Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of...

88
Earth Observation with GNSS Reflections REF: E-GEM-CSC-TEC-TNO01 VER: 35 15 13 Jan E-GEM – GNSS-R Earth Monitoring D4.1 State of the Art Description Document Prepared by: Estel Cardellach (ICE-CSIC/IEEC), Sections 1, 2, 3, 4, 5 Tiago Peres and Rita Castro, Nuno Catarino (DEIMOS), Section 2.3 Nilda Sanchez (USAL), Maria Piles, Adriano Camps (UPC) section 5.4.4 Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5 Approved by: E-GEM Steering Committee

Transcript of Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of...

Page 1: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

Earth Observation with GNSS Reflections

 

   

R E F : E - G E M - C S C - T E C - T N O 0 1

V E R : 3 5

15  13  -­‐  Jan  

E-GEM – GNSS-R Earth Monitoring

D4.1 State of the Art Description Document

Prepared by: Estel Cardellach (ICE-CSIC/IEEC), Sections 1, 2, 3, 4, 5 Tiago Peres and Rita Castro, Nuno Catarino (DEIMOS), Section 2.3 Nilda Sanchez (USAL), Maria Piles, Adriano Camps (UPC) section 5.4.4 Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5 Jorge Bandeiras (DEIMOS), document formatting and review

Approved by: E-GEM Steering Committee

Page 2: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 2  of  88  

Table  of  Contents  

 

1   Introduction  .................................................................................................................................................................  6  

1.1   Basics  of  GNSS-­‐Reflectometry  .............................................................................................................................  6  

2   Constellations  and  Signals  ............................................................................................................................................  9  

2.1   Systems  and    Constellations  ................................................................................................................................  9  

2.2   Spatial  Coverage  ................................................................................................................................................  10  

2.3   GNSS  Signals  ......................................................................................................................................................  11  

2.3.1   Definition  ..................................................................................................................................................  11  

2.3.2   Signals  Description  ....................................................................................................................................  12  

3   GNSS-­‐R  Observables  and  Modelling  ..........................................................................................................................  16  

3.1   Basic  GNSS-­‐R  Observables  .................................................................................................................................  16  

3.2   Electromagnetic  Scattering  Models  ...................................................................................................................  18  

4   Receiver-­‐level  Data  Acquisition  .................................................................................................................................  21  

4.1   Existing  GNSS-­‐R  Receivers  .................................................................................................................................  24  

5   Scientific  Applications  and  Requirements  .................................................................................................................  27  

5.1   Ocean:  Altimetry  ...............................................................................................................................................  28  

5.1.1   GNSS-­‐R  Status  on  Altimetric  Applications  and  Retrieval  Algorithms  ........................................................  29  

5.1.2   GNSS-­‐R  Altimetric  Missions  ......................................................................................................................  33  

5.1.3   Other  Related  Techniques  ........................................................................................................................  33  

5.1.4   E-­‐GEM  Applicability  ..................................................................................................................................  33  

5.2   Ocean:  Surface  Roughness,  Wind  and  Tropical  Storms/Cyclones  .....................................................................  34  

5.2.1   GNSS-­‐R  Status  on  Ocean  Scatterometric  Applications  and  Retrieval  Algorithms  .....................................  38  

5.2.2   GNSS-­‐R  Scatterometric  Missions  ..............................................................................................................  41  

5.2.3   Other  Related  Techniques  ........................................................................................................................  41  

5.2.4   E-­‐GEM  Applicability  ..................................................................................................................................  42  

Page 3: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 3  of  88  

5.3   Ocean:  Salinity  ...................................................................................................................................................  42  

5.3.1   GNSS-­‐R  Status  on  Sea  Surface  Salinity  Applications  and  Retrieval  Algorithms  .........................................  43  

5.3.2   GNSS-­‐R  Sea  Surface  Salinity  Missions  .......................................................................................................  43  

5.3.3   Other  Related  Techniques  ........................................................................................................................  43  

5.3.4   E-­‐GEM  Applicability  ..................................................................................................................................  44  

5.4   Land:  Soil  Moisture  ............................................................................................................................................  44  

5.4.1   GNSS-­‐R  Status  on  Soil  Moisture  Applications  and  Retrieval  Algorithms  ..................................................  45  

5.4.2   GNSS-­‐R  Soil-­‐Moisture  Missions  .................................................................................................................  46  

5.4.3   Other  Related  Techniques  ........................................................................................................................  47  

5.4.4   E-­‐GEM  Applicability  ..................................................................................................................................  48  

5.5   Land:  Vegetation  and  Biomass  ..........................................................................................................................  50  

5.5.1   GNSS-­‐R  Status  on  Vegetation  Applications  and  Retrieval  Algorithms  ......................................................  51  

5.5.2   GNSS-­‐R  VEGETATION  Missions  .................................................................................................................  52  

5.5.3   Other  Related  Techniques  ........................................................................................................................  52  

5.5.4   E-­‐EGM  Applicablility  ..................................................................................................................................  53  

5.6   Hydrology:  Inland-­‐water  Bodies  ........................................................................................................................  54  

5.7   Cryosphere:  Snow  ..............................................................................................................................................  54  

5.7.1   GNSS-­‐R  Status  on  Snow  Applications  and  Retrieval  Algorithms  ...............................................................  55  

5.7.2   GNSS-­‐R  Snow  Missions:  ............................................................................................................................  56  

5.7.3   Other  Related  Techniques:  .......................................................................................................................  56  

5.7.4   E-­‐GEM  Aplicabillity  ....................................................................................................................................  57  

5.8   Cryosphere:  Sea  Ice  ...........................................................................................................................................  57  

5.8.1   GNSS-­‐R  Status  on  Sea-­‐Ice  Applications  and  Retrieval  Algorithms:  ...........................................................  58  

5.8.2   GNSS-­‐R  Sea-­‐Ice  Missions  ...........................................................................................................................  60  

5.8.3   Other  Related  Techniques  ........................................................................................................................  60  

5.8.4   E-­‐GEM  Applicability  ..................................................................................................................................  61  

Page 4: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 4  of  88  

5.9   Cryosphere:  Glaciers  ..........................................................................................................................................  62  

5.10   Atmosphere  .......................................................................................................................................................  62  

5.11   Civilian  Applications:  Ship  Detection  .................................................................................................................  63  

5.12   Civilian  Applications:  Buried  Metallic  Bodies  ....................................................................................................  64  

6   REFERENCES  ..............................................................................................................................................................  65  

7   ACRONYMS  ................................................................................................................................................................  82  

 

   

Page 5: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 5  of  88  

Scope  

State  of  the  Art  Description  Document:  will  contain  the  output  of  Task  T4.1.  D4.1  will  be  delivered  at  CDR  (T6).  [month  6]  

Page 6: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 6  of  88  

1 Introduction The  scope  of  this  document  is  to  present  in  a  comprehensive  way  the  output  of  E-­‐GEM  Task  T4.1,  under  which  a  review  of   the   state-­‐of-­‐the   art   on  GNSS-­‐Reflectometry   (GNSS-­‐R)   techniques,   applications   and   implementations   is   performed.  The  goal  of  the  task  is  to  assist  the  first  iteration  of  the  high-­‐level  design  of  the  GNSS-­‐R  systems  to  be  implemented  in  E-­‐GEM,   in   such   a  way   that   the  optimal   architectures   and   technologies   selected   can  meet   the  user   requirements  while  respecting  the  constraints  of  the  platforms  under  consideration.  

The  document  is  structured  as  follows:  

• This  Section  1  gives  a  brief  introduction  to  the  GNSS-­‐R  concept.  

• An   overall   review   of   the   GNSS   constellations   and   geographical   coverage,   current   and   future   signals   is   given   in  Section  2.  

• Sections  3  to  5  focus  on  GNSS-­‐R  modelling,  techniques  and  scientific  applications  respectively.  The  applications  are  linked  to  their  user  requirements,  analysis  techniques  and  processing  strategies.    Some  of  the  analysis  techniques  have   potential   to   be   applied   to   any   of   the   three   E-­‐GEM   systems   (ground-­‐based,   airborne   and   space-­‐borne  platforms),   whereas   some   of   them   can   only   be   applied   from   certain   platforms   or   altitudes.   This   information   is  clearly  indicated.  

1.1 Basics of GNSS-Reflectometry The  GNSS-­‐Reflectometry  concept  was  conceived  in  early  90ies  [Martín-­‐Neira,  1993]  to  densify  the  Earth  observations  in  a  low  cost  effective  way.  The  GNSS-­‐reflectometry  works  as  a  bi-­‐static  radar:  a  system  in  which  the  transmitter  and  the  receiver  are  separated  by  a  significant  distance,  comparable  to  the  expected  distance  to  the  target.  This  definition  can  be  extended  to  a  system  in  which  a  single  receiver  can  simultaneously  track  a  diversity  of  bi-­‐statically  scattered  signals,  from  a  diversity  of  different  transmitting  sources.  Then  we  call   it  multi-­‐static.  Section  2.2  gives  more  details  on  multi-­‐static  nature  of  the  GNSS-­‐R  concept  and  its  current  and  expected  spatio-­‐temporal  coverage.  The  electromagnetic  field  at  the  receiver  site  has  contribution  from  several  GNSS  sources  (transmitting  satellites).  Different  GNSS  transmitters  can  be  identified  and  separated  from  the  rest  of  transmitters  being  received  simultaneously  by  the  modulation  applied  to  each  GNSS.  These  contributions  correspond   to  signals   that  have  propagated  directly   from  the  source   to   the   receiver,  crossing  the  atmosphere;  as  well  as  signals  that  have  propagated  down  to  the  Earth  surface,  scattered  off   its  surface,  and  up  to  the  receiver  coordinates.   In  principle,   these  two  sort  of  contributions  can  be  separated  using  two  different  antennas,  one  pointing  to  the  transmitters  to  gather  direct  rays,  and  the  other  to  the  surface,  to  collect  Earth-­‐surface  scattered   signals.   However,   in   some   applications   the   geophysical   information   is   extracted   from   the   interference  produced   by   direct   and   reflected   signals.   Then,   a   single   antenna   pointing   towards   the   horizon,   the   Earth   limb,   or   at  certain  slant  orientation  is  used  to  collect  them  both.  If  the  receiver  is  at  air-­‐borne  or  at  higher  altitudes,  the  delay  and  Doppler   information   can   be   used   to   separate   both   radio-­‐links.   Note   that   other   contributions   to   the   receiver  electromagnetic   field   are   also   possible,   such   as   those   coming   from   atmospheric   ducting   (atmospheric  multipath),   or  from  reflection  off  other  objects  surrounding  the  receiver  or  along  the  propagation  path.  These  other  contributions  are  in  general  source  of  noise  and  systematic  effects  that  need  to  be  corrected  or  mitigated.  

 

Page 7: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 7  of  88  

 

Figure  1.1a:  Sketch  of  the  GNSS-­‐R  concept  as  a  multi-­‐static  system  of  Earth  observations.  Figure  extracted  from  [Jin  et  al.,  2014]  with  permission  of  the  author.  

The  electromagnetic  scattering  is  a  complex  process  involving  surface  dielectric  properties  and  topographic  features  as  a  whole  system.  The  dielectric  properties  of  the  surface  have  direct  impact  on  the  reflected  power.  Two  limit-­‐conditions  are   typically   distinguished   and   contrasted   as   topographic   features:   specular   or   mirror-­‐like   reflection   vs.   diffuse  scattering.  In  most  of  the  cases,  the  scattering  process  contains  both  types  of  contribution,  that  is,  the  scenarios  do  not  present  either  specular-­‐only  or  diffuse-­‐only  scattering,  but  both  of  them  in  different  proportions.  

The  specular  reflection  corresponds  to  scattering  processes  in  which  waves  from  a  single  direction  are  reflected  into  a  single  reflected  direction.  On  the  opposite  side,  in  diffuse  scattering  the  incoming  waves  are  reflected  in  a  broad  range  of   directions.   The   specular-­‐to-­‐diffuse   regime   is   determined   by   the   roughness   structures   of   the   surface   topography,  rather   than   its  dielectric  properties.   Scattering  with  dominant   specular   component  occurs   in   smooth   surfaces,  where  the   surface   topography/roughness   has   not   significant   features   of   spatial   scales   similar   to   the   electromagnetic  wavelength.  

The   diffuse   scattering   can   be   approximated   by   reflections   off   surface   facets.   “Facets”   are   here   defined   as   surface  patches   of   size   and   curvature   of   the   order   of   or   higher   than   a   few   electromagnetic   wavelengths.   Because   of   the  roughness,   different   facets   are   oriented   towards   different   directions.   Incident   rays   reflect   off   the   facets,   each   facet  producing   a  mirror   like   reflection,   which   forwards   the   reflected   rays   towards   a   direction   determined   by   the   facet’s  normal   vector   and   the   incident   ray   direction.   In   bi-­‐static   geometric   conditions,   the   receiver   only   collects   those   rays  reflected  off  facets  with  the  appropriate  tilt.  The  glistening  zone  is  then  defined  as  the  area  from  where  well-­‐oriented  facets  might  exist  above  a  probability   threshold.  The  glistening  zone  corresponds  to  the  deterioration  of   the  specular  image.   Note   that   surface   coordinates   away   from   the   nominal   specular   point   require   higher   slopes   of   the   facet   to  forward   the   signal   towards   the   receiver.  Note   also   that   the   rougher   the   surface   the  higher   the  probability   of   largely  tilted   facets,   meaning   higher   probability   of   well-­‐oriented   facets   at   coordinates   far   away   from   the   nominal   specular  point.  Therefore,  the  rougher  the  surface  the  largest  the  resulting  glistening  zone.  

Page 8: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 8  of  88  

 

Figure  1.1b:  Example  of  delay  and  Doppler  values  across  the  reflecting  surface  given  in  the  form  of  iso-­‐value  lines,  for  a  receiver  at  10  km  altitude  and  reflection  geometry  at  30  degrees  elevation  angle.  Red  iso-­‐delay  lines  spaced  ~1  

microseconds  (GPS  C/A  code  chip).  Black  for  iso-­‐Doppler  lines  at  100  Hz  spacing.  Green  for  reflection  iso-­‐power  lines  at  -­‐3dB  and  -­‐10dB  from  peak  power  (glistening  zone).  From  [Cardellach  2002].  

The  total  optical  path  traveled  by  the  signals  reflected  at  surface  points  away  from  the  specular  point  are  longer  than  the  path   traveled  by   the   specular  one,   the   farther  away   from   the   specular   reflection   the   longer   the   reflected  optical  path.   Therefore,   large   glistening   zones   (rough   conditions)   result   in   longer   tails   in   the   reflected   echo.   Similarly,   the  Doppler  effects  differ  across  the  reflecting  surface,  resulting  in  spread  frequency  responses  as  the  reflection  occurs  over  large   glistening   zones   (rough   surface   conditions).   The   shape   and   power   distribution   of   the   echo   along   the   delay-­‐Doppler  domain  (called  waveform  and  delay-­‐Doppler  map)  is  thus  representative  of  the  reflecting  surface  conditions:  its  dielectric  properties  and   roughness   state.  These  are   the  primary  GNSS-­‐R  observables,   further  discussed   in  Section  3.1.  

Brief  descriptions  of  the  GNSS-­‐R  techniques  and  applications  are  given  in  Sections  5.1  to  5.12  of  this  document,  while  further  details  can  be  found  in,  e.g.,  Chapters  8  to  11  of  the  textbook  [Jin  et  al.,  2014].  

Page 9: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 9  of  88  

2 Constellations and Signals

2.1 Systems and Constellations The   E-­‐GEM   projects   aims   to   extract   geophysical   parameters   from   signals   of   the   Global   Navigation   Satellite   Systems  (GNSS)  reflected  off  the  Earth  surface.  The  navigation  systems  represent  a  source  of  freely  available  signals  covering  the  entire  Globe.  In  this  section  we  review  the  status  of  potential  sources  of  signals  for  the  purposes  of  E-­‐GEM.  

GNSS,   together   with   regional   navigation   satellite   systems,   consist   of   constellations   or   series   of   artificial   satellites  providing  highly  precise,  continuous,  all-­‐weather  and  near-­‐real-­‐time  microwave  L-­‐band  signals  designed  for  navigation,  that  is,  to  solve  the  time-­‐position  coordinates  of  a  device  near  the  Earth  surface,  capable  of  receiving  these  signals.  

The  North  American  Global  Positioning  System  (GPS)  is  one  of  the  most  widely  used  systems  of  this  sort.  It  was  designed  in   the  70ies,   and   implemented   through  different  phases   from  1973   to  1994,  when   it  became   fully  operational.   Since  then,  the  maintenance  of  the  system  and   its  modernization  has  permitted  to  gradually  upgrade  the  broadcast  signals  and   the   satellite   platforms.   Another   operational   constellation   is   the   Russian  GLONASS,   of   similar   characteristics   (but  slightly   different   signal   structure   and   discrimination   technique,   as   it   will   be   described   below).   These   operational  constellations  currently  contain  32  and  28  Medium  Earth  Orbiters  (MEO,  orbital  altitudes  ~20000  km),  respectively.  

Another   two  Global   systems   are   being   developed.   The   European  Galileo,   currently  with   2   prototypes   and   4   in-­‐orbit-­‐validation  satellites  orbiting  and   transmitting  navigation  signals,  and   the  Chinese  Beidou-­‐2/Compass.  The   latter   is   the  replacement  of  the  Chinese  regional  navigation  system  (Beidou-­‐1)  of  geostationary  satellites.  Both  new  global  systems  plan  to  achieve  complete  deployment  of  30  and  27  MEO  respectively  each  by  2020.  In  addition  Beidou-­‐2  will  keep  some  geostationary   and   geosynchronous   inclined   orbit   transmitters   for   regional   augmentation.   Currently,   Beidou-­‐2   has   5  MEO  orbiting  and  transmitting,  and  several  geostationary  and  geosynchronous  ones.  

Other   augmentation   and   regional   navigation   systems   are   also   available   and   transmitting   signals   similar   to   those  transmitted   by   the   GNSS.   Generally,   standard   GNSS   receivers   are   capable   of   tracking   and   using   these   signals,  complementing  GNSS  constellations.  These  systems  tend  to  orbit  in  geostationary  and  geosynchronous  inclined  orbits.  The  regional  and  augmentation  systems  currently  actively  transmitting  signals  are  the  WAAS,  EGNOS,  IRNSS,  and  QZSS.  

System:   #MEO:   #GEO:   #IGSO:   Carrier  bands:   Multiple  Access:   Modulations:  

GPS   24  (30)   0   0   L1,  L2,  L5   CDMA   BPSK,  BOC  

GLONASS   24  (24)   0   0   L1,  L2,  L3,  L5   FDMA  and  CDMA   BPSK,  BOC  

GALILEO   30  (4  IOV)   0   0   E1,  E5,  E6   CDMA   BPSK,  BOC,  MBOC,  AltBOC  

BEIDOU-­‐2   27  (5)   5  (5)   3  (5)   B1,  B2,  B3,  L5   CDMA   QPSK,  BOC,  MBOC  

EGNOS   0   (6)   0        

WAAS   0   (5)   0        

Page 10: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 10  of  88  

IRNSS   0   7  (2)   0   L5,  S      

QZSS   0   0   4  (1)   L1,  L2,  L5   CDMA   BPSK,  BOC  

Table  2.1a:  Summary  of  GNSS  constellations.  Green  numbers  for  current  (April  2014)  values,  otherwise  nominal.  

2.2 Spatial Coverage The   constellations   described   above   cover   the   entire   Globe   in   an   attempt   to   provide   a   sufficiently   large   number   of  simultaneously  visible  transmitters  from  any  point  on  or  near  the  Earth.  At  mid  latitudes,  the  GPS  system  alone  typically  provides  9-­‐13  signals  from  different  transmitters.  It  is  easily  doubled  when  the  GLONASS  system  is  also  considered.  

For   reflectometry   applications   the   receiver   is   supposed   to  be   above   the   Earth   surface.   Then,   each  one  of   the   visible  transmitters   can   potentially   be   captured   both   by   a   direct-­‐looking   antenna   (line-­‐of-­‐sight   signal)   and   by   an   antenna  looking   at   the   surface   (reflected   signal).   The   GPS+GLONASS   constellations,   as   in  March   2012,   were   large   enough   to  guarantee  30  to  40  simultaneous  reflection  points  from  a  receiver  orbiting  at  800  km  altitude,  as  pictured  in  Figure  2.2a  [Jin  et  al.,  2014].  The  corresponding  reflection  ground-­‐tracks  for  a  24-­‐hours  scenario  is  given  in  Figure  2.2b.  

 

Figure  2.2a:  Number  of  simultaneously  reflected  GPS+GLONASS  satellites  as  a  function  of  the  latitude-­‐coordinate  of  their  specular  point  on  the  Earth  surface,  as  computed  from  a  receiver  orbiting  at  800  km  altitude  and  72⁰  inclination  (GPS  and  GLONASS  constellation  as  in  March  18,  2012).  Statistic  of  24  hours.  Black  for  all  reflected  signals,  red,  green  

and  blue  after  applying  an  elevation  cut-­‐off  at  30⁰,  45⁰  and  60⁰  respectively.  Figure  from  [Jin  et  al.,  2014]  with  permission  of  the  author.  

 

Page 11: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 11  of  88  

 

Figure  2.2b:  Location  of  the  GPS+GLONASS  reflections'  specular  points  assuming  a  reflectometry  receiver  orbiting  at  800  km  altitude  and  72  deg.  inclination  (GPS  and  GLONASS  constellations  as  in  March  18,  2012).  Figure  extracted  

from  [Jin  et  al.,  2014]  with  permission  of  the  author.  

