatorQ Voltage Regulation

  • 8/18/2019 EC6412_Orientation.pptx

    61/77

    EX.NO:9FREQUENCY MULTIPLIER USING PLL IC

     AIM:

    To study the operation of NE 565 PLL as a

    frequency multiplier.

     APPARATUS REQUIRED: 

    i. RPS

    ii. Resistors, Capacitors

    iii. IC NE565, IC 7490

    iv. Transistor 2N3391

    v. Breadboard, connecting wires.

  • 8/18/2019 EC6412_Orientation.pptx

    62/77

    RESULT:

    The frequency multiplier using PLL principle is

    studied and the output waveform is observed.

  • 8/18/2019 EC6412_Orientation.pptx

    63/77

    12. STUDY OF PSPICEAI7:

     To stud# the 'spice orcad progra"

    SOT

  • 8/18/2019 EC6412_Orientation.pptx

    64/77

    13.SIMULATION OF

    INSRUMENTATIONAL AMPLIFIER.AI7:

     To siulate an instruentation +pli!er using 'spice"

    S"0O +pparatus 0ae -ibrar#

    3"

    O'* +('

    O'*+('

    4" RESISTOR +0+-OF

  • 8/18/2019 EC6412_Orientation.pptx

    65/77

    CIRCUIT DIAGRAM

    •%r#/ed,re:3" To open capture c is> start *progra*Orcad;"4fail#*capturCIS"4" In the !le enu bar> ne& proect option is selected"

  • 8/18/2019 EC6412_Orientation.pptx

    66/77

    SI7ULATED OUT%UT:

    RESULT: Thus instruentation +pli!er constructed and siulated using 'spice"

  • 8/18/2019 EC6412_Orientation.pptx

    67/77

    14.SIMULATION OF ACTIVE LOWPASS,

    HIGHPASS AND BANDPASS FILTER

    S"0O +pparatus -ibrar#

    0ae

    3"

    O'* +('

    O'*+('

    4" RESISTOR +0+-OF

    given a nae6 create a no& blan% proect" In the enu> place*part option is chosen a no of folders appears on the screen" The librar# re$uire for particular option is chosen" Then the coponents are placed on the scheatic screen according to the circuit diagra"

    +ll the coponents are placed in the gae anner and interconnections are ade using &ire" The ensure proper interconnections not list is created" The errors are connected &hile creating the not list" .or doing tie +C supplies +nal#sis select" pspice*no& stiulation pro!le and the speci!ed the starting fre$uenc# 3==DG to ending

    fre$uenc# as 3=DG" pspice*no& stiulation pro!le and the speci!ed the starting fre$uenc# set t&o call a per

    ar%er at the output 6 select pspice run the circuit" 'lot the &ave for b# ta%ing aplitude at #* axis6 fre$uenc# in x*axis"

    +fter the necessar# voltage ar%ers are placed at re$uired terinals" Then the progra is toget desired output"

  • 8/18/2019 EC6412_Orientation.pptx

    68/77

    CIRCUIT DIAGRAM & SIMULATED OUTPUT:

    L%:

    %:

    B%:

  • 8/18/2019 EC6412_Orientation.pptx

    69/77

      B%:

    RESULT: Thus an active lo& pass> high pass and band pass !lter &as constructed and siulated using

    'spice"

    15.SIMULATION OF ASTABLE AND

  • 8/18/2019 EC6412_Orientation.pptx

    70/77

    MONOSTABLEMULTIVIBRATOR,

    SCHMITT TRIGGER USING IC741

    S"0O +pparatus -ibrar#

    0ae

    3"

    O'* +('

    O'*+('

    4" RESISTOR +0+-OF

    place*part option is chosen6 the necessar# librar# are added" Then the coponents> librar# can be placed on the scheatic screen according to the circuit

    diagra" To ensure proper interconnections not list is created to errors are connected &hile creating the

    not list" .or doing tie doain anal#sis select 'spice * ho& siulation pro!le in that dialog box> set the

    run !le as coes"

    Set the voltage ar%er at the output side and 'spice run"

    ASTABLE

  • 8/18/2019 EC6412_Orientation.pptx

    71/77

    ASTABLE:

    SC7ITT TRIGGER:

    7ONOSTABL

    E:

    RESULT: Thus the +ST+B-E and (O0OST+B-E (U-TIVIBR+TOR> SCD(ITT TRIFFER &as constructed and siulated using

    'spice

  • 8/18/2019 EC6412_Orientation.pptx

    72/77

    16.SIMULATION OF RC PHASESHIFT

     AND WEIN BRIDGE OSCILLATOR

    S"0O +pparatus -ibrar#

    0ae

    3"

    O'* +('

    O'*+('

    4" RESISTOR +0+-OF

    !le is given a nae6 create a ne& blan% proect is chec%ed" In the enu> place*part option is chosen a no of folders appears on the screen" The librar# re$uire for particular option is chosen"

    Then the coponents are placed on the scheatic screen according to the circuit diagra" +ll the coponents are placed in the gae anner and interconnections are ade using &ire" The errors are connected b# creating the not list" To create a siulation pro!le pspice ne& siulation pro!le is selected" +fter the necessar# voltage ar%ers are placed at re$uired terinals" Then the progra is run 6soe

    odi!cation is done to get desired output"

    CIRCUITDIAGRAM&SIMULATED

  • 8/18/2019 EC6412_Orientation.pptx

    73/77

    CIRCUIT DIAGRAM & SIMULATED

    OUTPUT

    RC "hae h+$t:

  • 8/18/2019 EC6412_Orientation.pptx

    74/77

    16.SIMULATION OF ASTABLE AND MONOSTABLEMULTIVIBRATOR

    USING IC555

    S"0O +pparatus -ibrar#

    0ae

    3"

    O'* +('

    O'*+('

    4" RESISTOR +0+-OF

  • 8/18/2019 EC6412_Orientation.pptx

    75/77

    CIRCUIT DIAGRAM & SIMULATED OUTPUT:ASTABLE:

    7ONOSTABLE:

  • 8/18/2019 EC6412_Orientation.pptx

    76/77

    RESULT: Thus an +ST+B-E and (O0OST+B-E (U-TIVIBR+TOR using IC 555 8as constructed and siulated using

    'spice"

  • 8/18/2019 EC6412_Orientation.pptx

    77/77