2.3 GNSS Signals

2.3.1 Definition

The  definitions  of  the  specific  terms  used  in  this  document  are  listed  below:  

[RF]   Carrier:   The   RF   carrier   (also   referred   to   as,   simply,   carrier)   is   the   unmodulated   centre   frequency   of   a   given  frequency  band  (see  Frequency  Band).  A  carrier  component  is  denoted  as  “X  carrier”,  where  X  can  be  L1,  L2,  or  L5,  for  GPS,  or  E1,  E6,  E5,  E5a,  or  E5b,  for  Galileo.  

Band:  A  band  (also  known  as  frequency  band  or  frequency  channel)   is  the  transmission  band  covered  by  a  navigation  signal  (see  Navigation  Signal)  including  all  its  components  (see  Channel).  A  band  is  denoted  as  “X  band”  (where  X  can  be  L1,  L2,  or  L5,  for  GPS,  or  E1,  E6,  E5,  E5a,  or  E5b,  for  Galileo).  

Carrier   Component:   A   carrier   component   is   the   in-­‐phase   or   quadrature   modulation   of   a   navigation   signal   (see  Navigation  Signal).  

[Navigation]   Signal:   A   navigation   signal   (also   referred   to   as,   simply,   signal)   is   a   nominally  modulated   carrier   (see   RF  Carrier).  A  navigation   signal  may  have   several   signal   components,   or   channels   (see  Channel).  A  navigation   signal   X   is  denoted   as   “X  navigation   signal”   or   “X   signal”   (where  X   can  be   L1,   L2,   or   L5,   for  GPS,   or   E1,   E6,   E5,   E5a,   or   E5b,   for  Galileo).  

Channel:  A  channel  (also  referred  to  as  navigation  signal  component  or  just  signal  component)  is  one  of  the  spreading  sequences  modulated  onto  one  common  carrier  (see  RF  Carrier).  Each  channel  has  its  own  spreading  code  and  can  carry  its  own  data  modulation.  A  channel   carrying  data  modulation  can  be  denoted  as  data  channel.  Channels   that  do  not  contain   data  modulation   can   be   denoted   as   pilot   channels.   A   channel   is   denoted   as   “X-­‐Y   channel”,   “X-­‐Y   [navigation]  signal  component”,  or  “X-­‐Y  [signal]  component”,  where  X  can  be  L1,  L2,  or  L5,   for  GPS,  or  E1,  E6,  E5,  E5a,  or  E5b,   for  

Page 12: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 12  of  88  

Galileo,   and   Y   can  be  one  of   I,  Q,  A,   B,   C,   C/A,   P,   Y,   L,  M,   etc.   The   I,  Q  notation   is   usually   applied   if   only   two   signal  components  are  multiplexed  onto  one  carrier.  The  A,  B,  and  C  notation  is  usually  applied  for  Galileo  signals  with  three  signal   components  multiplexed  onto  one   carrier.   C/A   is   usually   applied   for   the   coarse   acquisition   component  of  GPS  signals.  

2.3.2 Signals Description

There  are  (or  will  be  in  the  future)  several  GNSS  systems  (GPS,  Galileo,  Glonass,  Beidou)  transmitting  signals  in  several  frequency  (GNSS  bands).  Here  we  will  focus  on  the  signals  broadcasted  by  GPS  and  Galileo  systems.  The  GPS  and  Galileo  systems   transmit   (or  will   transmit   in   the   future)   navigation   signals   over   several   bands,   as   illustrated   in   the   following  figure.  The  modernized  GPS  shall  transmit  signals  over  the  L1,  L2  and  L5  bands,  while  the  Galileo  system  shall  use  the  E1,  E6,  and  E5  bands.  

All   GPS   and   Galileo   signals   are   Code   Division   Multiple   Access   (CDMA)   spread   spectrum   signals   resulting   from   the  modulation   of   an   RF   carrier   with   a   Pseudo-­‐Random   Noise   (PRN)   sequence   (different   for   each   satellite),   a   data   bit  stream,  and,  in  some  cases,  a  sub-­‐carrier  and/or  a  secondary  code.  

The  following  subsections  will  describe  the  GPS  and  Galileo  channels.  

 

Figure  2.3a:  Spectra  of  the  GNSS,  including  GPS,  Galileo,  Glonass  and  intended  Beidou-­‐2/Compass  (Figure  extracted  from  Navipedia)  

Page 13: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 13  of  88  

2.3.2.1 GPS  L1  C/A  Channel  

The  GPS  L1  signal  Navstar  GPS  Space  Segment  /  Navigation  User   Interfaces   includes  two  components:  the  L1  C/A  (for  Coarse   Acquisition)   and   the   L1   P(Y)   (for   Precise   positioning)   each   with   2/3   and   1/3   of   the   total   transmitted   power,  respectively.  The  L1  P(Y)  has  a  7  day  period  and  will  not  be  supported  by  SARGO,  hence  it  will  not  be  further  addressed  in  this  discussion.  

The  L1  C/A  component  is  BPSK(1)  modulated  by  the  C/A  code  and  navigation  data.  The  C/A  code  is  a  LFSR  based  code  with   a   length   of   1023   chips,   yielding   a   chip   rate   of   1.023Mcps   and   a   code   period   of   1ms.   The   reference   bandwidth  defined  in  Navstar  GPS  Space  Segment  /  Navigation  User  Interfaces  is  20*1.023MHz  (to  take  the  P(Y)  component  into  account).  The  C/A  code  is  modulated  with  the  NAV  navigation  message  at  a  rate  of  50bps  (with  no  encoding).  

2.3.2.2 GPS  L2  C  (CM+CL)  Channel  

The   signal   transmitted   in   the   GPS   L2   band   shall   include   Navstar   GPS   Space   Segment   /   Navigation   User   Interfaces  (according  to  the  modernization  plan  for  GPS,  scheduled  for  2013)  three  components:  a  Civil  component,  C,  the  current  Precision  component,  P(Y),  and  a  Military  component,  M.  The  P(Y)  component,  similar  to  the  L1  P(Y)  component,  will  not   supported   by   SARGO.   The  M   component   is   for   military   use   only   and,   thus,   also   falls   outside   the   scope   of   this  analysis.  The  L2  C  component  is  BPSK  modulated  with  the  result  from  the  time  multiplexing  of  two  codes:  the  CM  (M  for  “moderate”  length)  and  CL  (L  for  “long”).  Each  of  these  codes  has  a  0.5115Mcps  rate  and  for  each  chip,  the  combined  C  code  has  the  CM  value  in  the  first  half  of  the  chip  and  the  CL  value  in  the  second  half  of  the  chip,  leading  to  an  overall  chip  rate  of  1.023Mcps.  The  reference  bandwidth,  defined  in  Navstar  GPS  Space  Segment  /  Navigation  User  Interfaces,  is  20*1.023MHz  (to  take  the  P(Y)  component  into  account).  The  CM  and  CL  codes  are  LFSR  based  and  have  lengths  of  10230  and  767250,  respectively.  Both  are  generated  with  a  27-­‐stage  LFSR  which  is  reset  after  the  last  chip  is  generated  and  whose  initial  state  depends  on  the  PRN  number  of  the  code  to  be  generated.  The  CM  code  is  further  modulated  by  a  50sps  train  resulting  from  the  ½  rate  convolutional  encoding  of  a  25bps  navigation  data  bit  train  containing  the  CNAV  navigation  message.  The  power  of  the  CM  and  CL  components  is  the  same.  

2.3.2.3 GPS  L5  I  and  Q  Channels  

The  GPS  L5  signal  Navstar  GPS  Space  Segment  /  User  Segment  L5   Interfaces   includes   two  components,   I  and  Q,  each  with   half   the   total   transmitted   power.   Both   are   BPSK(10)   modulated   (yielding   a   chip   rate   of   10.23Mcps)   and   their  spreading  sequences  consist  of  a  combination  of  a  primary  and  a  secondary  codes.  The  primary  codes  (LFSR  based)  have  a   length  of  10230  chips   (yielding  a  primary   code  period  of  1ms)  and   the   secondary   codes  have   lengths  of  10  and  20  chips,  for  the  I  and  Q  components,  respectively.  The  reference  bandwidth,  defined  in  Navstar  GPS  Space  Segment  /  User  Segment   L5   Interfaces,   is   approximately   24*1.023MHz.   The  Q   channel   is   a   pilot   channel   and   the   I   channel   is   a   data  channel,  being  also  modulated  by  a  100sps  train  resulting  from  the  ½  rate  convolutional  encoding  of  a  50bps  navigation  data  bit  train  containing  the  L5  CNAV  navigation  data.  

The  L5  signal  uses  a  QPSK  multiplexing  scheme,  where  the  I  and  Q  components  are  in  phase  quadrature.  

2.3.2.4 Galileo  E1  B  and  C  Channels  

The   Galileo   E1   signal   (Galileo   ICD,   Ávila-­‐Rodríguez,   et   al.   2007)   shall   include   three   components,   A,   B,   and   C,   among  which  are  distributed  44%,  22%,  and  22%  of  the  total  transmitted  power,  respectively  The  three  components  shall  be  combined  using  Interplex  multiplexing  scheme,  in  which  the  A  component  is  modulated  onto  the  signal's  real  part  and  the  B  and  C  components  are  modulated  onto  its  imaginary  part.  The  A  channel  is  not  an  OS  channel,  thus  being  out  of  the   scope   of   this   analysis.   Both   B   and   C   components   shall   be   CBOC(6,1,1/11)   modulated   (yielding   a   chip   rate   of  

Page 14: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 14  of  88  

1.023Mchip/s  and   subcarrier   rates  of  1.023Mslot/s  and  6.138Mslot/s  with  10/11  of   the  power  assigned   to   the   lower  frequency   sub-­‐carrier   component).   The   demodulation   of   the   B   and   C   channels   can   be   made   assuming   BOC(1,1)  modulation  at  the  expense  of  some  power  loss.  The  reference  bandwidth,  defined  in  Galileo  ICD,  is  24*1.023MHz.  The  B  and  C  primary   codes  are  both  memory  codes  of   length  4092,  a   chip   rate  of  1.023Mchip/s,   and  period  of  4ms.  The  B  channel  is  a  data  channel,  being  further  modulated  by  a  250sps  train  resulting  from  the  ½  rate  convolutional  encoding  of   a   125bps   navigation   data   bit   train   containing   the   I/NAV   navigation   data.   The   C   channel   is   a   pilot   channel,   being  further  modulated  by  a  25-­‐chip  secondary  code.  

2.3.2.5 Galileo  E5a  and  E5b  Sub-­‐Bands  

The  Galileo  E5  signal  (Galileo  ICD)  shall  use  AltBOC(15,10)  modulation/multiplexing.  The  E5  band  can  be  separated  into  two  sub-­‐bands,  E5a  and  E5b,  which  can  be  processed   independently.  One  possible  approach  [N.C.  Shivaramaiah,  A.G.  Dempster,   “An  Analysis   of  Galileo   E5   Signal   Acquisition   Strategies”,   ENC  GNSS   2008,   Toulouse,   France,   April   2008]   is  called  Single  Side-­‐Band  (SSB)  processing  and  results   in  two  “equivalent”  sub  bands  with  BPSK(10)  modulation.  Each  of  the  E5a  and  E5b  sub-­‐bands  has  two  components,  I  (data)  and  Q  (pilot),  each  of  the  components  having  21%  of  the  total  transmitted  power  in  the  E5  band.  Given  that  the  Galileo  E5a  sub-­‐band  and  the  GPS  L5  band  share  the  same  RF  carrier,  the  E5a  and  E5b  signals  were  deliberately  designed  as   to  maximize  compatibility  with   the  GPS  L5  signals   (in   terms  of  modulation  and  signal   structure,  with  a  data  channel   in   the   I   component  and  a  pilot  channel   in   the  Q  component,   in  quadrature  phase).  In  fact,  if  SSB  is  used,  the  E5a  or  E5b  sub-­‐signals  have  a  structure  and  modulation  identical  to  those  of  the  GPS  L5  signal:  10230-­‐chip  length  LFSR-­‐based  primary  codes,  BPSK(10)  modulation,  and  secondary  codes  in  both  data   (I)   and   pilot   (Q)   components.   The   differences   are   in   the   secondary   code   lengths:   100   for   the   pilot   components  (both  E5a-­‐Q  and  E5b-­‐Q),  20  for  the  E5a-­‐I  component,  and  4  for  the  E5b-­‐I  component.  The  reference  bandwidth,  defined  in  (Galileo  ICD),  is  20*1.023MHz.  

The  E5a  (E5b)  data  channel,  shall  be  further  modulated  by  a  50sps  (250sps)  train  resulting  from  the  ½  rate  convolutional  encoding  of  a  25bps  (125bps)  navigation  data  bit  train  containing  the  F/NAV  (I/NAV)  navigation  data.  

2.3.2.6 Other  Sources  of  Opportunity  

The   interferometric   approach   suggested   in   [Martin-­‐Neira,   et   al.,   2011],   explained   in   Section   4,   permits   to   obtain  reflectometry  signals   independently  of  the  knowledge  of  their  modulations.  Given  that  the  technique  cross-­‐correlates  the   signals   received  along   the   line-­‐of-­‐sight   against   those  along   the   reflection  path,   it   is   suitable   to  be  applied   to  any  other  source  of  microwave  signals.  

A  few  studies  have  been  conducted  to  investigate  the  potential  of  the  reflectometry  using  other  (non-­‐GNSS)  signals.  In  particular,   to   use   the   large   amount   of   communications   and   digital   broadcasting   satellites.   Reflectomety   using   these  signals  can  potentially  provide  a  wide  range  of  applications,  especially  when  using  the   interferometric   technique   (see  Chaper  4)  as  it  poses  few  requirements  to  the  transmitted  signals.  First,  the  use  of  different  frequency  bands  enables  us  to   improve  delay  estimates   from  a  space-­‐borne  platform  due  to   the  reduced  effect  of   the   ionosphere  on  the  signals.  While  at  L-­‐band  (GNSS)  the  ionospheric  delay  is  roughly  200  cm,  at  X-­‐band,  it  reduces  to  about  4  cm  [Laxon  and  Roca,  2002].  In  scatterometric  applications,  the  combination  of  measurements  at  different  bands  provides  various  roughness  metrics,   thus   improving  wind  estimation  over  the  ocean  and  allowing  us  to  separate   its  effects   from  other  roughness  parameters   (e.g.,   wave   age).   Technological   aspects   such   as   antenna   size   and   transmitted   power   need   to   be   also  considered.  The  power  of  GNSS  signals  is  relatively  weak,  compared  to  broadcast  TV  or  radio  signals.  The  combination  between  the  higher  power  of  these  transmissions  and  their  higher  frequency  allows  to  improve  the  signal-­‐to-­‐noise  ratio  (SNR)  with  the  same  antenna  size  or  to  use  smaller  receiver  antennas  without  reducing  the  SNR.  This  can  be  of  great  importance   for   space-­‐borne   instruments,   where   size   and   mass   restrictions   are   important.   Studies   to   evaluate   the  

Page 15: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 15  of  88  

suitability   of   this   concept   at   higher   frequency   bands   have   been   carried   out   by   different   authors   in   very   basic   or  preliminary  phases:  

• [Torres  and   Lawrence,  2008]  prepared  a   simple   setup  at  Ku-­‐band   (12  GHz)   to  measure   the   intensity  of   reflected  direct  broadcast  satellite  (DBS)  signals.  

• [Shah,   Garrison,   Grant,   2012]   used   broadcast   S-­‐band   (2.3   GHz)   radio   signals   from   geostationary   satellites   to  perform  a  set  of  experiments  using  the  interferometric  technique.  The  instrument  was  a  double  down-­‐conversion  chains  and  recorder  system,  with  post-­‐processing  interferometric  technique  (software  receiver).  

• [Ribó   et   al.,   2014]   presented   the   first   real-­‐time   DBS-­‐reflectometry   hardware   receiver,   using   the   interferometric  technique.   The   group-­‐delay   altimetry   precision   of   the  Ocean   reflected   signals,   obtained   from   a   ~105  meter   cliff  experiment,  was  ~7  cm  in  10  seconds  integration  using  X-­‐band  ASTRA  DBS  signals.  

Page 16: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 16  of  88  

3 GNSS-R Observables and Modelling

3.1 Basic GNSS-R Observables We   define   the   observables   as   measurable   objects   (correlation   counts,   voltages,   power...)   from   which   geo-­‐physical  information   can   be   derived.  Different   receiving   instruments   produce   different   types   of   observables,   but  most   of   the  dedicated   GNSS-­‐R   receivers   are   able   to   provide   the   returned   pulse   as   a   funcion   of   its   delay   and   delay-­‐Doppler  parameters.  These  parameters  were  described   in  Section  1.1.  These  basic  observables  are  called  delay-­‐waveform  and  delay-­‐Doppler  maps   respectively.  Sometimes   the   instruments  yield  power  waveforms  only,  and  some  others   their   in-­‐phase  and  quadrature  (I/Q)  components  (thus  providing  phase  information  of  the  received  field).  We  consider  here  the  delay  and  delay-­‐Doppler  waveforms  as  the  primary  observables,  from  where  the  rest  of  them  can  be  defined.  

The  power  waveforms  are  modelled  using  the  bi-­‐static   radar  equation.  The  main  reference   for  GNSS-­‐R  bi-­‐static   radar  equation   was   given   in   [Zavorotny   and   Voronovich,   2000],   publication   in   where   the   equation   was   comprehensively  deduced.  That  derivation  in  [Zavorotny  and  Voronovich,  2000]  considered  Gaussian  surface  statistics  and  assumed  the  Kirchhoff  geometrical  optics  scattering  approach  (KGO),  which  essentially  is  to  assume  the  electromagnetic  propagation  as  “rays”  and  each  contribution  to  the  scattering  as  locally  specular.  This  and  other  scattering  model  approximations  will  be  briefly  discussed  in  Section  3.2.  

 

Figure  3.1a:  Generation  of  a  couple  of  frequency-­‐slices  of  a  DDM.  Contribution  to  each  frequency-­‐slice  comes  from  a  Doppler  belt  (red  lines).    Contributions  to  the  delay-­‐map  (from  white  iso-­‐delay  zones)  are  indicated  by  the  black  

arrows.  Figure  from  [Cardellach  et  al.,  2011].  

 

The  formulation  of  the  [Zavorotny  and  Voronovich,  2000]  presented  below  follows  [Cardellach,  2002]:  

 [Eq  3.1a]  

where  PT  ,  GT  ,  and  GR  are  the  transmitted  power,  transmitter’s  antenna  gain,  and  receiver’s  antenna  gain  respectively;  λ  is  the  electromagnetic  wavelength;  τi  the  integration  time;  r'  any  point  on  the  surface  where  to  integrate  the  functions;  

Page 17: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 17  of  88  

τ   the  delay  at  which   the  correlation   function   is  being  evaluated;  and   fc   the  central   correlation   frequency;  R(a,  b)   the  distance  between  points  a  and  b;  τ  (r')  is  the  delay  of  the  ray-­‐path  from  the  transmitter  to  the  surface  point  r'  and  from  there  to  the  receiver;  and  fD(r')  its  Doppler  frequency;  σ

0  is  the  bi-­‐static  scattering  coefficient,  defined  as  the  fraction  of  incident  power  that  can  be  scattered  into  certain  direction  and  polarization  state  pq,  normalized  by  the  incident  power  density  and  area.  Note  that  other  sources  of  power  attenuation  or  loss  might  also  be  introduced,  such  as  atmospheric  attenuation;   cabling/instrumental   loss;   quantification   (number   of   bit   sampling)   loss...   All   these   factors   would   simply  multiply  the  right-­‐hand  side  of  the  Equation.  

The  bi-­‐static  scattering  coefficient  for  KGO  is  [e.g.  Ulaby  et  al.,  1982]  

 

 

[Eq  3.1b]  

where   k   is   the   electromagnetic   wavenumber;   Rpq   the   scattering   coefficients;   and   PDF(Zx   ,   Zy)   is   the   2-­‐D   Probability  Density  Function  of  the  surface  slopes  Z  (along  the  x-­‐direction  Zx,  and  y-­‐direction  Zy).  Note  that  in  GNSS-­‐R  system,  the  incident  polarization  is  Right-­‐Hand  Circular,  typically  switching  to  Left-­‐Hand  Circular  after  reflection  (except  around  and  below   the   Brewster   angle).   The   Fresnel   scattering   coefficients   corresponding   to   circular   polarization   are   a   linear  combination  of  the  linear  ones:  RRL=1/2(Rparallel-­‐Rperp)  and  RRR=1/2(Rparallel+Rperp).  These  coefficients  are  a  function  of  the  dielectric   properties   of   the   surface.   Different   types   of   surface   (salty   ocean,   dry   soil,   wet   soil,...)   have   different  permettivities,   and   thus   different   values   of   the   scattering   parameters.   The   permittivity   of   different   Earth   surface  materials   can   be   found   in   e.g.   [Ulaby   et   al.,   1982,   1986].   [Blanch   and   Aguasca,   2004]   and   [Vall-­‐llosera   et   al.,   2005]  present  updated  models  for  the  sea  water  permittivity.  Permittivity  models  of  the  sea-­‐ice  can  be  found  in  e.g.  [Carsey,  1992;  Winebrenner  et  al.,  1989].  

The  modelling  of  the  surface  roughness  is  also  embedded  in  σ0  through  the  sea  surface  slopes'  PDF.  This  function  can  be  extracted  from  spectral  representations  of  the  waves  (ocean  wave  spectrum),  such  as  e.g  [Apel,  1994;    Elfouhaily  et  al.,  1997]   among  others.   In   particular,   it   is   possible   to   obtain   the   statistics   of   the   surface   slopes   (e.g.   the  mean   squared  slopes,  MSS).   The   slopes'   distribution   can   then  be   assumed   as  Gaussian,   bivariate   normal   distributed,   or   introducing  non-­‐Gaussian  features  by  means  of  Gram-­‐Charlier  distributions  [Cox  and  Munk,  1954].  

The  expression  of  σ0    given  above  corresponds  to  the  KGO  model  (see  Section  3.2).  However,  it  is  possible  to  extend  the  bi-­‐static   radar   equation   to   other   electromagnetic   scattering   models   by   replacing   σ0in   Equation   [Eq   3.1a]   by   its  corresponding  expression.  

As  explained  before,  the  transmitted  fields  are  modulated  by  a  set  of  phase-­‐shifts,  and  the  receiving  process  requires  the  cross-­‐correlation  against  template  replicas  of  the  code  modulations,  at  different  delays  τ  and  frequencies  f  (matched  filter   technique).   As   it  will   be   explained   in   Section   4,   these   templates   can   either   be  well-­‐known   replicas   of   the   code  modulations,  or  other  branches  of  the  signals.  For  simplicity  we  here  assume  that  the  modulation  corresponds  to  a  BKPS  code   (such   as  GPS’   C/A,   L2C,   or   P),   trains   of   chips,   each   chip   being   τc   long.   The   autocorrelation   function   is   then   the  triangle  function,  Λ(δτ),  that  appeared  in  Equation  [Eq  3.1a].  

Page 18: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 18  of  88  

 

   

[Eq  3.1c]  

and  τi  is  the  integration  time.  

The  template,  r,  of  the  signal  is  mounted  on  a  carrier  or  intermediate  frequency  phasor:  r(t,  fc)  =  c(t)ei2πf

ct  ,  where  fc  is  

the   central   correlation   frequency,   or   frequency   at   which   the   scattered   signal   is   assumed   to   reach   the   receiver.   The  cross-­‐correlation   of   the   signal   against   this   template   acts   thus   as   a   frequency   filter   and   it   is   sensitive   to   residual  components  of  the  frequency.  This  is  given  by  the  sinc-­‐exponential  function  S,  as  it  appeared  in  Equation  [Eq  3.1a].  

 

   

[Eq  3.1d]  

The  product  S²  ×  Lambda²     is  also  called  the  Woodward  Ambiguity  Function  (WAF).  Note  that  the  physical  meaning  of  the  WAF  is  the  impulse  response  of  scattering  from  a  single  delay-­‐Doppler  cell  on  the  surface  (see  Section  1.1,  Figure  1.1b).  

Noise  and  speckle  aspects  of  the  GNSS-­‐R  observables  have  been  modelled  in  (e.g.    [Cardellach  et  al.,  2013;  Park  et  al.,  2012;   IEEC-­‐UPC,   2012;   IEEC-­‐UPC,   2013]);   while   modelling   some   of   the   terms   in   Equation   [Eq   3.1a]   require   good  knowledge  of   the   instrument  and  the  transmitted  signal,   respectively.  Modelled   instrument  topology  can  be  found   in  [e.g.  Camps  et  al.,  2010]  and  operations,  including  tracking/retracking  in  [e.g.  Park  et  al.,  2011;  Park  et  al.,  2013,  Martín-­‐Neira  et  al.,  2014].  Recent  papers  present  modeling  analysis  of  both   the  slow  time   (waveform  to  waveform)  and   fast  time  (sample  to  sample)  correlation  properties  of  GNSS  reflected  signals,  and  their  statistical  properties  [Martín  et  al.,  2014a,  2014b].  

3.2 Electromagnetic Scattering Models The   study   and  modelling   of   the   interaction   of   electromagnetic  waves  with   random   rough   surfaces   (such   as  most   of  Earth's  surfaces)  is  a  broad  topic,  vast  enough  to  fill  entire  books  [e.g.  Bass  and  Fuks,  1979;  Beckmann  and  Spizzichino,  1987],  or  complete  chapters  [e.g.  Ishimaru,  1978][Chap.21],  or  [e.g.  Ulaby  et  al.,  1982,  Chap.12],  or  [e.g.  Zhurbenko  Ed.  ,  2011,  Chap.10].  [Elfouhaily  and  Guérin,  2004]  listed  more  than  thirty  different  approaches  and  methods  that  have  been  reported  to  deal  with  electromagnetic  scattering  off  rough  surfaces.  That  reference  performs  an  exhaustive  review  of  several   aspects  of   them  all.   This   Section  aims   to  qualitatively  describe  a   set  of  different,  most  used,   approaches  and  approximations,  and  help  understanding  their  limitations.  Table  3.2  summarizes  them.  

In   the  Kirchhoff   or   Tangent   Plane  Approximation   (KA),   the   total   fields   (incident   plus   scattered)   at   any   point   on   the  surface   are   approximated   by   those   that   would   be   present   on   an   infinitely   extended   tangent   plane   at   the   surface  integration  point.  That  is,  each  contribution  to  the  scattering  is  considered  to  be  locally  specular  and  it  depends  only  on  the   Fresnel   reflection   coefficients   at   the   facet   plane   on   each   surface   point.   Note   that   this   approximation   is   a   local  approximation:   the   supposed   field   at   a   point   on   the   surface   does   not   depend   on   the   surface   elsewhere.   For   this  approximation  to  be  valid,  every  point  on  the  scattering  surface  should  present  a  large  radius  of  curvature  (compared  to  the  electromagnetic  wavelength).  

Page 19: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 19  of  88  

The  Kirchhoff  Geometrical  Optics   (KGO)   is  a   limit  of   the  Kirchhoff  approximation,  and  one  of   the  most   implemented  approaches  in  GNSS-­‐R  studies.  The  physical  meaning  of  the  assumptions  behind  this  limit  is  to  constraint  the  reflection  process   to   those  areas   in   the  surface   from  where   the   received  phase   is  nearly  constant.   It  also  corresponds   to   those  areas  in  where  the  surface  is  locally  oriented  such  that  its  local  normal  corresponds  to  the  bisector  angle  between  the  incidence  direction  and  the  direction  pointing  from  that  particular  surface  point  towards  the  receiver.  

The  KA   in  physical  optics  approximation   (KPO),  unlike   the  Geometrical  Optics  solution,  accounts   for  contributions  of  the   scattered   field   over   the   entire   rough   surface,   not   only   well-­‐oriented   facets.   However,   this   analysis   is   limited   to  surfaces  with  small  slopes.  

The  Small  Perturbation  Method  (SPM)  tries  to  find  a  solution  to  the  partial  differential  boundary  equation  by  expanding  the   field   in  a  perturbation  series  of   the  slopes  of   the  surface   [Rice   ,  1951,  1963].  The  SMP   is  a  good  model   for   small  slopes   statistics   (both   standard  deviation  of   the   sea   surface  height  and  correlation   length  below   the  electromagnetic  wavelength),  it  is  the  most  appropriate  for  Bragg  scattering  issues,  and  to  assess  polarimetric  performances.  

The  Two-­‐Scale  Composite  Model  (2SCM)  sums  the  contribution  of  the  large  scale  roughness  and  the  small  scale  effect  to  the  scattered  field.  While  the  large  scale  contribution  is  modeled  through  the  KGO,  the  small  roughness  contribution  is  the  SPM  solution  averaged  over  the  statistics  of  the  tilt  of  the  large  scale  sea  surface  characterization  [Bass  and  Fuks  ,  1979;   Valenzuela   ,   1978].   This   method   permits   to   account   for   scattering  mechanisms   such   as   diffraction   and   Bragg  resonance,  which  are  produced  by  small  scales  of  the  sea  surface  roughness  and  when  the  radius  of  curvature  is  smaller  than  the  electromagnetic  wavelength.  Given  that  most  of  the  Earth  reflecting  surfaces  present  a  continuous  roughness  spectra,  the  main  problem  of  the  2SCM  is  to  define  the  limit  between  large  and  small  scales  in  which  to  apply  KGO  and  SPM  respectively.  

The   Integral  Equation  Method   (IEM)   is  a  unifying   theory  suggested   in   late  1980’s   to  bridge   the  gap  between  KA  and  SPM,  and  thus  it  covers  all  roughness  scales  [Fung  and  Pan  ,  1986;  Fung,  Li,  and  Chen  ,  1992;  Fung,  1994].  The  integral  equations  of  the  electromagnetic  fields  are  solved  iteratively  from  the  charges  and  electric  currents  on  the  sea  surface.  In   the   first   iteration  only   the   induced   currents   are   used   (Kirchhoff   approximation).   The   second   iteration   in   the   small  slope  statistics   leads  to   the  SPM.  The   IEM   is  computationally  expensive,  but  quite  accurate,   reason  why   it   is  specially  useful  to  serve  as  reference  to  compare  with  the  previous  models.  

The   Small   Slope   Approximation   (SSA)   was   also   suggested   in   mid   1980’s   to   unify   KA   and   SPM   [Voronovich   ,   1985,  1994a,b].  The  SSA  is  applicable   irrespective  of  the  wavelength  of  radiation,  provided  that  the  slopes  of  the  roughness  are   small   compared   to   the  angles  of   incidence  and   scattering.   [Zavorotny  and  Voronovich,  1999]   reported   significant  differences  between  KGO  and  SSA  models  of  normalized  bi-­‐static  cross-­‐section  at  GPS  L1   frequency,  especially  at  off-­‐specular  angles  of  the  co-­‐polar  component  of  the  scattering.  

Method:  Bibliography:   Limitations:  

KA   [Ulaby  et  al.,  1982;  

Beckmann  and  Spizzichino,  1987;  

Treuhaft  et  al.,  2011]  

• surface  correlation  length  larger  than  the  electromagnetic  wavelength,  and  

• surface  mean  radius  of  curvature  larger  than  the  electromagnetic  wavelength  

 

Page 20: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 20  of  88  

KGO   [Ulaby  et  al.,  1982]   • large  standard  deviation  of  the  surface  height  compared  to  the  electromagnetic  wavelength  (high-­‐frequency  limit)  

 

KPO   [Ulaby  et  al.,  1982]   • small  vertical  -­‐scale  roughness  and  

• small  slope  statistics  

 

SPM   [Rice  ,  1951,  1963]   • Standard  deviation  of  the  sea  surface  heigh  smaller  than  electromagnetic  wavelength,  and  

• surface  correlation  length  smaller  than  electromagnetic  wavelength  

 

2SCM   [Bass  and  Fuks  ,  1979;  

Valenzuela  ,  1978]  

• Difficulty  to  define  the  limit  between  large  and  small  scales  

 

IEM   [Fung  and  Pan  ,  1986;  

Fung,  Li,  and  Chen  ,  1992;  

Fung,  1994]  

• Computationally  expensive  

 

SSA   [Voronovich  ,  1985,  1994a,b]  

• Slopes  of  the  roughness  small  compared  to  the  incidence  and  scattering  angles  

 

Table  3.2:  Summary  of  the  limitations  and  applicability  of  different  scattering  models  and  some  bibliographical  sources.  

Page 21: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 21  of  88  

4 Receiver-level Data Acquisit ion In  this  Section  we  compile  information  on  different  data  acquisition  techniques  at  the  receiver  level.  Those  have  direct  impact  on  the  system  design.  

cGNSS-­‐R:   CLEAN-­‐REPLICA   or   CONVENTIONAL:   The   conventional   approach,   consisting   of   the   cross-­‐correlation   of   the  received  reflected  signal  against  clean  models   (also  called  replicas)  of   the  signal.  These  replicas  must  compensate   for  Doppler   and   delay   effects,   and   they   must   reproduce   the   codes   that   modulate   the   GNSS   signals.   GNSS   signals   are  modulated   by   multiple   codes,   at   different   time-­‐resolution.   Unfortunately,   the   civil   available   ones   have   coarse  resolution,  of  the  order  of  one  microsecond,  or  equivalently,  300  meters  range  in  its  effective  pulse.  This  approach  is  the  one  used  in  all  the  GNSS-­‐R  experiments  until  2010,  and  most  of  the  campaigns  between  2010  and  2013.   It   is  also  the  receiver  signal-­‐processing  approach  to  be  implemented  at  the  NASA  recently  approved  CYGNSS  Mission.  

This  technique  has  been  quite  limiting  in  the  past,  but  it  could  be  promising  in  the  future,  when  precise  public  codes  will  be  widely   available   (Galileo   E5,   GPS   L5).   However,   to   be   able   to   perform   certain   applications   at   high   precision   (e.g.  altimetry),  these  public  precise  codes  would  be  needed  at  two  frequencies  for  ionospheric  corrections.  Until  this  does  not  happen,  cGNSS-­‐R  will  have  limited  performance  for  altimetric  applications.  

iGNSS-­‐R:   INTERFEROMETRIC   or   PARIS:   The   second   approach   is   called   interferometric,   because   it   does   not   require  modelling/replicas  of  the  codes,  but  the  reflected  signals  are  cross-­‐correlated  against  the  signals  received  through  the  line-­‐of-­‐sight   radio-­‐link   (direct   propagation   from   the   transmitter   to   the   receiver   without   any   reflection   off   the   Earth  surface).  This  approach  requires  higher  antenna  gains  to  compensate  for  extra  noise,  but  it  has  the  advantage  that  all  the  bandwidth  of  the  transmitted  signals  can  be  captured  (i.e.  all  the  codes  are  implicitly  available,  even  the  encrypted  ones).  The  resulting  waveform,  equivalent  to  the  pulse  or  echo  in  general  radar  altimeter  context,  has  improved  time-­‐resolution   by   an   order   of   magnitude   (waveform   width   reduction   in   the   time-­‐domain).   Consortium   members   have  designed  and  manufactured  the  only  existing  HW  GNSS-­‐R  interferometric  receiver,  and  three  experimental  campaigns  have  been  conducted,  a  ground-­‐based  and   two  air-­‐borne  experiments,   in   the   frame  of  European  Space  Agency   (ESA)  contracts.  

The  term  “interferometric”  can  be  confusing,  since  some  post-­‐processing  techniques  applied  to  standard  data  obtained  through   the   CLEAN-­‐REPLICA   approach   can  make   use   of   interferometric   fringes   between   direct   and   reflected   signals.  These   latter   techniques   will   be   called   multipath-­‐reflectometry   (GNSS-­‐MR)   or   Interference   Patter   Technique   (IPT)  hereafter   to   distinguish   to   the   PARIS   or   INTERFEROMETRIC   receiver-­‐level   processing   approach.   The   GNSS-­‐MR/IPT  techniques  will  be  reported  in  Section  5,  together  with  other  retrieval  algorithms.  

PARTIAL  INTERFEROMETRIC:  A  variation  of  the  iGNSS-­‐R  was  suggested  in  [Li  et  al.,  2013].  The  principle  of  this  approach  is   to  use  the  well-­‐known  codes  to  enhance  the   interferometric  processing,   in  such  a  way  that  at   last  only   the  precise  codes  contribute  to  the  waveform.  

Page 22: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 22  of  88  

 

Figure  4a:  Normalized  waveforms  from  measured  data  acquired  over  the  Baltic  Sea  at  ~3  km  altitude  using  two  receivers  simultaneously.  (Left)  data  from  a  cGNSS-­‐R  receiver  working  with  C/A  code  (GOLD-­‐RTR),  and  (right)  data  

from  a  iGNSS-­‐R  receiver  for  a  satellite  transmitting  C/A+P(Y)+M  codes  (PIR/A).  Coherent  integration  time  of  1  ms  and  incoherent  integration  time  of  Tin  =  10  s  have  been  used  in  these  examples.  Here,  the  zero  delay  is  set  ad  hoc  at  the  

peak  power,  and  the  delay  axis  τ  is  given  in  units  of  length  (in  meters).  From  [Cardellach  et  al.,  2013].  

rGNSS-­‐R:   RECONSTRUCTED-­‐CODE:   we   will   call   rGNSS-­‐R   the   acquisition   approaches   that   make   use   of   semi-­‐codeless  techniques  to  deal  with  the  encrypted  codes  [Woo,  1999].  These  techniques  were  designed  and  are  typically  applied  to  navigation   applications,   that   is,   onto   the   line-­‐of-­‐sight   signal,   to   partially   solve   for   the   encrypted   codes.   We   will  distinguish  between  (a)  semi-­‐codeless  applied  to  the  reflected  signals,  and  (b)  semi-­‐codeless  applied  to  direct  signals  to  use  the  resulting  information  for  modelling  the  reflected  signals:  

SEMI-­‐CODELESS  ON  REFLECTED  SIGNALS  (rGNSS-­‐Ra):  In  this  approach  the  receiver  applies  the  semi-­‐codeless  techniques  directly  to  the  reflected  signals,  although  the  reflection-­‐channels  act  as  slave  of  the  line-­‐of-­‐sight,  master,  channels.  This  is  the  approach  behind  E-­‐GEM's  space-­‐borne  system–PYCARO  receiver  [Carreño-­‐Luengo  et  al.,  2013].  

SEMI-­‐CODELESS   ENCRYPTED   CODES   FROM   DIRECT   SIGNALS   (rGNSS-­‐Rb):   This   approach   consists   of   capturing   direct  signals  with  a  high  gain  antenna  to  identify  the  code  chip  transitions  and  thus  recover  a  significant  part  of  it.  This  is  done  by   means   of   semi-­‐codeless   techniques.   Once   the   semi-­‐codeless   algorithm   has   been   applied   to   the   direct   signals,   a  reconstructed-­‐code   replica   is  modelled   and   cross-­‐correlated   against   the   reflected   signal.   The   signal   processing   chain  applied   to   the   line-­‐of-­‐sight   signals   is   thus   different   from   the   one   applied   to   the   reflected   signals.   This   is   the   main  difference   between   this   rGNSS-­‐Rb   technique   and   the   rGNSS-­‐Ra   above.   In   rGNSS-­‐Ra   both   line-­‐of-­‐sight   and   reflected  signals  go  through  the  same  processing  chain–except  for  the  master/slave  parameters.  

A   possible   disadvantage   of   the   iGNSS-­‐R   technique   is   its   higher   noise   figures,   introduced   by   the   fact   that   the   cross-­‐correlation   is  made  between   two   sequences  of   signals   rather   than   signal   against   clean-­‐replicas.  Coastal   and  airborne  experimental   work   has   been   done   to   check   the   performance   of   this   technique.   A   static   and   an   air-­‐borne   GNSS-­‐R  interferometric   receiver  was  successfully   tested   in  one  ground-­‐based  and   two  air-­‐borne  campaigns   [Rius  et  al.,  2011,  Cardellach  et   al.,   2013].   Some   studies  have  evaluated   the   improvement   in   altimetric   precision  between   the   cGNSS-­‐R  technique  using  publicly  available   codes  and   the  one  obtained  with   the   interferometric  approach.  Both  experimental  and  theoretical  studies  agree  that  the  improvement  is  at  least  a  factor  of  2  [D'Addio  and  Martín-­‐Neira,  2013,  Cardellach  et  al.,  2013,  Camps  et  al.,  2014].  

Page 23: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 23  of  88  

A   comparison   was   made   between   iGNSS-­‐R   and   rGNSS-­‐Rb   in   [Lowe   et   al,   2014].   The   results     shown   that   the   SNR  performances  were  better  for  the  rGNSS-­‐Rb  than  the  iGNSS-­‐R  approach.  Only  SNRs  were  evaluated,  while  the  altimetric  performance  was   neither   tested   nor   compared.   None   of   these   studies   have   analyzed   the   four   techniques   (cGNSS-­‐R,  iGNSS-­‐R,   rGNSS-­‐Ra,   rGNSS-­‐Rb)   using   data   from   the   same   data   recorder.   Neither   of   them   have   tackled   the   synoptic  capabilities  of  the  techniques  nor  their  sensitivity  to  the  electronic  beam-­‐forming  characteristics  of  the  system.  

 

Figure  4b:  Comparison  between  the  result  of  processing  the  same  raw  data  set  (10  seconds)  with  the  iGNSS-­‐R  approach  (black  lines)  and  the  rGNSS-­‐Rb  approach—only  PRN25  (red  line).  The  interferometric  one  is  noisier  and  the  waveform  embeds  all  the  transmitted  codes  (C/A+P(Y)  in  these  cases).  Waveforms  obtained  from  re-­‐processed  raw  

data  acquired  in  an  old  air-­‐borne  experiment  (Monte  Rey  2003).  Figure  from  [Lowe  et  al.,  2014].  

The  conclusions  of  this  topic  are:  

• New   data   acquisition   techniques   at   the   receiver-­‐level   are   being   suggested,   they   have   been   tested   during   a   few  experimental  field  campaigns  and  also  by  means  of  simulated  and  theoretical  analysis  

• In   general,   the   best   SNR   performance   (which   could   turn   into   best   altimetric   performance)   is   the   one   given   by  rGNSS-­‐R;   there   is   agreement   about   the   improvement   factor   between   the   altimetric   performance  of   the   iGNSS-­‐R  technique  with  respect  to  the  one  achieved  by  cGNSS-­‐R  (C/A  code):  it  is  at  least  a  factor  of  2  

• The   synoptic   capabilities   of   these  new   techniques,   and   their   dependences  on  beam-­‐forming   characteristics   have  not  been  explored  

• A  fair  inter-­‐comparison  between  the  three  techniques  with  data  from  the  same  front-­‐end  system  does  not  exist  yet  

Page 24: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 24  of  88  

E-­‐GEM  ground-­‐based  system  will  work  using   the  conventional  approach   (cGNSS-­‐R),  while   ³CAT-­‐2   (E-­‐GEM  space-­‐borne  system)  will  embark  a  semi-­‐codeless  receiver  (rGNSS-­‐R),  also  working  under  the  conventional  approach.  The  air-­‐borne  E-­‐GEM  system  will  provide  raw  data  (before  any  correlation)  to  permit  applying  any  of  the  the  above  techniques  to  the  same  set  of  data.  This  will  facilitate  inter-­‐technique  comparisons  and  better  understand  the  strengths  and  weaknesses  of  each  of  them.  

 

E-­‐GEM  systems  and  data  acquisition  at  receiver-­‐level  

E-­‐GEM  system:   Acquisition  Technique:  

GROUND-­‐BASED   cGNSS-­‐R  

AIR-­‐BORNE   ALL  possible  (RAW  DATA)  

SPACE-­‐BORNE   rGNSS-­‐Ra,  cGNSS-­‐R,  iGNSS-­‐R  (but  not  full  bandwidth)  

Table  4a:  Summary  of  the  E-­‐GEM  systems  regarding  their  data  acquisition  techniques.  

4.1 Existing GNSS-R Receivers The  table  below  compiles  a  summary  of  some  available  information  on  all  existing  GNSS-­‐R  receivers  to  our  knowledge.  This  information  has  been  shared  across  the  GNSS-­‐R  community  by  means  of  a  mailing  list  (latest  update  April  2014).  At  the  bottom   in   green,   the   systems  developed  or   to  be  developed   for   the   E-­‐GEM  project:   space-­‐borne,   air-­‐borne,   and  ground-­‐based.  First  iterations  on  each  of  these  systems  are  given  in  Sections  8,  7  and  6  respectively.  

ID:   HW/SW:  

Number    

of  RF  ports:  

FREQUENCY    

BANDS:  

BB    

BANDWIDTH    

(MHz):  

SAMPLING  

 RATE    

(MHz):  

OUTPUT    

RATE    

(Hz):  

RECEIVER    

TECHNIQUE:  

GNSS    

CONSTELLATIONS:  

GOLD-­‐RTR   HW   3   L1   8   20   1000   cGNSS-­‐R  

(C/A)  

GPS  

PIR/A   HW   3   L1   12   80   1000   iGNSS-­‐R   ANY  at  L1  

GORS-­‐1(2)   HW   2(4)   L1+L2         CGNSS-­‐R  

(C/A,  L2C)  

GPS,  Galileo  

TR   SW   2   L1+L2         RAW   GPS  

BJ   SW   4   L1+L2   18   20   20MHz   RAW   GPS  

Page 25: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 25  of  88  

TriG  (extended)  

HW   8  (16)   Any  4  within  

L-­‐band  

2  to  40  

configurable  

20/40   0.1-­‐1000  

ANY:  

SW  configurable  

GPS,  Glonass  FDMA,  

Galileo,  other  1-­‐2  GHz  

OceanPal/SAM   SW   2   L1   4   16.367   1000   RAW   GPS  

PAD   HW                

OpenGPS   HW   2   L1     5.7   <100   cGNSS-­‐R  (C/A)   GPS  

COMNAV   SW   1   L1     5.7     RAW   GPS  

NordNAV  

 R30(Quad)  

SW   1(4)   L1   2   16.4     RAW   GPS  

GRAS   HW   3   L1+L2   20   28.25   1000   cGNSS-­‐R  

(C/A,  

P-­‐semi-­‐codeless)  

GPS  

DMR   HW     L1+L2           GPS  

POLITO-­‐GNSS-­‐R  

SW   1   L1     8.1838     RAW   GPS  

SPIR   SW   16   L1   80   40   40MHz   RAW   ANY  at  L1  

Ublox  LEA-­‐4T   HW   1   L1   2   4     cGNSS-­‐R  (C/A)   GPS  

(gri)PAU   HW   (1)2   L1   2.2   (5.745)  16.384  

  cGNSS-­‐R  (C/A)   GPS  

SMIGOL   HW   1   L1   2.2   5.745   1   cGNSS-­‐R  (C/A)   GPS  

PYCARO¹   HW   2   L1+L2   20     20   cGNSS-­‐R  

(C/A),  

rGNSS-­‐R  

(P-­‐semi-­‐

GPS  

Page 26: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 26  of  88  

codeless)  

iGNSS-­‐R  

(not  full  bandwidth)  

SPIR-­‐UAV²   SW   8   L1   80   40   40MHz   RAW   ANY  at  L1  

GRIP-­‐SARGO³   HW   2   L1+L5,E1+E5  52   <=150   1   cGNSS-­‐R   GPS  and  Galileo  

¹  ²  ³  E-­‐GEM  systems  for  ¹space-­‐,  ²air-­‐borne,  and  ³ground-­‐based  systems  respectively  

Table  4.1a:  Summary  of  some  available  information  on  all  the  existing  GNSS-­‐R  instruments  (to  our  knowledge).  

Page 27: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 27  of  88  

5 Scientif ic Applications and Requirements This  section  reviews  the  scientific  and  civilian  applications  of  the  GNSS  reflectometry,  as  identified  and  referenced  in  the  literature,  together  with  the  link  to  their  users'  requirements.  In  terms  of  user  applications,  the  objectives  of  the  E-­‐GEM  project  are  [E-­‐GEM  Team,  2012]:  

• to  advance  towards  high-­‐precision  altimetry  with  GNSS-­‐R  techniques;  

• to  consolidate  sea  wave  height  and  surface  wind  speed  determination  with  GNSS-­‐R  techniques;  

• to  advance  the  capabilities  of  vegetation  and  cryosphere  monitoring  with  GNSS-­‐R  techniques.  

Most  of   the  applications  and  algorithms  have  been   confronted   to  experimental  work,   as   the  GNSS-­‐R   community  has  conducted  field  campaigns  since  the  90s  all  over  the  world:  more  than  250  air-­‐borne  experiments  have  been  conducted  from   ~100  metres   altitude   up   to   ~14   km;  more   than   20   ground-­‐based   campaigns,   recording   data   for  more   than   19  months,  from  surface  level  to  ~800  m  altitude;  and  even  a  few  stratospheric  flights.   In  addition,  there  have  been  two  examples   to   date  of  GNSS-­‐R  data   acquired   from   space-­‐borne   altitude:   (a)   in   2000,   for   the   first   time   from   space,   on-­‐board  the  Space  shuttle  SIR-­‐C,  at  a  relatively  low  altitude  of  about  200  km  [Lowe  et  al.,  2002b];  and  (b)  in  2004,  with  an  experimental   GNSS-­‐R   payload   on-­‐board   the   United   Kingdom   Disaster   Monitoring   Constellation   (UK-­‐DMC)   satellite,  operating   in  a  ~680  km  sun-­‐synchronous  orbit,  built  and   launched  by  Surrey  Satellite  Technology  Ltd   ([Gleason  et  al.,  2005,  Gleason,  2006]).  

This  extended  field  campaign  work  has  permitted  to  test  a  variety  of  GNSS-­‐R  applications,  such  as:  

• sea  surface  altimetry  using  group  delay  information  [e.g.  Martín-­‐Neira  et  al.,  2001,  Lowe  et  al.,  2002,  Ruffini  et  al.,  2004,  Rius  et  al.,  2010,  Rius  et  al.,  2011,  Carreño-­‐Luengo  et  al.,  2012,  Cardellach  et  al.,  2013],  

• sea  surface  altimetry  using  phase-­‐delay  information  [e.g.  Treuhaft  et  al.,  2001,  Martín-­‐Neira  et  al.,  2002,  Cardellach  et  al.,  2004,  Helm  et  al.,  2004,  Semmling  et  al.,  2012]  

• sea   surface   scatterometry   for  wind   or   surface   roughness   information   [e.g.     Armatys   2001,  Garrison   et   al.,   2002,  Germain  et  al.,  2004,  Komjathy  et  al.,  2004,  Gleason  et  al.,  2005,  Cardellach  and  Rius,  2008,  Clarizia  et  al.,  2009,  Valencia  et  al.,  2014,  Clarizia  et  al.,  2014],  

• hurricane  extreme  events  [e.g.  Katzberg  et  al.,  2001,  2006,  Katzberg  and  Dunion,  2009],  

• synergies  with  L-­‐band  radiometric  missions  [e.g.  Valencia  et  al.,  2011,  2011b],  

• sea-­‐ice  altimetry  and  characterization  [e.g.  Komjathy  et  al.,  2000,  Belmonte  et  al.,  2009,  Gleason  2010,  Semmling  et  al.,  2011,  Fabra  et  al.,  2011],  

• Antarctic  dry  snow  sub-­‐surface  structures  [Cardellach  et  al.,  2012],  

• soil  moisture  [e.g.  Rodríguez-­‐Alvarez  et  al.,  2009,  Alonso-­‐Arroyo  et  al.,  2013],  

• vegetation  [e.g.  Rodríguez-­‐Alvarez  et  al.,  2012],  or  

Page 28: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 28  of  88  

• a  number  of  local  (a  few  meters  coverage)  applications  from  geodetic  GNSS  stations,  such  as  tide  gauge  [e.g.  Larson  et  al.,  2013],  snow  depth  monitoring  [e.g.  Nievinski,  2013,  Nievinski  and  Larson,  2014a,  2014b],  soil  moisture  [e.g.  Larson  et  al.,  2010,  Zavorotny  et  al.,  2010]  and  vegetation  [e.g.  Small  et  al.,  2010].  

More  detailed  descriptions  of   these  applications  are  given   in  Sections  5.1   to  5.12.  Some  of   the  applications  might  be  restricted   to   some   of   the   systems.   The   limitations   might   be   originated   by   the   technique   itself,   or   by   the   particular  characteristic  of  the  receiving  system  (e.g.  polarimetric  capabilities  might  be  required  for  certain  applications).  The  table  below  indicates  the  capabilities  of  the  planned  E-­‐GEM  systems    to  address  different  applications.  More  detailed  tables  to  summarize  the  applicability  of  different  retrieval  algorithms  at  different  scenarios  can  be  found  at  the  end  of  each  application  Section:  5.1  to  5.12,  and  a  final  summary  table  is  given  in  Section  5.13.  

Application:   GROUND-­‐BASED   AIR-­‐BORNE   SPACE-­‐BORNE  

Ocean  altimetry   APPLICABLE   APPLICABLE   APPLICABLE  

Ocean  roughness/wind   APPLICABLE   APPLICABLE   APPLICABLE  

Ocean  permittivity   NOT  APPLICABLE   NOT  APPLICABLE   UNCERTAIN  

Soil  moisture   APPLICABLE   APPLICABLE   UNCERTAIN  

Vegetation  and  bio-­‐mass   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

Snow   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

Sea-­‐ice   APPLICABLE   APPLICABLE   APPLICABLE  

Glaciers   APPLICABLE   APPLICABLE   UNCERTAIN  

Atmosphere   NOT  APPLICABLE   NOT  APPLICABLE   APPLICABLE  

Ship  detection   NOT  APPLICABLE   APPLICABLE   UNCERTAIN  

Buried  objects   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

Table  5a:  Summary  of  the  Capabilities  of  the  planned  E-­‐GEM  systems  to  address  different  applications.  Green  cells  indicate  that  the  appliaction  can  be  implemented,  red  cells  indicate  that  cannot,  white  cells  for  uncertain  cases  (TBC).  

5.1 Ocean: Altimetry A  major   challenge   for   physical   oceanography   today   is   to   better  map   the   complex  mesoscale   structure   (10-­‐100km  or  longer)  of   the  ocean   circulation   in   the  open  ocean  and   in   the   coastal   regions.   The  need   for  observations  has   further  amplified  over  the  past  decade.  Mesoscale  altimetry  mission  concepts,  such  as  the  wide  swath  ocean  altimetry  mission  [Fu  et  al.,  2009]  have  long  been  proposed  (and  have  now  been  accepted)  to  address  the  shortcomings  of  nadir-­‐pointing  pulse-­‐limited  altimeters  in  terms  of  their  narrow  swaths  and  relatively  large  cross-­‐track  separation.  The  GAMBLE  project  [Cotton   et   al.,   2004]   reviewed   various  mission   concepts   to   address   this   issue,   putting   forward   recommendations   for  

Page 29: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 29  of  88  

future   missions.   Ten   years   on,   with   operational   ocean   models   now   operating   routinely   on   global   1/12th   degree  resolution  grids  [Bahurel,  2011],  and  the  operating  NASA/CNES  Surface  Water  and  Ocean  Topography  (OSTST)  Jason-­‐n  series  of  nadir  altimeters   following  TOPEX/POSEIDON,   the  need   for   finer,  more   frequent  monitoring  of  ocean  surface  height  field  has  become  ever  more  pressing.  There   is  also  a  growing  evidence  from  scientific  research  quantifying  the  essential   contribution   by   the   oceanic   mesoscale   variability   to   global   oceanic   circulation   and   transports   and  atmosphere/ocean  exchanges.  

The  potential  of  GNSS-­‐R  for  ocean  altimetry  was   identified  about  20  years  ago  [Martin-­‐Neira,  1993].  GNSS-­‐R  presents  several  unique  features,  which  complement  traditional  nadir-­‐pointing  radar  altimetry.  Depending  on  the  characteristics  of   the   GNSS-­‐R   receiver   and   antenna,   one   GNSS-­‐R   receiver   can   potentially   track   up   to   40   separate   GNSS   reflections  (GPS+GLONASS   constellatinos   as   in   April   2012,   e.g.   [Jin   et   al.,   2014])   to   provide  wide-­‐swath   sampling.   Therefore   the  spatio-­‐temporal  resolution  compared  to  nadir-­‐looking  satellites  can  be  significantly  improved.  In  contrast  to  traditional  altimetry,  obtaining  sea  surface  height  measurements  with  GNSS-­‐R  with  sufficient  precision  poses  serious  technological  challenges,  but  the  averaging  of  abundant  and  overlapping  observations  could  enable  the  reduction  of  errors  in  the  sea  surface  height  measurements.  Moreover,  being  at  L-­‐band,  the  GNSS-­‐R  observations,  as  compared  to  Ku-­‐band  altimeter  systems,  will  not  be  affected  by  heavy  rains  and  will  thus  provide  a  unique  data  set  of  sea  surface  topography  heights  under  all  weather  conditions.  This  is  of  interest  in  particular  in  the  tropical  areas.  

Altimetry   under   extremes   is   still   quite   unknown,   at   best   observed  with   large   temporal   lags,   and   not   during   the   real  action.  Depending  on   size   (typically   from  60   km   to  500   km)  and   intensity,     translation   speed,   and  ocean  upper   layer  stratification,  tropical  extreme  events  leave  impressing  trenches  ahead  in  their  wakes  with  sea  surface  height  anomalies  that  can  often  reach  0.5  m  and  more,  thus  requiring  a  sea  surface  height  retrieval  accuracy  of  at  least  50  cm  (goal:  20  cm).   Decorrelation   times   of   these   phenomena   are   a   few   days.   Given   the   ISS   orbit   (tropical   coverage)   and   with   the  expected  improved  temporal  sampling  and  mapping  (4  days  or  less),  it  should  thus  be  possible  to  assess  –  for  the  first  time  -­‐   in  more  details  the  time  evolution  of  the  storm-­‐induced  displacements  that  control  the   intensification  of  these  extreme  events.  

5.1.1 GNSS-R Status on Altimetric Applications and Retrieval Algorithms

The   altimetric   applications   are   among   the   most   challenging   to   the   GNSS-­‐R   concept.   In   most   ocean   situations   the  reflection   has   little   specular   component,   becoming   essentially   diffuse.   As   a   consequence,   the   carrier   phase   of   the  reflected  signals  cannot  be   locked  because   it   suffers   random  jumps.  Therefore,  unlike   the  precise  carrier-­‐phase  delay  navigation  GNSS  observables,  the  altimetric  applications  essentially  rely  on  group-­‐delay  measurements.  The  transmitted  signals  were  not  optimized  to  provide  highly  precise  group-­‐delay  measurements,  as  it  is  in  monostatic  dedicated  radar  altimeter  missions.  In  addition  to  this  constraint,  the  bi-­‐static  nature  of  the  GNSS-­‐R  observations  adds  complexity  to  the  geometric   retrieval.  Overall,  GNSS-­‐R  altimetry  presents   lower   single-­‐shot  performance   that  dedicated  altimeters,   and  the  challenge  is  on  one  hand  to  obtain  the  best  single-­‐shot  performance  within  these  constraints,  and  on  the  other  hand  to  prove  the  impact  of  its  highly  dense  time-­‐space  coverage  into  ocean  observational  and  modeling  systems.  

Different   receiver-­‐level  data  acquisition  architectures  are  nowadays  being  discussed   to  better  address   the  single-­‐shot  performance  of   the  GNSS-­‐R  group-­‐delay  altimetry.  The  conventional  architecture   (cGNSS-­‐R),  used  since  90s,   relies  on  publicly   available  GNSS  modulation   codes,   such  as   the  GPS  C/A,  of  narrow  bandwidth   (large  uncertainty   in   the   time-­‐domain).   The   encrypted   codes   typically   have   10-­‐times  wider   bandwidths   (greater   precisions   in   the   time-­‐domain).   To  overcome  this   limitation,  [Martín-­‐Neira  et  al.,  2011]  suggested  the   interferometric  technique  (iGNSS-­‐R),   for  which  the  full  transmitted  bandwidth  is  used  despite  some  of  the  codes  are  no  accessible.  This  architecture  has  been  tested  from  a  ground-­‐based   and   two   airborne   experiments,   proving   two-­‐fold   enhanced   single-­‐shot   altimetric   performances   with  

Page 30: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 30  of  88  

respect  to  the  conventional  ones.  This  technique  and  these  instruments  are  the  background  experience  for  the  E-­‐GEM  airborne   system   (UAV-­‐SPIR   receiver).   A   third   architecture   has   been   recently   suggested   and   experimentally   tested   in  [Lowe  et  al.,  2014],  applying  semi-­‐codeless  techniques  to  the  line-­‐of-­‐sight  data  to  facilitate  the  modeling  of  the  reflected  encrypted  ones  (rGNSS-­‐R).  The  SNR  values  seem  to  indicate  better  remote  sensing  capabilities  for  this  latter  approach.  A  similar  technique  is  applied  directly  onto  the  reflected  signals  in  [Carreño-­‐Luengo  et  al.,  2014],  here  identified  as  rGNSS-­‐R,   too.  This   is   the  one   to  be   implemented   in   the  E-­‐GEM  space-­‐borne  system  (³CAT-­‐2  PYCARO  receiver).  The  different  data-­‐acquisition  architectures  are  detailed  in  Section  4.  

The  retrieval  algorithms  developed  so  far  to   infer  altimetric   information  from  GNSS-­‐R  observables  are   listed  below.   It  also  indicates  the  range  of  applicability  within  the  E-­‐GEM  systems.  An  identifier  is  given  to  each  retrieval  algorithm  for  internal  use  in  this  document  [RA-­‐A#]:  

• [RA-­‐A1]  Peak-­‐Delay:  the  altimetric  range  is  obtained  from  the  delay  of  the  peak.  This  only  applies  for  reflections  off  smooth   surfaces   (little   diffuse   component),   such   as   in   [Martín-­‐Neira   et   al.,   2001]   or   [Rius   et   al.,   2011].   This  approach  does   not  work   in  Ocean   standard   conditions,  when   the   peak   delay   is   driven   by   the   surface   roughness  [Rius  et  al,  2002].  E-­‐GEM  applicability:  surface  dependent.  

• [RA-­‐A2]  Model-­‐Fitting  delay:  which  consists  on  fitting  a  theoretical  model  to  the  data.  The  best-­‐fit  model  implicitly  indicates  the  delay-­‐location  where  the  specular  point  lies.  Examples  can  be  found  in  e.g.  [Lowe  et  al.,  2002].    E-­‐GEM  applicability:  all  systems.  

• [RA-­‐A3]  Peak-­‐Derivative  delay:  [Hajj  and  Zuffada,  2003]  suggested  and  [Rius  et  al.,  2010]  shown  that  the  maximum  of   the  derivative  of   the  waveform’s   leading  edge  corresponds   to   the  specular   ray-­‐path  delay   (except   for   filtering  effects  of  the  limited  bandwidth).    E-­‐GEM  applicability:  all  systems.  

• [RA-­‐A4]  Power-­‐ratio  based  delay:   [Yu  et   al,   2014]  presents  a  methodology   to   find   the   specular-­‐delay  within   the  delay-­‐axis   of   the  DM  based   on   the   relationship   between   the   correlation-­‐power   at   a   given   and   peak   correlation-­‐power.    E-­‐GEM  applicability:  to  be  determined.  

[Cardellach  et  al.,  2013]  also  played  with  the  approach  taken  in  the  monostatic  Radar-­‐Altimeters,  which  is  to  associate  the   delay   of   the   echo   at   the   mean   sea   surface   level   as   the   delay   of   the   half-­‐power   point   along   the   leading   edge.  However,  this  ad-­‐hoc  selection   is   in  GNSS-­‐R  strongly  dependent  on  the  surface  roughness,  as   it   is  the  peak  delay  (see  above).  

Recently,   two   novel   approaches   have   been   suggested   to   increase   the   precision   and/or   the   sampling   density   of   the  GNSS-­‐R:  

• [RA-­‐A5]  DDM  multi-­‐look:  this  new  technique  proposed  in  [D'Addio  et  al.,  2014],  is  based  on  the  acquisition  of  the  full  DDM  as  a  way   to  perform  multi-­‐look  altimetry  beyond   the   typical  pulse-­‐limited   region.  The  authors  claim  an  altimetry  performance  improvement  of  at  least  25%  to  30%  with  respect  to  altimetry  done  in  the  central-­‐frequency  slice  of  the  DDM  (standard  approach).  E-­‐GEM  applicability:  air-­‐borne  and  space-­‐borne  systems.  

• [RA-­‐A6]   Mosaic-­‐altimetry:   this   unpublished   approach   attempts   to   perform   altimetry   at   off-­‐specular   directions,  taking   advantage   of   the   highly   directive   antennas.   This   represents   higher   density   of   independent  observations/specular   ground-­‐tracks,   or   equivalently,   larger   number   of   observations   within   the   user   spatio-­‐temporal  resolution.  Strong  degradation  of  a  single-­‐shot  performance  is  expected  by  severe  decrease  of  the  SNR.  It  

Page 31: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 31  of  88  

needs  to  be  check  whether  the  increased  number  of  observations  compensates  its  lower  single-­‐shot  performance.  E-­‐GEM  applicability:  to  be  determined.  

In  addition  to  the  group-­‐delay  techniques  discussed  above  it  is  still  possible  to  apply  carrier-­‐phase  delay  measurements  under  certain  conditions:  when  the  signal  reaches  the  receiver  with  long  coherence  time,  that  is,  when  the  phase  can  be  tracked  and  a  few  phase-­‐jumps  or  shifts  are  experienced  solely.  However,  scattering  process  off  rough  surfaces  yields  diffuse   scattering,   with   loss   of   coherence   and   therefore   difficulties   or   impossibility   to   connect   the   phases.   For   this  reason,  GNSS-­‐R  altimetry  using  phase-­‐delay  observations  has  been  only   reported   from  experimental   fields  over   calm  waters   [Treuhaft   et   al.,   2001,   Martín-­‐Neira   et   al.,   2002,   Helm   et   al.,   2004],   or   in   very   slant   observations.   The   first  examples   of   grazing   angle   phase-­‐delay   altimetry   using   reflected  GNSS   signals  was   conducted  with   data   from  a  GNSS  Radio-­‐Occultation  space-­‐borne  mission  [Cardellach  et  al.,  2004].  

• [RA-­‐A7]  More  recently,  improved  altimetric  techniques  based  on  phase  observations  [Semmling  et  al.,  2012]  have  been  tested  from  an  aircraft  [Semmling  et  al.,  2014]  and  a  Zeppelin-­‐Airship  [Semmling  et  al.,  2013].  The  results,  at  geometries  up  to  ~30  degrees  elevation,  show  altimetric  precisions  comparable  to  nadir-­‐looking  group-­‐delay  GNSS-­‐R  over  open  sea  waters.  E-­‐GEM  applicability:  potentially  all  systems.  

• [RA-­‐A8]   A   complementary   technique   for   ground-­‐based  GNSS-­‐R   altimetry   is   the   one   called  GNSS-­‐MR,  multi-­‐path  reflectometry,  or   Interference  Pattern  Technique  (IPT).  These  techniques  are  sometimes  called  “interferometric”  because  they  infer  the  geophysical   information  from  the  interferometric  patterns  observed  in  the  measured  SNR,  resulting  from  superposition  of  direct  line-­‐of-­‐sight  signals  and  those  reflected  in  near-­‐by  surfaces.  We  prefer  to  use  the   “multi-­‐path   reflectometry”   or   IPT   terms   to   avoid   confusion   with   the   PARIS   or   interferometric   receiver-­‐level  processing  approach  described  in  Section  4.  This  technique  has  been  successfully  applied  to  geodetic  ground-­‐based  GNSS   stations   to   infer  water-­‐level   [e.g.   Larson   et   al.,   2013,   Löfgren,   2014]   and   snow-­‐depth  measurements   [e.g.  Rodriguez-­‐Alvarez  et  al.,  2011;  Nievinski,  2013].  The  altimetric   information  is  extracted  from  the  frequency  of  the  interference   fringes.   This   frequency,   in   units   of   cycles   per   sin(elevation   angle)   is   proportional   to   the   receiver  altitude   above   the   reflecting   surface   (horizontal   planar   approximation).   The   same   technique   is   also   applied   to  monitor  snow  depth,  see  Section  5.7.  E-­‐GEM  applicability:  ground-­‐based  system.  

The  table  below  compiles  results  obtained   in  the  different  altimetric  GNSS-­‐R  experiments   found   in  the   literature.  The  table  was  originally  presented  in  [Jin  et  al.,  2014],  here  extended  to  include  the  most  recent  bibliographic  findings,  and  all   altimetric   precisions   given   in   their   single-­‐measurement   1-­‐second   equivalent.   When   the   original   sources   do   not  provide  the  1-­‐second  precision  the  conversion  has  been  approximated  to  σ1-­‐second=σN-­‐seconds  sqrt(N).  

Reference  Data  Acquisition    

Architecture  

Receiver    

altitude  (m)  

Dynamic/Static  

 platform  Surface  type  

Equivalent    

1-­‐second  σH  (m)  

PHASE-­‐DELAY  ALTIMETRY  

[Treuhaft  et  al.,  2001]   cGNSS-­‐R   480   Static   Lake   0.02  

[Martín-­‐Neira  et  al.,  2002]   cGNSS-­‐R   8   Static   Pond   0.003  

[Cardellach  et  al.,  2004]   cGNSS-­‐R   400000   LEO   Ice   0.10  

Page 32: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 32  of  88  

[Helm  et  al.,  2004]   cGNSS-­‐R   ~1000   Static   Lake   0.02  

[Semmling  et  al,  2012]   cGNSS-­‐R   700   Static   Ocean   0.5  

[Semmling  et  al.,  2013,  2014]   cGNSS-­‐R   3500   Airborne   Ocean   >=  0.8  

(elevation  dependent)  

GROUP-­‐DELAY  ALTIMETRY  

[Martín-­‐Neira  et  al.,  2001]   cGNSS-­‐R   20   Static   Estuary   7  

[Lowe  et  al.,  2002]   CGNSS-­‐R  

using  P(Y)  

1500-­‐3000   Airborne   Ocean   0.07  

[Ruffini  et  al.,  2004]   cGNSS-­‐R   1000   Airborne   Ocean   1.5  

[Rius  et  al.,  2010]   cGNSS-­‐R   3000   Airborne   Ocean   1.4  

[Rius  et  al.,  2011]   iGNSS-­‐R   18   Static   Estuary   0.08  

[Cardellach  et  al.,  2013]   iGNSS-­‐R   3000   Airborne   Ocean   0.58  

cGNSS-­‐R   1.21  

[Lowe  et  al.,  2014]   rGNSS-­‐R     Airborne   Ocean   N/A  better  SNR  

than  iGNSS-­‐R  

[Carreño-­‐Luengo  et  al.,  2014]   cGNSS-­‐R   65   Static   Pond   0.08  

rGNSS-­‐R   0.04  

cGNSS-­‐R   4.76   Ocean   0.45  

rGNSS-­‐R   0.20  

[Yu  et  al.,  2014]   cGNSS-­‐R   ~330   Airborne   Ocean   ~1  

Table  5.1a:  Examples  of  GNSS-­‐R  altimetry  experiments  and  performances.  

One  of  the  processing  details  with  direct  impact  on  the  altimetric  performance  is  the  re-­‐tracking.  A  recent  special  issue  of   IEEE-­‐JSTARS   on   GNSS   reflectometry   presents   two   papers   relevant   to   this   matter.   Both   look   at   the   re-­‐tracking  strategies  as  a  way  to  address  the  effect  of  the  delay  (and  Doppler)  drifts  suffered  by  the  altimetric  observables  during  the  integration  period.  These  papers  analyze  how  to  mitigate  this  effect  and  the  final  residual  impact  on  the  altimetric  solution.   In   [Martín-­‐Neira   et   al.,   2014]   it   is   found   that,   for   space-­‐borne   scenarios,   both   the   coherent   time   and   the  

Page 33: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 33  of  88  

refreshing  period  are  relevant  parameters  to  control  the  re-­‐tracking  performance:  shorter  coherent  times  are  better  to  reduce  the  negative  effect  of  the  drift,  but  it  is  possible  to  preserve  precision  in  longer  integrations  times  by  refreshing  the  delay  compensation  at  every  correlation  period.  The  analysis  yields  to  similar  conclusion  and  it   is  extended  to  the  effects  of  the  Doppler  dynamic  variations  within  integration  in  [Park  et  al.,  2014].  

5.1.2 GNSS-R Altimetric Missions

Currently,  there  are  three  GNSS-­‐R  altimetric  space-­‐borne  missions  in  different  stages  of  development:  

• ESA's  PARIS  IOD,  which  concluded  Phase-­‐A  studies  

• GEROS-­‐ISS,  which  will  enter  into  Phase-­‐A  studies  during  2014  

• E-­‐GEM  space-­‐borne  system:  ³CAT-­‐2.  

PARIS  IOD  is  based  on  the  interferometric  concept,  while  ³CAT-­‐2  will  use  semi-­‐codeless  techniques  to  measure  delays  using   the   P(Y)  modulation.  GEROS-­‐ISS,   the   instrument   and   technique   aboard   the   International   Space   Station  has   not  been  decided  yet.  

5.1.3 Other Related Techniques

GNSS-­‐R   topography   was   shown   to   be   an   attractive   complement   to   high-­‐precision   radar   altimetry   systems   such   as  Sentinel-­‐class  missions   [Le   Traon   et   al.,   2002,   Lee   et   al.,   2013].   The   very   high   density   of  measurements   provided   by  GNSS-­‐R  was  shown  to  balance  the  higher  level  of  errors  of  this  measurement  system.  

The   current   programmatic   baseline   (Jason-­‐CS/Sentinel-­‐6,   Sentinel-­‐3A/B)   shows   that   minimal   observation   needed   by  Operational  Oceanography   (e.g.  GODAE  models,  and   the  COPERNICUS  Marine  Service)  can  be  met  by   radar  altimetry  missions   [Le  Traon  et   al.,   2014].    However,   [Escudier   and  Fellous,   2008]   showed   that   a  higher  density  of   topography  measurements  remains  beneficial  to  resolve  smaller  structures  and/or  to  provide  a  faster  and  denser  regional  coverage  for   marine   applications.   Furthermore,   [Dibarboure   and   Lambin,   2014]   reported   that   the   anticipated   altimeter  constellation  remains  very   fragile   in  2017-­‐2019  and  2024+  because  any  altimeter   launch  delay,  or  on-­‐board  anomaly,  would  result  in  a  direct  degradation  of  the  MyOcean  sea-­‐level  products.  To  that  extent,  GNSS-­‐R  has  the  unique  potential  to  allow  the  COPERNICUS  Marine  Service   to  develop  better  and  higher   resolution  products,  as  well  as   to  significantly  increase  its  operational  resilience  as  a  complementary  dataset  of  opportunity  (like  ESA’s  ice  mission  Cryosat-­‐2).  

5.1.4 E-GEM Applicability

The  table  below  lists  the  GNSS-­‐R  retrieval  algorithms  for  altimetric  applications,  and  identifies  the  scenarios  from  which  these  algorithms  can  be  applied  using  green  or  red  background  color,  white  cells  for  uncertain  cases  (TBC).  “E-­‐GEM”  in  red   characters   indicates   that   despite   the   technique   can   in   general   be   applied   to   that   scenario,   the   E-­‐GEM   system  particularities  will  hinder  it.  

 

Retrieval  algorithm  ID   GROUND-­‐BASED   AIR-­‐BORNE   SPACE-­‐BORNE  

RA-­‐A1:  Peak  delay   APPLICABLE,  Surface  dependent  (calm  waters)  

Page 34: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 34  of  88  

RA-­‐A2:  Model  fit  delay   APPLICABLE  

RA-­‐A3:  Peak-­‐derivative   APPLICABLE  

RA-­‐A4:  Power-­‐ratio   UNCERTAIN  

RA-­‐A5:  DDM  multi-­‐look   NOT  APPLICABLE   APPLICABLE  

RA-­‐A6:  Mosaic   UNCERTAIN  

RA-­‐A7:  Phase-­‐delay   APPLICABLE   APPLICABLE  but  not  for  -­‐GEM¹  

RA-­‐A8:  GNSS-­‐MR/IPT   APPLICABLE   NOT  APPLICABLE  

¹   In  principle,   the  E-­‐GEM  space-­‐borne   system  will  not  down-­‐link   I/Q  samples,  only   integrated  products,  which  do  not  contain  phase-­‐information.  

Table  5.1b:  Summary  of  applicability  of  the  GNSS-­‐R    altimetric  retrieval  algorithms.  

5.2 Ocean: Surface Roughness, Wind and Tropical Storms/Cyclones GNSS   reflectometry,   like   scatterometers,   measure   surface   roughness,   not   wind   speed   directly,   and   it   is   generally  assumed  that  surface  roughness  is  more  closely  correlated  with  the  wind  stress  τ  on  the  sea-­‐surface  rather  than  with  a  wind  speed  measured  at   some  elevation  above   the  ocean  surface   (typically  at  10  m).    For   this   reason,   scatterometer  wind  retrievals  are  usually  defined  as  the  10-­‐m  equivalent  neutral  wind,  called  U10EN,  rather  than  the  actual  wind  at  10  m.    The  relationship  between  U10EN  and  τ  is  driven  by  the  air  density  and  the  neutral  stability  drag  coefficient  at  a  height  of   10   m,   which   in   turn   is   also   a   function   of   U10EN.     Many   ocean   applications   require   τ,   while   the   starting   point   for  meteorological  applications  is  often  U10EN.    The  relationship  of  τ  and  U10EN  (i.e.  the  drag  coefficient)  is  currently  focus  of  intense  research  activity  (e.g.  there  is  a  dedicated  working  group  within  the  Ocean  Vector  Wind  Science  Team—OVWST  [IOVWST,   2014]).   The   contribution   of   L-­‐band   bi-­‐static   measurements   into   this   topic   is   still   unknown,   but   there   are  chances   that   it   could  complement   the   information   retrieved  by  mono-­‐static  wind   scatterometers:  GNSS-­‐R  works  at  a  different  electromagnetic  frequency  than  most  of  them,  less  affected  by  rain,  relatively  insensitive  to  Bragg  scattering,  and  under  different  geometry.  

The   benefits   of   accurate   knowledge   of   the   ocean   surface   roughness   impacts   both   for   operational   services   and   basic  scientific   research.   The   primary   operational   benefits   of   satellite   sea   roughness   and   wind   observations   are   the  improvements  of  weather  forecasting  and  warnings.  In  addition,  knowledge  of  the  winds  and  waves  over  the  ocean  is  also  essential   for   the  maritime   transportation,   fishing,  and  oil  production   industries,  as  well  as   for   search  and   rescue  efforts,  and  the  accurate  tracking  and  management  of  marine  hazards  such  as  oil  spills  [Bourassa  et  al.,  2009].  This  same  reference  lists  the  progress  and  impact  of  ocean  winds  measurements  into  operational  services:  

• Impact  on  Numerical  Weather  Prediction   (NWP)  Winds:  dramatically   improve   the   forecasts  of   tropical   cyclones;  larger  impact  in  the  storm  track  regions,  where  there  is  relatively  large  and  rapid  variability  in  the  winds  and  in  the  southern  hemisphere,  where  much  fewer  in-­‐situ  surface  data  are  available.  

Page 35: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 35  of  88  

• Impact   on   Surge   Forecasting:   Knowledge   of   the   current   and   past   wind   (or   stress)   fields   is   essential   for   surge  forecasting.  The  winds  used  in  surge  models  are  forecast  winds,  which  are  greatly  improved  by  observations  from  the  recent  past  and  the  environment  about  the  storm.  

• Impact   on   Marine   Nowcasting:   Since   QuikSCAT   winds   have   been   available   in   near   real-­‐time   on   analysts’  workstations,  the  number  of  short-­‐term  wind  warnings  issued  by  forecasters  for  the  mid-­‐latitude  high  seas  waters  have  dramatically  increased.  In  particular,  hurricane  force  warnings  were  not  issued  for  extra-­‐tropical  regions  prior  to  QuikSCAT  observations.  

• Impact   on   Tropical   Cyclone   Forecasting:   The   use   of   a   satellite-­‐based   active   microwave   scatterometer,   with  QuikSCAT-­‐like  sampling  is  considered  (in  some  forecast  offices)  essential  to  the  analysis  and  understanding  of  the  near   ocean   surface  wind   field   about   tropical   cyclones   (TCs).   Near   real-­‐time   knowledge   of   both  wind   speed   and  direction  offers  the  regional  tropical  cyclone  forecaster  the  ability  to  more  accurately  anticipate  TC  genesis,  see  the  development   of   the   inner   and   outer   core   winds   or   structure,   and   determine   a   ‘minimum   estimate’   for   a   TC’s  maximum  sustained  winds.  In  fact,  TC  track  forecasts  have  improved  in  accuracy  by  ~50%  since  1990,  largely  as  a  result  of   improved  mesoscale  and  synoptic  modeling  and  data  assimilation.     In   that  same  period,   there  has  been  essentially  no  improvement  in  the  accuracy  of  intensity  forecasts.  The  principal  deficiency  with  current  TC  intensity  forecasts  may  lay  in  inadequate  observations  and  modeling  of  the  storm  inner  core.  The  inadequacy  in  observations  results  from  two  causes:  (a)  Much  of  the   inner  core  ocean  surface   is  obscured  from  conventional  remote  sensing  instruments   by   intense   precipitation   in   the   eye  wall   and   inner   rain   bands.   (b)   The   rapidly   evolving   (genesis   and  intensification)  stages  of  the  TC  life  cycle  are  poorly  sampled  in  time  by  conventional  observational  systems.  

• Ocean  Model  Forcing  

• Currents    

[Bourassa   et   al.,   2009]   also   lists   the   scientific   topics   related   to   ocean   surface   roughness   and  winds.   The   list   includes  several  topics  that  might  be  applicable  to  E-­‐GEM  systems  and/or  other  GNSS-­‐R  missions.  Among  others:  

• Air/Sea  Surface  Fluxes:  great  importance  of  winds  on  fluxes  of  energy,  moisture,  momentum,  and  gases.  

• High  Winds:  play  a  disproportionately  large  role  in  Earth's  climate.  Mid  and  high  latitude,  high  wind  events  (cold  air  outbreaks)  lasting  several  days,  can  remove  what  at  typical  wind  speeds  would  be  a  month’s  worth  of  the  ocean’s  heat  and  moisture,  leading  to  the  formation  of  "deep  water"  that  helps  drive  global  ocean  circulation  patterns.  High  winds  also  help  exchange  disproportionately  large  amounts  of  carbon  dioxide.  

• Near   Coastal   Processes:   Synoptic   scale   winds   are   very   important   for   transporting   riverine   water   from   coastal  shelves   to   the  open  ocean.   These   findings   suggest   a   link   between   the   transport   of   nutrients   and   the   finfish   and  shellfish  life  cycles  and  population.  The  upwelling  associated  with  coastal  wind  variability  also  appears  to  be  a  very  important  part  of  the  coastal  ecosystem.  

• ENSO  and  Atlantic  Niño  and  Decadal  Variability.  

The  operational  use  of   these   type  of  data  have   severe   requirements,   currently  not   fully   fulfilled   [Chang  and   Jelenak,  2006].   Neither   of   the   currently   operational   ocean   surface   vector   wind   sensors   satisfies   the   new   operational  requirements.   [Chang  and  Jelenak,  2006]   lists  the   limitations  of  current  ocean  surface  vector  wind  missions,  and  the  requirements  for  future  missions.  Some  of  them  are  listed  below:  

Page 36: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 36  of  88  

• The  inability  to  resolve  maximum  winds  in  the  inner  core  of  most  hurricanes.  It  is  necessary  to  have  the  capability  to  accurately  measure  all  sustained  wind  speeds  encountered  in  tropical  cyclones,  from  zero  up  to  165  kts.  

• The  inability  to  resolve  maximum  winds  in  extra-­‐tropical  storms.  We  do  not  know  how  strong  the  maximum  winds  that  occur  in  winter  ocean  storms  are.  We  only  know  that  hurricane  force  conditions  exist.  Ocean  waves  respond  to  the   square   of   the   wind   speed,   therefore   knowledge   of   the  maximum  wind   speed   (and   direction)   is   needed   for  accurate  wave  predictions.  

• Rain  contamination  and  the  resulting  biases   in  retrieved  wind  speeds.   It   is  desired  to  provide  reliable  wind  speed  and  direction  retrievals  regardless  of  rain  rate  (no  rain,  light  rain,  or  heavy  rain).  

• The  long  intervals  between  repeat  passes  of  any  single  satellite—even  the  broad  swath  QuikSCAT—over  any  given  region.  

• The   time   lag   between   the   satellite   overpass   and   data   receipt.   Reduce   time   of   data   receipt   to,   at   most,   a   few  minutes  following  the  time  of  data  collection  by  the  satellite.  

• Data  limited  by  their  spatial  resolution.  

• The  unavailability  of  near-­‐shore  data.  Coastal  regions  that  are  the  responsibilities  of  many  weather  forecast  offices  are  the  “area  where  most  lives  are  lost”.  With  greater  temporal/spatial  resolution  and  more  accurate  wind  speed  and   direction   information,   advisory   or   near-­‐advisory   conditions   would   be   forecast   with   greater   certainty   and  provide  greater  safety  for  boaters.  

Similarly,  [Bourassa  et  al.,  2009]  described  the  main  challenges  to  satellite  ocean  wind  measurement  as:  

• availability  of  data  (preferably  in  near  real  time),  

• inter-­‐calibration  of  wind  (vector  and  scalar)  sensors,  

• insufficient  sampling  of  natural  variability  (e.g.,  diurnal  and  inertial  cycles),  particularly  for  vector  winds,  

• insufficient  resolution  and  near  coastal  data  for  non-­‐SAR  instruments,  

• rain  contamination  (all  weather  retrievals),  and  

• accuracy  for  high  wind  speeds  (>20ms-­‐1).  

Climate  studies  also  require  very  small  calibration  drift;  otherwise  the  challenges  are  similar  for  science  and  operations.  E-­‐GEM  system  could  potentially  shed  some  light  into  the  GNSS-­‐R  possibilities  of   improving  the  data  sampling  and  rain  contamination  issues.  

The   operational   requirements   for   satellite   ocean   surface   vector  wind  measurements  were   defined   in   the   Integrated  Operational  Requirements  Document   II   [IORD   II,  2001],   later   re-­‐defined  during   the  NOAA  Operational  Satellite  Ocean  Surface  Vector  Winds  Requirements  Workshop   [Chang  and   Jelenak,  2006].  Two  tables  below  summarize  both   IORD-­‐II  requirements,  the  updated  ones,  and  how  they  compare  with  different  scatterometric  mission  performances.  

Page 37: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 37  of  88  

 

Table  5.2a:  IORD-­‐II  and  newest  requirements  on  ocean  surface  winds  for  operational  services,  and  how  they  compare  to  Quicksat  and  Windsat  mission  performances.  From  [Chang  and  Jelenak,  2006].  

 

Page 38: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 38  of  88  

 

Table  5.2b:    IORD-­‐II  and  newest  requirements  on  ocean  surface  winds  for  operational  services,  and  how  they  compare  to  ASCAT  and  future  mission  performances.  From  [Chang  and  Jelenak,  2006].  

5.2.1 GNSS-R Status on Ocean Scatterometric Applications and Retrieval Algorithms

The  GNSS,  L-­‐band  signals,  have  electromagnetic  carrier  wavelengths   longer  than  the  fine  surface  ripples  generated  by  instantaneous   winds.   In   principle,   only   surface   features   of   typical   length   longer   than   the   electromagnetic   carrier  wavelength  can  be  sensed,  meaning  that  L-­‐band  signals  are  not  in  an  optimal  frequency  for  wind  monitoring.  However,  as   the  wind  blows,   it   transfers   energy   to   the  ocean,   increasing   the  waves’   height   and   length.  One  of   the  discussions  

Page 39: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 39  of  88  

among  the  GNSS-­‐R  community  is  the  strength  of  the  link  between  GNSS-­‐R  observations  and  wind  speed.  Some  studies  adjusted  or  calibrated  the  apparent  ocean  surface  slopes  at  L-­‐band,  in  the  form  of  a  modified  relationship  between  the  variance  of  the  slopes  and  the  wind  [Katzberg  et  al.,  2006,  Eq.3],  and  valid  for  a  wide  range  of  wind  speeds.  Some  others  present  L-­‐band  roughness  parameters  as  a  product  by  itself  [e.g.  Cardellach  et  al.  ,  2003;  Germain  et  al.  ,  2004].  Based  on  [Elfouhaily  et  al.  1997]  sea  waves'  spectrum,  there  are  different  relationships  between  the  variance  of  the  surface  slopes  (mean  square  slope,  MSS)  and  the  wind,  which  correspond  to  different  stages  of  development  of  the  sea.  On  the  other  hand,  the  drag  coefficient   is  a  relevant  parameter  to  model  momentum  exchanges  between  the  sea  waves  and  the  atmosphere.  It  can  be  a  function  of  both  the  wind  speed  and  the  wave  age  [e.g.  Nordeng  ,  1991;  Makin  et  al.,  1995].  This  opens  potential  inversion  schemes,  closer  to  data  assimilation  approaches,  in  which  independent  wind  information  could  be  combined  with  GNSS-­‐R  observations  of  the  L-­‐band  roughness  to  infer  information  about  wave  age  or  dragging-­‐related  parameters.  

The   L-­‐band   radiometric  measurements   of   the   surface   salinity   have   a  major   systematic   effect   induced   by   the   surface  roughness,  in  particular,  to  the  portion  of  the  spectrum  to  which  L-­‐band  signals  are  sensitive.  [Marchan-­‐Hernandez  et  al.  2008];  [Valencia  et  al.  2009];  and  [Camps  et  al.  2011]  suggested  and  experimentally  checked  the  potential  use  of  GNSS-­‐R  derived  L-­‐band  roughness  parameters   to  provide   roughness  corrections   to  L-­‐band  radiometric  missions   for   improving  their  sea  surface  salinity  measurements.  

S.  Katzberg  has  conducted  intensive  work  on  wind  retrieval  under  hurricane-­‐like  conditions  [Katzberg  et  al.,  2001,  2006,  Katzberg  and  Dunion  2009,  Katzberg  et  al.,  2013].  Despite  empirical  models  and  corrections  to  the  data,  the  experience  seems  to  indicate  that  GNSS-­‐R  can  achieve  ~4  m/s  precision  in  wind  retrievals  under  high-­‐wind  conditions,  poorer  that  the  operational  precision-­‐requirements  given  above  [Chang  and  Jelenak,  2006].  

In  a   lower   range  of  wind   speeds,   [Clarizia  et   al.,   2014]  presents  a  wind   retrieval   that   combines   five  different  GNSS-­‐R  observables,   it  applies   it   to  UK-­‐DMC   low  earth  orbiter  GNSS-­‐R  data,  and  compares   to  collocated  buoy   information.   It  results   in  1.65  m/s  error   in   the   range  of  winds   from  2.4   to  10.7  m/s.  This   represents   the  upper  bound  of   the   formal  wind-­‐speed  uncertainties  found  in  [Cardellach  et  al.,  2003],  using  stratospheric  GNSS-­‐R  data  (wind  uncertainty  reported  from  0.1  to  2  m/s  in  the  range  1  to  8  m/s),  and  similar  to  the  findings  in  [Garrison  et  al.,  2002],  achieving  precision  of  the  order  of  1  m/s  from  aircraf  altitudes.  

Anisotropy  and  wind-­‐direction  issues  have  been  tackled  in  several  studies.  The  general  agreement  was  that  GNSS-­‐R  was  sensitive  to  anisotropies  and  wind  direction  with  180⁰  ambiguity  [Armatys  2001;  Cardellach  2002;  Komjathy  et  al.,  2004;  Germain  et  al.,  2004].  However,  more  recent  data  analysis  strategies  permitted  to   infer  non-­‐Gaussian   features  of   the  surface  slopes  statistics,  including  the  sense  (up-­‐  or  down-­‐wind)  direction,  and  breaking  the  180⁰  ambiguity  [Cardellach  and  Rius,  2008].  

Several   algorithms   have   been   implemented   to   extract   ocean   surface   roughness   and   wind   state   from   the   GNSS-­‐R  observables.  The  list  below  is  a  summary  of  the  algorithms  and  techniques  found  in  the  literature.  The  summary  list  has  been  extracted  from  [Cardellach  et  al.,  2011]  and  [Jin  et  al.,  2014],  here  complemented  with  more  recent  bibliographical  findings  and  indicators  of  applicability  in  the  E-­‐GEM  systems  and  retrieval  algorithm  identified  [RA-­‐S#]:  

• [RA-­‐S1]  DM-­‐fit:  After   re-­‐normalizing  and   re-­‐aligning   the  delay-­‐waveform,   the  best   fit  against  a   theoretical  model  gives  the  best  estimate  for  the  geophysical  and  instrumental-­‐correction  parameters.  Depending  on  the  model  used  for  the  fit,  the  geophysical  parameters  can  be  10-­‐meter  altitude  wind  speed,  or  sea  surface  slopes’  variance  (mean  square  slopes–MSS).  Some  of  the  works  done  with  this  methodology  are:  [e.g.  Katzberg  et  al.,  2001;  Garrison  et  al.,  2002;  Cardellach  et  al.,  2003;  Komjathy  et  al.,  2004].  E-­‐GEM  applicability:  air-­‐  and  space-­‐borne  systems.  

Page 40: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 40  of  88  

 

• [RA-­‐S2]   Multiple-­‐satellite   DM-­‐fit:   extends   the   DM-­‐fit   inversion   to   several   simultaneous   satellite   reflection  observations,  which  resolves  the  anisotropy  (wind  direction  or  directional  roughness).  It  was  suggested  in  tested  in  air-­‐borne  campaigns   in     [Armatys  2001;  Komjathy  et  al.,  2004].  The   technique  could  also  be  applied   from  space-­‐borne  altitudes,  but   the   combined  estimated  would  be   representative   to   the   total   area   that   includes  all   satellite  reflections.   This   area   is  much  wider   than  any  user   requirement,   and   large  variations  are  expected   in   sea   surface  roughness  across  its  extension.      E-­‐GEM  applicability:  air-­‐borne  system.  

• [RA-­‐S3]  DDM-­‐fit:  The  fit   is  performed  on  a  delay-­‐Doppler  map  [Germain  et  al.,  2004,  Clarizia  et  al.,  2009].   In  this  way,  anisotropic  information  can  be  obtained  from  a  single  satellite  observation.  E-­‐GEM  applicability:  air-­‐borne  and  space-­‐borne  systems.  

• [RA-­‐S4]  Trailing-­‐edge:  As  suggested  from  theoretical  models  in  [Zavorotny  and  Voronovich,  2000],  [Garrison  et  al.,  2002]  implements  in  real  data  a  technique  in  which  the  fit  is  performed  on  the  slope  of  the  trailing  edge,  given  in  dB.  E-­‐GEM  applicability:  air-­‐borne  and  space-­‐borne  systems.  

• [RA-­‐S5]   Delay   and   Doppler   spread:   [Elfouhaily   et   al.,   2002]   developed   a   stochastic   theory   that   results   in   two  algorithms  to  relate   the  sea  roughness  conditions  with   the  Doppler  spread  and  the  delay  spread  of   the  reflected  signals.   The   technique  was   applied   to   LEO-­‐based  GNSS-­‐R   observations   taken   from  one   of   the  UK-­‐DMC   satellites  [Gleason,   2006],   where   5   GNSS-­‐R  measured   Doppler   spreads   correlated   with   the  MSS   records   taken   by   nearby  Buoys.  E-­‐GEM  applicability:  air-­‐borne  and  space-­‐borne  systems.  

• [RA-­‐S6]  Scatterometric-­‐delay:   For  a  given  geometry,   the  delay  between   the   range  of   the   specular  point  and   the  range  of  the  peak  of  the  reflected  delay-­‐waveform  is  nearly  linear  with  MSS  [Rius  et  al.,  2002].  This  fact  is  applied  to  air-­‐borne  acquired  data  to  retrieve  MSS  [Nogués-­‐Correig  et  al.,  2007;  Rius  et  al.,  2010].  Only  high  altitude  ground-­‐based   experiment   could   respond   to   this   technique   (E-­‐GEM   system   expected   to   be   installed   at   low   altitude).   At  space-­‐borne   altitudes   it   is   expected   to   saturate.   E-­‐GEM   applicability:   ground-­‐based   (if   high   enough   above   the  surface)  and  air-­‐borne  systems.  

• [RA-­‐S7]  DDM  Area/Volume:  Simulation  work  in  [Marchan-­‐Hernandez  et  al.,  2008]  indicates  that  the  volume  under  the  normalized  DDM  or  the  area  under  the  normalized  waveform  up  to  a  predetermined  threshold  are  due  to  the  changes   in   the   surface   roughness,   signals  which   in   turn   are   also   captured   in   the   brightness   temperature   of   the  ocean  L-­‐band  emission.  The  hypothesis  has  been  experimentally  confirmed  in  [Valencia  et  al.,  2011].  This  approach  might  be  valuable  for  potential  use  of  GNSS-­‐R  observations  in  support  to  Oceanic  L-­‐band  radiometric  missions,  such  as  SMOS,  as  proposed  in  [Camps  et  al.,  2006].  E-­‐GEM  applicability:  air-­‐borne  and  space-­‐borne  systems.  

• [RA-­‐S8]  Discrete-­‐PDF:  When  the  bi-­‐static  radar  equation  for  GNSS  signals  is  re-­‐organized  in  a  series  of  terms,  each  depending  on  the  surface’s  slope  Z  ,  the  system  is  linear  with  respect  to  the  Probability  Density  Function  (PDF)  of  the  slopes.  Discrete  values  of  the  PDF(Z’)  are  therefore  obtained.  This  retrieval  does  not  require  an  analytical  model  for  the  PDF  (no  particular  statistics  assumed).  When  the  technique  is  applied  on  delay-­‐Doppler-­‐maps,  is  it  possible  to  obtain  the  directional  roughness,  together  with  other  non-­‐Gaussian  features  of  the  PDF  (such  as  up/down-­‐wind  separation  [Cardellach  and  Rius,  2008]).  E-­‐GEM  applicability:  air-­‐borne  and  space-­‐borne  systems.  

• [RA-­‐S9]  NRCS  inversion:  [Valencia  et  al.,  2011b,  2013,  Schiavulli  et  al.,  2014]  present  numerically  efficient  methods  for  inverting  the  delay-­‐Doppler  map  (DDM)  to  produce  a  2-­‐D  mapping  of  the  normalized  radar  cross  section  (NRCS)  over  the  glistening  zone.  E-­‐GEM  applicability:  air-­‐borne  system  and  space-­‐borne  systems.  

Page 41: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 41  of  88  

• [RA-­‐S10]  Coherence-­‐time:  Finally,  when  the  specular  component  of  the  scattering   is  significant  (very   low  altitude  observations,  very  slant  geometries,  or  relatively  calm  waters),  the  coherence-­‐time  of  the  interferometric  complex  field   depends   on   the   sea   state.   It   is   then   possible   to   develop   the   algorithms   to   retrieve   significant  wave   height  [Soulat  et  al.,  2004;  Valencia  et  al.,  2010].  E-­‐GEM  applicability:  ground-­‐based  system.  

5.2.2 GNSS-R Scatterometric Missions

Currently,  there  are  two  GNSS-­‐R  scatterometric  space-­‐borne  missions  in  different  stages  of  development:  

• UK  Tech-­‐Demo-­‐Sat-­‐1,  ready  for  launch,  which  will  test  the  new  SSTL  GNSS-­‐R  receiver,  and  

• NASA's  CYGNSS,  a  constellation  of  8  nano-­‐satellites  in  equatorial  orbits  to  monitor  tropical  cyclones.  

In   addition,   the   altimetric   GNSS-­‐R   missions   listed   in   Section   5.1   can   also   infer   roughness   information   as   secondary  mission  objectives.  

5.2.3 Other Related Techniques

There  are  (and  have  been)  other  wind  vector  sensor  technologies  aboard  space  platforms.  [Bourassa  et  al.,  2009]  lists:  

• Microwave  scatterometers,  typically  at  Ku-­‐  and  C-­‐band  of  the  electromagnetic  spectrum,  such  as  Seasat,    ERS1  and  ERS2,       NSCAT,   SeaWinds   on   QuikSCAT   and   ADEOS2,   ASCAT-­‐1,   ASCAT-­‐2,   and   at   the   L-­‐band   of   the   spectrum:  Aquarius   and   SMAP.   They   provide   accurate   winds   in   rain-­‐free   conditions   at   in-­‐swath   grid   spacing   on   scales   of  typically  25km  (with  special  products  at  fine  spacing,  such  as  2.5km).  The  main  weaknesses  of  scatterometers  are  rain  contamination  for  some  rain  conditions  (far  more  so  for  Ku-­‐band  than  C-­‐band),  a  lack  of  data  near  land  (15km  for  QuikSCAT;  30km  for  ASCAT),  and  temporal  sampling.  

• Passive  polarimetric  sensors:  WindSat,  launched  in  January  2003,  is  the  sole  instrument  using  passive  polarimetric  techniques  for  estimating  ocean  surface  vector  winds.   In  clear  skies  and  winds   in  the  range  of  6m/s  to  20m/s,   its  products  are  of  comparable  quality  to  scatterometry  but  there   is  significantly   larger  wind  direction  uncertainty   in  WindSat   retrievals   at   typical  wind   speed.   Furthermore,  different   versions  of  WindSat  wind   speeds   can  be  biased  either  high  or   low   in  high  wind  speed  conditions  such  as   tropical  or  extra-­‐tropical  cyclones.  WindSat  wind  vector  retrievals   are   much   more   susceptible   to   error   in   cloudy   and   rainy   conditions,   which   are   often   associated   with  extreme  weather  events.  

• Synthetic  Aperture  Radar  (SAR):  C-­‐band  and  L-­‐band  SAR  systems  have  been  used  to  retrieve  surface  winds  on  ERS1,  ERS2,   Envisat,   RADARSAT1,   ALOS,   and   RADARSAT2.   Also   X-­‐band   SAR   algorithms   are   being   developed   to   retrieve  winds  on  COSMO-­‐SkyMed  and  TerraSAR-­‐X.  SAR  has  the  advantage  of  being  able  to  generate  images  on  a  much  finer  spatial  scale  (as  small  as  <10  m).  The  directional  dependence  of  SAR-­‐derived  vector  winds  is  much  less  certain  than  for  scatterometers.  

• Scalar  Wind  Sensors:  surface  wind  speeds  (at  10  m  height,  without  directions)  are  routinely  estimated  from  passive  microwave   radiometers   (SSM/I,  AMSR-­‐E,  TMI,  SSMIS)  on  a   spatial   scale  of   roughly  25  km.  These   instruments  are  quite  accurate  (rms  differences  <1m/s  relative  to  buoys)  under  typical  ocean  conditions,  but  do  not  retrieve  winds  in   rain.   Excellent   agreement   is   found   between   passive   radiometer  winds   and   vector  winds   from   scatterometers  despite   different   measuring   methods,   with   the   exception   of   a   few   small   regions   of   bias.   Altimeters   can   also  accurately  estimate  wind  speed  on  a  smaller  spatial  scale.  However,   the  sampling  from  current  altimeters   is  very  sparse.  

Page 42: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 42  of  88  

5.2.4 E-GEM Applicability

The   table   below   lists   the   GNSS-­‐R   retrieval   algorithms   for   ocean   scatterometric   applications,     and   identifies   the  scenarios  from  which  these  algorithms  can  be  applied  using  green  or  red  background  color.  

Retrieval  algorithm  ID   GROUND-­‐BASED   AIR-­‐BORNE   SPACE-­‐BORNE  

RA-­‐S1:  DM-­‐fit   NOT  APPLICABLE   APPLICABLE   APPLICABLE  

RA-­‐S2:  Multiple  DM-­‐fit   NOT  APPLICABLE   APPLICABLE   NOT  APPLICABLE  

RA-­‐S3:  DDM-­‐fit   NOT  APPLICABLE   APPLICABLE   APPLICABLE  

RA-­‐S4:  Trailing  edge   NOT  APPLICABLE   APPLICABLE   APPLICABLE  

RA-­‐S5:  Spreads   NOT  APPLICABLE   APPLICABLE   APPLICABLE  

RA-­‐S6:  Scatt.  delay   NOT  APPLICABLE   APPLICABLE   NOT  APPLICABLE  

RA-­‐S7:  DDM  Area/Vol.   NOT  APPLICABLE   APPLICABLE   APPLICABLE  

RA-­‐S8:  Discrete-­‐PDF   NOT  APPLICABLE   APPLICABLE   APPLICABLE  

RA-­‐S9:  NRCS   NOT  APPLICABLE   APPLICABLE   APPLICABLE  

RA-­‐S10:  Coherence  T   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

Table  5.2c:  Summary  of  the  applicability  of  GNSS-­‐R  ocean  scatterometry  retrieval  algorithms.  

5.3 Ocean: Salinity The  ocean  surface  salinity  relates  to  the  concentration  of  dissolved  salts  in  the  upper  layers  of  the  sea  water.  These  salts  have   been  delivered   into   the   oceans   by   the  weathering   of   rocks   throughout   Earth's   history.   At   short   time   scales,   its  variations  mostly  depend  on  the  addition  or  removal  of  fresh  water  by  different  mechanisms:  evaporation,  precipitation  of  rain  and  snow,  melting  and  freezing  of  the  sea  ice,  or  input  of  fresh  water  from  rivers.  The  ocean  plays  a  pivotal  role  in  the  global  water  cycle:  about  85%  of  the  evaporation  and  77%  of  the  precipitation  occurs  over  the  ocean  [Rhein  et  al.,  2013].   The   horizontal   salinity   distribution   of   the   upper   ocean   largely   reflects   this   exchange   of   freshwater,  with   high  surface  salinity  generally  found  in  regions  where  evaporation  exceeds  precipitation,  and  low  salinity  found  in  regions  of  excess  precipitation  and  runoff.  

The  salinity  and  temperature  influence  the  density  of  seawater,  variations  of  which  have  large  effects  on  the  water  cycle  and   ocean   circulation   and   stratification   patterns,   impacting   ocean's   capacity   to   store   heat   and   carbon   as   well   as   to  change   biological   productivity.   The   ocean   circulation   patterns  moderate   climate   by   bringing  warm   surface  waters   to  higher   latitudes   and   cool   deeper   waters   back   to   equatorial   regions.   Because   of   its   relevance   to   the   climate,   ocean  salinity  is  addressed  in  the  Assessment  Reports  (AR)  of  the  Intergovernmental  Panel  on  Climate  Change  (IPCC).  The  last,  fifth   report,   AR5   [Rhein   et   al.,   2013],   states   that   it   is   very   likely   that   regional   trends   have   enhanced   the   mean  geographical  contrasts   in  sea  surface  salinity  since  the  1950s:  saline  surface  waters   in  the  mid-­‐latitudes  (evaporation-­‐

Page 43: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 43  of  88  

dominated)   have   become  more   saline,   while   relatively   fresh   surface   waters   in   rainfall-­‐dominated   tropical   and   polar  regions  have  become   fresher.   The  mean   contrast  between  high-­‐   and   low-­‐salinity   regions   increased  by  0.13  psu   from  1950  to  2008.  Similar  conclusions  were  reached   in  AR4  [Bindoff  et  al.,  2007],   in  which  surface  and  subsurface  salinity  changes  consistent  with  a  warmer  climate  were  highlighted,  based  on   linear  trends  for  the  period  between  1955  and  1998.   Recent   studies   based   on   expanded   data   sets   and   new   analysis   approaches   provide   high   confidence   in   the  assessment  of  trends  in  ocean  salinity.  

Ocean   surface   salinity,   together   with   the   temperature,   are   the   main   parameters   driving   its   dielectric   properties.  Weather  satellites  have  been  available  to  determine  sea  surface  temperature  information  since  1967,  however,  salinity  has   remained   poorly   observed.   L-­‐band   is   sensitive   to   changes   in   water   surface   permittivity,   with   relatively   little  contamination   by   other   parameters   such   as   surface   roughness.   For   this   reason   two   L-­‐band   radiometers   aboard   Low  Earth  Orbiters,  after  correcting  for  temperature  and  roughness  contributions,  are  providing  global  measurements  of  the  sea  surface  salinity:  ESA's  SMOS  and  NASA's  Aquarius.  

5.3.1 GNSS-R Status on Sea Surface Salinity Applications and Retrieval Algorithms

Little   work   has   been   done   in   the   field   of   the   ocean   salinity   applications   using   GNSS   reflectometry.   [Zavorotny   and  Voronovich,  1999]  detected  that   [RA-­‐OS1]   the  co-­‐polar  normalized  bi-­‐scattering  cross-­‐section  at  off-­‐nadir  directions  presents  sensitivity  to  permittivity  changes  in  the  water.  The  study  was  based  on  the  small  slope  approximation  (SSA)  scattering  model.  This  was  never  confirmed  by  experimental  evidence,  neither  further  developed.  E-­‐GEM  applicability:  ground-­‐based  and  air-­‐borne  system  if  they  were  polarimetric  (they  are  not)  and  space-­‐borne  system.  

[Cardellach  et   al.,   2006]   suggested  a   technique  based  on   [RA-­‐OS2]   the  polarimetric  phase-­‐interferometry   (POPI),   or  phase-­‐shift   between   the   circular   co-­‐polar   and   cross-­‐polar   components   of   the   reflected   signal.   The   complex   Fresnel  coefficients  at  L-­‐band,  in  a  circular  base  of  polarization,  present  a  phase-­‐shift  between  polarimetric  components  rather  independent  of  the  incidence  angle.  This  makes  this  observables  less  affected  by  geometry  and  surface  roughness.  The  technique   was   tested   with   data   from   an   experimental   airborne   field   campaign.   The   resulting   complex   polarimetric  interferometric  field  was  largely  coherent,  despite  each  of  the  polarimetric  field  components  were  highly  non-­‐coherent.  That   is,   the   very   frequent   random   phase   jumps   induced   by   the   roughness   were   essentially   the   same   on   both  polarimetric  fields,  so  the  polarimetric-­‐interferometric  one  was  essentially  coherent.  The  resulting  phase  has  a  smooth  and  slowly  changing  evolution,  essentially  given  by   the  phase  wind-­‐up  effects   (geometry)  of   the  observations.  Proper  modelling  of  these  geometric  effects,  plus  instrumental  ones  (antenna  phase  patterns,  etc)  would  be  required  to  correct  them   and   extract   the   dielectric   properties   of   the   surface   water.     E-­‐GEM   applicability:   ground-­‐based   and   air-­‐borne  system  if  they  were  polarimetric  (they  are  not)  and  space-­‐borne  system.  

5.3.2 GNSS-R Sea Surface Salinity Missions

ESA's   GEROS-­‐ISS   is   the   only   GNSS-­‐R   mission   among   those   planned   or   under   study   that   considers   acquiring   GNSS  reflections  at  dual-­‐polarization  [ESA,  2013].  

5.3.3 Other Related Techniques

The  main   providers   of   globally   distributed   data   sets   of   sea   surface   salinity   are   the   L-­‐band   radiometers   aboard   ESA's  SMOS  [Font  et  al.,  2010]  and  NASA's  Aquarius  [Lagerloef,  2012]  satellites.  These  instruments  measure  the  emissivity  of  L-­‐band   radiation  by   the  ocean   surface,   and  after   correcting   several   terms,   such  as  water   temperature,   roughness,  or  ionospheric  effects,  estimates  of  the  SSS  are  obtained.  

Page 44: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 44  of  88  

Besides   these   two   dedicated   space-­‐borne   instruments,   some   other   techniques   have   permitted   to  measure   SSS   from  other  non-­‐dedicated  and  existing  data  sets.  For  example,    [Reul  et  al.  2009]  demonstrated  that  Sea  Surface  Salinity  (SSS)  in   the   Amazon   Plume   area   can   be   already   retrieved   from   Space   combining   the   vertically   polarized   C   and   X-­‐bands  brightness   temperature   (Tbs)   data   from   the   Advanced   Microwave   Scanning   Radiometer   -­‐Earth   Observing   System  (AMSR-­‐E)   satellite.   Other   algorithms   have   also   been   used   to   extract   SSS   from   data   acquired   with   the   Moderate  Resolution  Imaging  Spectroradiometer  (MODIS)  [e.g.  Marghany  and  Hashim,  2011].  

5.3.4 E-GEM Applicability

The  table  below  lists  the  GNSS-­‐R  retrieval  algorithms  for  sea  surface  salinity  applications,    and  identifies  the  scenarios  from  which  these  algorithms  can  be  applied  using  green  or  red  background  color.  Red  “E-­‐GEM”  characters  indicate  that  despite  it  is  possible  to  use  the  technique  from  this  scenario,  the  E-­‐GEM  system  has  no  capabilities  to  apply  it.  For  these  particular   set   of   applications,   note   that   neither   of   the   algorithms   have   been   proved   with   experimental   data   (white  background  =  TBC).  

Retrieval  algorithm  ID   GROUND-­‐BASED   AIR-­‐BORNE   SPACE-­‐BORNE  

RA-­‐OS1:  co-­‐polar  off-­‐specular  

UNCERTAIN  but  not  applicable  for  E-­‐GEM¹  

UNCERTAIN  but  not  applicable  for  E-­‐GEM¹  

UNCERTAIN  

RA-­‐OS2:  POPI   UNCERTAIN  but  not  applicable  for  E-­‐GEM¹  

UNCERTAIN  but  not  applicable  for  E-­‐GEM¹  

UNCERTAIN  but  not  applicable  for  E-­‐GEM²  

¹  E-­‐GEM  ground-­‐based  and  air-­‐borne  systems  have  not  polarimetric  capabilities.  

²  E-­‐GEM  space-­‐borne  system  will  not  provide  phase-­‐information,  only  non-­‐coherently  integrated  values.  

Table  5.3a:  Summary  of  the  applicability  of  GNSS-­‐R  SSS  retrieval  algorithms.  

5.4 Land: Soil Moisture Soil  moisture   is  usually  defined  as   the  water  present   in   the  unsaturated  part  of   the   soil  profile,   i.e.  between   the   soil  surface   and   the   ground   water   level.   It   can   be   expressed   in   different   units.   The   most   common   definition   is   total  volumetric  soil  moisture,  expressed  as  the  depth  of  a  column  of  water  contained  in  a  given  depth  of  soil  (in  mm  or  cm),  or  as  the  volumetric  percent  of  water  in  a  given  soil  depth  (in  percent  or  m³/m³).  A  fraction  of  soil  consists  of  pores  that  can  be  filled  with  air  or  water.  This  fraction  is  called  the  “porosity”.  If  this  fraction  were  completely  filled  with  water,  the  soil  would  reach  its  maximum  soil  moisture  content  or  saturation.  Hence,  soil  moisture  can  also  be  expressed  as  fraction  of  saturation,  between  0  and  1.  A  similar  definition  may  refer  to  weight  instead  of  volume,  that  is  the  gravimetric  soil  moisture  is  defined  as  percent  of  water  mass  for  a  given  bulk  soil  mass.  This  is  the  parameter  measured  by  gravimetric  techniques,   i.e.  measuring  soil   sample  weight  before  and  after  a  drying  period.  Furthermore,  using  the  so-­‐called   field  capacity  and  permanent  wilting  point,  a  further  soil  moisture  definition  is  sometimes  encountered,  usually  termed  soil  moisture  index  (SMI).  This  is  a  measure  of  soil  moisture  content  as  ratio  of  the  total  storage  available  to  plants  (varying  between  0  and  1).  While  above  definitions  express  soil  moisture  in  relative  terms,  i.e.  as  ratio  of  a  given  soil  volume  or  water  storage  [m3/m3]  or  [mm/mm],  soil  moisture  can  also  be  defined  in  absolute  terms  (water  depth  [mm]  or  mass  [kg]).    Among  all   these  units  and  definitions,   [ESA  EOP-­‐SE,  2011]   requires   the   soil  moisture  essential   climate  variable  (ECV)  to  be  expressed  in  a  volumetric  ratio  unit.  

Page 45: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 45  of  88  

[ESA  EOP-­‐SE,  2011]  reports  how  changes  in  soil  moisture  are  an  important  component  of  the  global  climate  change,  and  the   reasons   behind   this   statement.   Most   significantly,   soil   moisture   is   responsible   for   partitioning   the   outgoing  convective   fluxes   from   land  surfaces  between  sensible  and   latent  heat   flux.  Changes   in   the  balance  between  the  two  types  of  fluxes  have  an  immediate  and  strong  effect  on  the  resulting  surface  temperature.  Furthermore,  soil  moisture  in  itself   represents   the  main   source   of   natural  water   resources   for   agriculture   and   vegetation   growth   in   general.   Apart  from  affecting  the  vertical  fluxes  of  energy  and  water  at  the  land-­‐atmosphere  boundary,  the  spatial  distribution  of  soil  moisture   also   influences   the   horizontal   fluxes   (runoff).   Moreover,   soil   moisture   is   also   one   of   the   most   important  components  of  meteorological  memory  for  the  land  climate  system,  soil  moisture  anomalies  (together  with  presence  of  snow  cover)  being  an  important  initial  condition  for  seasonal  forecasts.  In  terms  of  dynamics,  soil  moisture  presents  the  same  high  spatio-­‐temporal  variability  as  the  other  main  hydrological  parameters  over  land  (precipitation,  evaporation,  runoff).  An  adequate  monitoring  of  this  parameter  for  climate  purposes  is  thus  crucial.  

ESA's  SMOS  mission  contributes   filling   this  gap  by  providing  a  global   image  of  surface-­‐soil  moisture  every   three  days.  This  information,  along  with  numerical  modelling  techniques,  results  in  a  better  estimation  of  the  water  content  in  soil  down   to   a   depth   of   1-­‐2   m,   which   is   referred   to   as   the   ‘root   zone’.   Estimation   of   soil   moisture   in   the   root   zone   is  important   for   improving   short-­‐   and   medium-­‐term   meteorological   forecasting,   hydrological   modelling,   monitoring  photosynthesis  and  plant  growth,  and  estimating  the  terrestrial  carbon  cycle.  Timely  estimates  of  soil  moisture  are  also  important  for  contributing  to  the  forecasting  of  hazardous  events  such  as  floods,  droughts  and  heat  waves.  

[Ochsner  et  al.,  2013]  reviews  the  state-­‐of-­‐the-­‐art  on  large-­‐scale  soil  moisture  monitoring.  It  identifies  the  strengths  and  weaknesses  of   the  current  observational   system.   It   reports   that   large-­‐scale   soil  moisture  monitoring  has  advanced   in  recent  years,  creating  opportunities  to  transform  scientific  understanding  of  soil  moisture  and  related  processes.  These  advances   are   being   driven   by   researchers   from   a   broad   range   of   disciplines,   but   this   complicates   collaboration   and  communication;   and,   for   some   applications,   the   science   required   to   utilize   large-­‐scale   soil   moisture   data   is   poorly  developed.  

5.4.1 GNSS-R Status on Soil Moisture Applications and Retrieval Algorithms

The  possibility  of  using  GNSS  reflectometry   for  soil  moisture  monitoring  was   initially  suggested   in   [Kavak  et  al.,  1996]  and   [Kavak   et   al.,   1998]   looking   at   multipath   behaviour   of   GNSS   stations.   [Zavorotny   and   Voronovich,   2000b]   later  suggested   to   use   linear-­‐polarized   observations.   A   few   years   later,   a   simpler   approach   was   being   tested   in   several  campaigns,  for  which  only  the  circular  cross-­‐polar  component  of  the  reflected  field  was  acquired  [Masters  et  al.,  2004;  Katzberg  et  al.,  2006b],  often  normalized  by  the  direct  co-­‐polar  one.  Later  on,    several  studies  further  developed  each  of  these   techniques,   either   by   inspecting   features   of   the   linearly   polarized   reflected   signals   around   interferometric  patterns   (notches   in   the   V-­‐pol   interferometric   pattern   technique)   [Rodriguez-­‐Alvarez   et   al.,   2009],   amplitude   of   the  interference  pattern  [Larson  et  al.,  2010],  or  extending  the  cross-­‐polar  ratio  technique  to  both  circular  ones  [Egido  et  al.,  2012].  Recently,  the  relative  contribution  of  the  coherent  and  incoherent  scattering  has  been  studied  using  the  SAVERS  Simulator   [Pierdicca  et  al.,  2014].  The   latter   includes  the  Advanced   Integral  Equation  Model   in   the  simulations  of  Soil  Moisture  and  Roughness  effects  on  the  GNSS  reflected  signal  at  both  Left  and  Right  Circular  polarization.  

Several   techniques   to   extract   soil   moisture   information   contents   can   be   found   in   the   literature.   They   are   mostly  sensitive   to   the   1–2   cm   upper   layer   [Katzberg   et   al.,   2005].   A   summary   of   the   GNSS-­‐R   retrieval   algorithms   for   soil  moisture  are  listed  below  (labeled  [RA-­‐M#]):  

• [RA-­‐M1]  Normalized  linearly  polarized  reflected  field,  and  its  ratios:  [Zavorotny  and  Voronovich,  2000b]  suggested  a  method  that  assumes  that  the  received  signal  power  is  proportional  to  the  product  of  two  factors:  a  polarization  

Page 46: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 46  of  88  

sensitive  factor  dependent  on  the  soil  dielectric  properties  and  a  polarization  insensitive  factor  that  depends  on  the  surface   roughness.   Therefore,   the   ratio   of   the   two   orthogonal   polarizations   excludes   the   roughness   term   and  retains   the   dielectric   effects.   This   approach  was   tested  with   the   first-­‐order   small   slope   approximation  model   in  [Zavorotny   and   Voronovich,   2000b]   and   later   checked   experimentally   in   [Zavorotny   et   al.,   2003].   This   latter  reference  note   that   real  data  did  not  support   this  hypothesis.  Some  of   the  assumptions  might  be  too  crude,  and  better  modeling  is  required.  E-­‐GEM  applicability:  TBC.  

• [RA-­‐M2]   Circular   cross-­‐polar   field:   this   technique   simply   uses   the   LHCP   SNR   as   the   observable,   from  which   the  surface  reflectivity  is  extracted.  It  can  be  normalized  by  the  direct  power  level  or  even  calibrated  with  observations  over  smooth  water  bodies.  It  was  first  used  in  [Masters  et  al.  2004],  and  later  in  other  studies  [e.g  Katzberg  et  al.,  2006b].  E-­‐GEM  applicability:  ground-­‐based  and  air-­‐borne,  space-­‐borne  TBC.  

• [RA-­‐M3]   Circularly   polarized   Interferometric   Pattern   Technique:     [Kavak   et   al.,   1996,   1998]   showed   results   on  dielectric   properties   of   soils   from   inspecting   the   power   fluctuations   of   the   interference   of   the   direct   and   the  reflected  electric  fields  as  the  GNSS  transmitter  satellite  moves.  E-­‐GEM  applicability:  ground-­‐based.  

• [RA-­‐M4]  Linearly  polarized    Interferometric  Pattern  Technique  at  1  notch:  the  previous  method  was  switched  to  receiving  linear  polarizations  (V-­‐pol  in  [  Rodriguez-­‐Alvarez  et  al.,  2009]  and  both  H-­‐  and  V-­‐pol  in  [Rodriguez-­‐Alvarez  et   al.,   2011]).   In   this   new   basis   of   polarization   the   V-­‐polarization   can   easily   capture   the   null   reflectivity   at   the  Brewster’s   angle   (otherwise  masked  by   the  H-­‐pol  when  using   circularly   polarized   antennas).   This   null   reflectivity  results  in  a  'notch'  or  angle  at  which  the  interferometric  amplitude  oscillations  are  minimum  (null).  As  the  Brewster  angle  changes  with  soil  moisture  content,   so   it  does   the  elevation  angle  at  which   the  resulting  notch  appears.  E-­‐GEM  applicability:  ground-­‐based  if  it  were  polarimetric  (it  is  not).  

• [RA-­‐M5]  Amplitude  of  the  multipath  interference  (GNSS-­‐MR):  if  the  former  technique  looks  at  the  location  of  the  interferometric  notches,  this  technique  simply  relates  the  amplitude  of  the  oscillations  to  soil  moisture  variations.  It  has  been  used  in  several  studies  [e.g.  Larson  et  al.,  2010]  and  currently  is  operationally  implemented  and  providing  data  at  the  PBO  H2O  project  (http://xenon.colorado.edu/portal/).  E-­‐GEM  applicability:  ground-­‐based.  

• [RA-­‐M6]     Circular   polarimetric   Interferometric   Complex   Field   measurements   (pol-­‐ICF):   [Egido   et   al.,   2014]  separated   the   coherent-­‐scattered   part   of   the   signal   from   the   ICF   (ratio   between   the   direct   and   reflected  waveform’s   peak)   by   subtracting   the   variance   of   the   ICF.   Both   co-­‐   and   cross-­‐polar   ICF   showed   sensitivity   to   soil  moisture   changes.   It   was   also   observed   that   changes   in   the   surface   roughness   caused   strong   variations   on   the  signals.   If   the   signal  were  completely   coherent,   this  problem  could  be  essentially   solved  using   the   ratio  between  cross-­‐polar  ICF  and  co-­‐polar  ICF,  which  is  rather  independent  of  the  surface  roughness.  However,  in  the  case  of  high  surface  roughness,  the  incoherent  components  predominates,  so  that  a   long  coherent   integration  time  should  be  used   to   isolate   the  coherent  component.  Furthermore,   the  circular   co-­‐polar   component  of   the   reflected  signal   is  very   low  and   its  detection   requires  a   very   sensitive   instrumentation.     E-­‐GEM  applicability:   ground-­‐based  and  air-­‐borne  if  they  were  polarimetric  (they  are  not).  

5.4.2 GNSS-R Soil-Moisture Missions

In  principle  any  of  the  missions  listed  in  Sections  5.1  and  5.2  will  over-­‐pass  continental  areas.  However,  the  reflectivity  of   land   reflections   may   be   very   low,   and   the   performance   of   space-­‐borne   GNSS-­‐R   for   soil   moisture   applications   is  uncertain.   Among   the   planned/developing  GNSS-­‐R  missions,   those  with   higher-­‐gain   antennas   have   larger   chances   of  providing  soil  moisture  measurements:  ESA  PARIS-­‐IOD  and  ESA  GEROS-­‐ISS.  

Page 47: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 47  of  88  

5.4.3 Other Related Techniques

As  explained  in  [Ochsner  et  al.,  2013],  remote  sensing  approaches  for  soil  moisture  monitoring  have  been  investigated  since  the  1970s,  although  the  first  dedicated  soil  moisture  mission,  ESA's  SMOS,  was  not  launched  until  2009.  However,  soil   moisture   estimates   are   also   being   retrieved   from   satellite   instruments   not   specifically   designed   for   sensing   soil  moisture,   most   notably   from   microwave   sensors   operating   at   suboptimal   frequencies.   The   Advanced   Microwave  Scanning  Radiometer  for  the  Earth  Observing  System  (AMSR-­‐E)  instrument  was  carried  into  orbit  aboard  the  NASA  Aqua  satellite   in   2002   and   provided   passive   measurements   at   six   dual-­‐polarized   frequencies   until   October   2011,   when   a  problem  with  the  rotation  of  the  antenna  ended  the  data  stream.    Soil  moisture  information  is  also  being  retrieved  from  active  microwave  sensors,  specifically  from  ESA's  Advanced  Scatterometer  (ASCAT),  which  was  launched  in  2006  aboard  the  MetOp-­‐A  meteorological  satellite  (and  before  that  from  ASCAT's  predecessors,  the  European  Remote  Sensing  (ERS)  satellites)   The   ERS   and   ASCAT   instruments   are   C-­‐band   radar   scatterometers   designed   for   measuring   wind   speed;  however,  soil  moisture  retrievals  have  also  been  developed.  An  operationally  supported,  remotely  sensed  soil  moisture  product  derived  from  the  ASCAT  instrument   is  currently  available.  The  recent   launch  of  Sentinel-­‐1  can  provide,  at  the  end  of   the  commissioning  phase,  another   source  of   soil  moisture   information  as   the   short   revisit   time  of   the  C-­‐band  radar,  when  both  satellites  (A  and  B)  will  be  operating  ,  offer  the  opportunity  to  retrieve  frequent  soil  moisture  maps  at  relatively  high  resolution.  Finally  in  November  2014  it   is  planned  the  launch  of  the  NASA  mission  SMAP  (Soil  Moisture  Active   Passive)   which   will   carry   on   board   an   L-­‐band   radiometer   and   a   radar   jointly   working   to   provide   better   soil  moisture  maps  at  different  scales  (36,  9  and  3  km).  

The   GNSS-­‐R   technique,   collecting   mainly   signal   scattered   around   the   specular   direction,   could   provide   independent  information  with   respect   to  monostatic   radars   and   radiometers,   and   this   synergy   could   be   exploited   through  proper  data  integration  approaches.  

[ESA   EOP-­‐SE,   2011]   also   lists   possible   sources   of   global   soil  moisture   data   suitable   as   essential   climate   variables   and  their  current  performance.  The  primary  sources  would  be:  

• AMSR-­‐E  0.050-­‐0.148  m³/m³  

• WindSat  4%  

• TMI  2.5%  

• SSM/I  5.49%  

• SMMR  N/A  

• ASCAT-­‐A  0.035–0.060  m³/m³  

• ERS  Scatterometer:  0.022–0.084  m³/m³  

A  list  of  secondary  sources  is  also  given,  and  it  includes  several  SAR  and  Radar  Altimeter  missions.  

Current  products  coming  from  dedicated  soil  moisture  space  missions  are  delivered  (or  are  planned  to  be  delivered)  in  a  daily  basis:  

• The  ESA’s  SMOS  mission,  launched  in  November  2010,  has  a  3-­‐day  global  coverage,  with  ascending  and  descending  passes  at  6am/6pm,  respectively  (Kerr  et  al.  2010,  Font  el  at.  2010).  It  provides  an  L2  product,  surface  soil  moisture  

Page 48: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 48  of  88  

at  ~43  km  spatial   resolution  (delivered   in   ISEA4h9  discrete  global  grid,  15km  inter-­‐cell  distance).  Target  accuracy:  0.04  m3  m-­‐3.  Format:  binary  (dbl+hdr)..  

• The  NASA’s  SMAP  mission,  to  be  launched  in  November  2014,  will  have  a  3-­‐day  global  coverage,  with  ascending  and  descending  passes  at  6  am/6  pm.  (Entekhabi  et  al.  2010).  It  will  provide  a  L2P  surface  soil  moisture  product  at  40  km   spatial   resolution   from   radiometer   measurements.   Target   accuracy:   0.04   m3   m-­‐3   conditioned   to   Vegetation  Water  Content  (VWC)  <5  kg  m-­‐2.  SMAP  plans  to  provide  a  10-­‐km  resolution  soil  moisture  product  (L2A/P)  using  an  optimal   algorithm  combining   the   SMAP   radar   (3-­‐km   resolution)   and   radiometer   (40-­‐km   resolution)  observations.  The  desired  accuracy  of  the  10-­‐km  soil  moisture  product  is  0.04  m3  m-­‐3.  SMAP  also  plans  to  provide  a  3-­‐km  product  (L2A)   from   radar   observations   only   with   a   relaxed   target   accuracy   of   0.06  m3  m-­‐3.   Products   will   be   provided   in  netCDF  format  and  EASE  grids  of  3  km  (L2A),  9  km  (L2A/P)  and  36  km  (L2P).  

5.4.4 E-GEM Applicability

The  retrieval  of  soil  moisture  from  GNSS  reflectometers  is  an  emerging  field;  E-­‐GEM  is  a  pioneer  project  in  this  direction,  aiming  at  doing  fundamental  research  for  setting  the  bases  of  future  space  programs.  Key  aspects  to  be  considered  in  soil  moisture  retrievals  from  GNSS-­‐R:  

• Possibility  of  higher  spatial  resolutions  than  microwave  radiometers  

• Less   accuracy   (to  be   confirmed)     than  microwave   radiometers  due   to   increased   speckle  noise   (to  be   reduced  by  incoherent  averaging,  at  the  expense  of  poorer  spatial  resolution).  

• Geometry  of  bistatic  radar  systems  ,  speckle  noise  effects.  

• From  the  soil  bistatic   scattering  coefficient   (depending  on   the   incidence  angle,  θ),   the  surface  dielectric  constant  can  be  –in  principle-­‐  estimated  and  then  the  SM  retrieved  

• The  footprint  of  the  observations  is  the  first  Fresnel  Zone  that  depends  on  the  receiver  height  (that  could  be  on  a  plane  or  a  satellite),  the  GPS  constellation  and  the  frequency,  as  follows:  

 

 

[Eq.2.4a]  

Fr  =  The  Fresnel  Zone  radius  in  metres  

R1  =  The  distance  from  the  specular  reflection  point  on  the  surface  to  the  receiver  in  meters  (satellite  or  airborne)  

R2  =  The  distance  from  the  specular  reflection  point  on  the  surface  to  the  emitter  in  meters  (GPS  constellation)  

λ=  The  wavelength  of  the  transmitted  signal  in  metres  (e.g.  l=0.19  m  at  L1:  1575.42  MHz)  

R1  ,R2  depending  on  the  incidence  angle  (θ).  For  a  flat  Earth  (approximation  valid  only  for  low  heights  R(1,2,)=H(1,2)/cos(θ)  ).  

Page 49: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 49  of  88  

Considering   H1   height   of   the   receiver   (~630   km   for   our   nanosatellite   and   300  m   for   airplane),   H2   height   of   the   GPS  satellites  (~22000  km),  a  Fresnel  Zone  radius  of  400  m  and  8  m  is  obtained  for  the  satellite  and  airborne  configurations,  respectively.  Note  these  numbers  are  only  indicative  and  should  be  confirmed  with  experimental  data.  

• Measurements  should  be  integrated  in  time  (amount  of  incoherent  averaging  to  be  confirmed)  to  obtain  accurate  soil  moisture  estimates.  The  spatial  coverage  of  the  observations  after  the  time  integration  as  well  as  the  optimal  method  to  combine  all  GNSS-­‐R  measurements  into  soil  moisture  maps  should  be  studied  to  set  up  grids  and  spatial  resolutions.  

• The   penetration   depth   of   the   signal   and   therefore   the   soil   moisture   sensing   depth   should   be   evaluated.   Using  radiometry  at  L-­‐band,  it  is  ~5  cm  but  could  increase  up  to  meters  in  very  dry  conditions.  Since  GNSS-­‐R  is  an  active  system,  the  penetration  depth  may  differ.  

 

 

Figure  2.4a:  Observations  of  soil  moisture  from  the  Light  Airborne  Reflectometerfor  GNSS-­‐R  Observations  (LARGO)  Instrument  (Alonso-­‐Arroyo  et  al.,  2013)  

Figure   2.4a   shows   soil   moisture   retrievals   from   an   airborne   field   experiment   over   Eastern   Australia   using   the   Light  Airborne   Reflectometer   for   GNSS-­‐R   Observations   (LARGO)   Instrument.     By   comparing   with   the   overlapped   aerial  photography,  LARGO  observations  seem  to  have  a  high  sensitivity  to  the  presence  of  water  bodies  (bottom  left  of  the  image),   and   to   changes   in   land   cover.   Further   experiments   with   ground  measurements   are   needed   to   quantify   the  goodness  of  the  estimates.  

The  table  below  lists  the  GNSS-­‐R  retrieval  algorithms  for  soil  moisture  applications,  and   identifies  the  scenarios   from  which   these   algorithms   can   be   applied   using   green   or   red   background   color.  White   background   identifies   uncertain  cases  (TBC).  Because  only  the  space-­‐borne  system  will  work  at  2-­‐polarizations,  some  of  these  techniques,  with  potential  

Page 50: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 50  of  88  

to  be  applied  to  ground-­‐based  and  air-­‐borne  system,  cannot  be  applied  to  the  particular  E-­‐GEM  systems  (indicated  with  red  “E-­‐GEM”  characters  on  green  background).  

Retrieval  algorithm  ID   GROUND-­‐BASED   AIR-­‐BORNE  SPACE-­‐BORNE    

RA-­‐M1:  Lin-­‐pol  ratio   UNCERTAIN  

RA-­‐M2:  Circ.  cross-­‐pol   APPLICABLE   APPLICABLE   UNCERTAIN  depending  on  SNR  levels?  

RA-­‐M3:  Circ-­‐pol  IPT   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

RA-­‐M4:  Lin-­‐pol  IPT   APPLICABLE  but  not  for  E-­‐GEM¹   NOT  APPLICABLE   NOT  APPLICABLE  

RA-­‐M5:  SNR  GNSS-­‐MR   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

RA-­‐M6:  pol-­‐ICF   APPLICABLE   APPLICABLE     UNCERTAIN,  to  be  verified  

¹  The  ground-­‐based  E-­‐GEM  system  has  not  dual  polarization  capabilities,  so  this  technique,  despite  generally  applicable  from  ground-­‐based  scenarios,  cannot  be  applied  in  the  particular  E-­‐GEM  ground-­‐based  system.  

²  The  air-­‐borne  E-­‐GEM  system  has  not  dual  polarization  capabilities,  so  this  technique,  despite  generally  applicable  from  air-­‐borne  scenarios,  cannot  be  applied  in  the  particular  E-­‐GEM  air-­‐borne  system.  

Table  5.4a:  Summary  of  the  applicability  of  GNSS-­‐R  soil  moisture  retrieval  algorithms.  

5.5 Land: Vegetation and Biomass Measurements  of  vegetation  state  are  required  for  climate  and  hydrologic  modeling  applications,  validation  of  satellite  estimates   of   land   surface   conditions,   and   testing   of   ecohydrological   hypotheses.   With   increasing   temperatures   and  amplified  drought  conditions  expected  in  the  long  term,  it  is  necessary  to  understand  how  water  is  used  by  vegetation  before  characterizing  climatic  and  soil–water  interactions  at  regional  and  global  areas.  The  vegetation  water  content  is  usually  given  in  kg/m².  

Phenology,   the   study   of   the   timing   of   biological   events,   integrates   climate–biosphere   relationships   and   is   used   to  evaluate  the  effects  of  climate  change.  Understanding  the  timing,  rate,  and  duration  of  vegetation  growth  is  key  in  the  study   of   global   change   and   the   carbon   cycle.   The   timing   of   vegetation   growth   controls   photosynthesis,   carbon  sequestration,   and   land–atmosphere  water  and  energy  exchange.  Optical  measurement  of   the  normalized  difference  vegetation  index  (NDVI)  are  commonly  used  for  these  purposes.  

In   particular,   information   on   forest   biomass,   its   height   and   disturbance   patterns   is   urgently   needed   to   improve   our  understanding  of   the   global   carbon   cycle   and   to   reduce  uncertainties   in   the   calculations   of   carbon   stocks   and   fluxes  associated  with  the  terrestrial  biosphere  [Biomass  MAG,  2012].  The  emission  of  carbon  dioxide  to  the  atmosphere  by  human   activity   has   been   recognised   as   the  major   driver   in   climate   change.   Terrestrial   ecosystems  play   an   important  role,   both   in   the   release   of   carbon   through   land   use   and   deforestation   and   in   the   sequestration   of   carbon   through  vegetation  growth  processes.  There  is  strong  evidence  that  the  terrestrial  biosphere  has  acted  as  a  net  carbon  sink  over  the   last   30   years,   removing   from   the   atmosphere   approximately   one   third   of   the   carbon   dioxide   emitted   from   the  

Page 51: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 51  of  88  

combustion  of  fossil  fuel.  Nevertheless,  terrestrial  ecosystems  are  the  largest  source  of  uncertainty  in  the  global  carbon  budget.   Uncertainties   lie   in   the   spatial   distribution   of   carbon   stocks   and   carbon   exchange,   and   in   the   estimates   of  carbon   emissions   resulting   from  human   activity   and   natural   processes.   A   central   parameter   in   the   terrestrial   carbon  budget   is   forest  biomass,  which   is   a  proxy   for   carbon.  Despite   its   crucial   role   in   the   terrestrial   carbon  budget,   forest  biomass   in   most   parts   of   the   world   is   poorly   quantified   owing   to   the   difficulties   in   taking   measurements   from   the  ground  and  the  lack  in  consistency  when  aggregating  measurements  across  scales.  

Biomass  of   low  vegetation,   such  as  grass  and  agricultural   crops,   is  measured   through   the  vegetation   (or  plant)  water  content,  and  it  is  usually  given  in  kg/m².  Large  scale  values  of  forest  biomass  are  usually  described  in  metric  gigatonnes  of  carbon  (GtC).  Small  scale  values  are  usually  quoted  in  terms  of  metric  tonnes  per  hectare  (t  ha⁻¹),  where  1  ha=10⁴  m²,  though  the  carbon  modelling  community  often  works  in  gC  m⁻².  

5.5.1 GNSS-R Status on Vegetation Applications and Retrieval Algorithms

The  potential  of  GNSS-­‐R  to  monitor  vegetation  variables  has  been  addressed  by  diverse  publications  e.g.  [Masters  et  al.,  2004;   Pierdicca   et   al.,   2007;   Rodríguez-­‐Álvarez   et   al.,   2010].   It   has   been   observed   that   the   presence   of   vegetation  attenuates  and  scatters  the  GNSS  signal  before  it   impinges  on  the  ground  and  after  it   is  reflected  to  the  receiver  [e.g.  Katzberg   et   al,   2006b;   Grant   et   al.,   2007].   Vegetation   leaves   its   imprint   on   the   waveform,   whose   parameters   can  therefore  be  used  for  vegetation  monitoring:  the  attenuation  effect  of  vegetation  modifies  the  GNSS-­‐R  waveform  peak,  while  incoherent  scattering,  when  present,  may  alter  its  width.  Also  theoretical  studies  [Ferrazzoli  et  al.,  2010]  predict  that  at  L-­‐band,  where  penetration  into  vegetation  cover  is  high,  coherent  specular  reflection  from  soil  is  not  masked  by  vegetation  and,  since  the  magnitude  of  the  reflected  signal  is  dependent  on  the  attenuation  of  the  canopy,  it  is  sensitive  to   the   vegetation  biomass.  More   recently,   (Pierdicca   et   al.,   2014),   an   end   to   end   simulator   has   been  developed   and  validated.  It  allows  to  show  how  the  geophysical  properties  of  the  land  surfaces  affect  the  magnitude  of  the  reflected  navigation  signals,  and  to  interpret  the  experimental  data.  

It   is  well   known   that  backscattering   from  vegetated  soils   is  not   correlated   to  a   single  variable,  but   it   is   influenced  by  complex   interactions  among  soil   scattering,  vegetation  attenuation  and  vegetation  scattering.   In  natural  environment  soil  and  vegetation  variables  evolve  simultaneously,  producing  effects  that  can  add  or  subtract  to  each  other.  This  gives  rise   to   the   so   called   “saturation   limit”   of  monostatic   radar.   On   its   side,   the   bi-­‐static   scattering   around   the   specular  direction  is  essentially  influenced  by  vegetation  attenuation  [Ferrazzoli  et  al.,  2000],  so  that  it  decreases  with  increasing  plant   biomass.   It   thus   provides   a   statistically   independent   piece   of   information   able   to   improve   the   solution   of   the  inverse  retrieval  problem  with  respect  to  considering  existing  monostatic  radar  only.  These  considerations  suggest,  for  instance,  the  complementarity  of  the  GNSS-­‐R  technique  with  the  Biomass  candidate  Earth  Explorer  mission,  foreseeing  P-­‐band   radar  data,   as  well   as  with   Sentinel-­‐1  dual  pol  measurements,   thus   improving   the   retrieval   accuracy  of  many  geophysical  parameters.  

The  retrieval  algorithms  found  in  the  literature  are  (labeled  as  [RA-­‐V#]:  

• [RA-­‐V1]:  H/V  linear  polarized,  multiple-­‐notch  Interferometric  Pattern  Technique  [Rodríguez-­‐Álvarez  et  al.,  2011]  is  a  technique  based  on  H/V  linearly  polarized  GNSS-­‐IPT  (see  Section  5.4,  [RA-­‐M4]),  but  where  more  than  one  notch  is  observed  and  from  which  the  vegetation  information  is  obtained.  By  simple  models  it  can  be  proved  that  when  a  vegetation   layer  with   a   finite   thickness   is   considered   between   the   air   and   the   soil   layers,  more   than   one   notch  appears  and  the  number  of  them  depends  on  the  thickness  of  this  layer.  One  of  the  notches  observed  is  due  to  the  Brewster’s  angle  and  the  rest  of  notches  are  due  to  the  oscillations  in  the  reflectivity  caused  by  multiple  reflections  in  the  vegetation  layer.  If  the  vegetation  layer  thickness  is  increased  up  to  3  m,  soil  layer  effects  are  negligible,  and  

Page 52: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 52  of  88  

the  equivalent  model  air  +  vegetation  +  soil  model  is  transformed  into  air  +  vegetation  model.  E-­‐GEM  applicability:  ground-­‐based  system  if  it  were  polarized  (it  is  not).  

• [RA-­‐V2]   GNSS-­‐MR   Normalized   Microwave   Vegetation   Index   (NMRI):   this   technique   isolates   the   multipath  signatures  in  data  from  the  geodetic  GNSS  stations  to  generate  a  new  observable,  related  to  the  RMS  variation  of  the  multi-­‐path  amplitude.  A  normalization  to  scale  this  RMS  by  its  maximum  value  is  performed  to  remove  the  first-­‐order   terrain   effect.   This   new   observable   is   called   Normalized   Microwave   Reflection   Index   (NMRI)   [Larson   and  Small,  2014].  [Small  et  al.,  2014]  shown  a  consistent  relationship  between  this  NMRI  and  vegetation  water  content  (VWC)   and     a   consistent   linear   relationship   between   NMRI   and   independent   optically   obtained   normalized  difference  vegetation  index  (NDVI)  cross  several  grassland  sites.  The  amplitudes  of  the  SNR  GNSS-­‐MR  show  a  nearly  linear   relationship   to   the   water   content   in   grasses   (0–0.5   kg/m²)   and   wheat   crops   (0–0.9   kg/m²),   however   the  simple   linear   relationship  breaks  down   in  vegetation  with  heavy  water   content,   such  as  alfalfa   [Wei  et  al,  2014].  This   technique   is   currently   operationally   implemented   and   providing   data   at   the   PBO   H2O   project  (http://xenon.colorado.edu/portal/).  E-­‐GEM  applicability:  ground-­‐based  system.  

• [RA-­‐V3]   Coherent  polarimetry   from   Interferometric   Complex   Field  measurements   (pol-­‐ICF):   [Egido   et   al.,   2012]  separated   the   coherent-­‐scattered   part   of   the   signal   from   the   ICF   (ratio   between   the   direct   and   reflected  waveform’s   peak)   by   applying   appropriate   integration   schemes.   [Egido   et   al.,   2014]   did   it   by   subtracting   the  variance   of   the   ICF.   This   observable,   at   cross-­‐polar   polarization,   showed   sensitivity   to   above   ground   biomass   in  ground-­‐based  experiments  (LEiMON  campaign)  and  air-­‐borne  campaigns  (GRASS  campaign)  [Guerriero  et  al.,  2013].  In   particular,   the   cross-­‐polar   coherent   ICF   experiences   a   monotonic   decrease   with   increasing   above   ground  biomass,  which  holds  for  up  to  more  than  300  t/ha.  The  calculated  sensitivity  yields  1.5  dB/(100  t/ha  ).  The  fact  that  the   measured   reflection   coefficient   does   not   saturate   with   biomass   is   a   remarkable   result,   since   conventional  monostatic   L-­‐band   radars   saturate   for   biomass   values   above   150   t/ha.   This   study   confirmed   that   the   most  significant  information  content  of  the  GNSS-­‐R  signal  is  held  by  its  coherent  component  and  that  efforts  are  needed  for  the  identification  of  the  coherent  integration  processing  suitable  to  the  extraction  of  the  coherent  component  from  higher  platforms.  E-­‐GEM  applicability:  ground-­‐based  and  air-­‐borne  systems,  space-­‐borne  TBC.  

5.5.2 GNSS-R VEGETATION Missions

In  principle  any  of  the  missions  listed  in  Sections  5.1  and  5.2  will  over-­‐pass  continental  areas.  However,  the  reflectivity  of   land  reflections  are   in  general  very   low,  and  the  performance  of  space-­‐borne  GNSS-­‐R  for  vegetation  applications   is  uncertain.   Among   the   planned/developing  GNSS-­‐R  missions,   those  with   higher-­‐gain   antennas   have   larger   chances   of  providing  vegetation  measurements:  ESA  PARIS-­‐IOD  and  ESA  GEROS-­‐ISS.  

5.5.3 Other Related Techniques

The  normalized  difference  vegetation  index  (NDVI)  is  one  of  the  most  widely  used  vegetation  remote  sensing  methods.  It   is   calculated   as   the   difference   between   the   near-­‐infrared   (NIR)   and   red   portion   of   visible   (VIS)   reflectance   values  normalized  over  the  sum  of  the  two.  NDVI  is  a  good  indicator  of  the  ability  of  plant  matter  to  absorb  photosynthetically  active  radiation,  therefore  NDVI   is  often  used  to  estimate  green  biomass  or  phytomass.  NDVI   is  also  used  to  estimate  other  vegetation  properties,  including  leaf  area  index  evapotranspiration,  and  primary  productivity.  

However,   NDVI   has   a   variety   of   shortcomings,   including:   problems   with   background   effects   from   soil,   atmospheric  effects,   smoke  and  aerosol   contamination,   cloud   cover,   complex   terrain,  weather,   and   interruption  of   signals   at  high  latitudes.  Standard  NDVI  products  are  derived  from  the  Moderate  Resolution  Imaging  Spectroradiometer  (MODIS)  and  other  satellites.  

Page 53: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 53  of  88  

Other   spectral  vegetation   indices   such  as   soil-­‐adjusted  vegetation   indices   (SAVI)   include  soil-­‐line  parameters,  but   it   is  not   as   commonly   used   as   NDVI.   Compared   with   NDVI,   SAVI   considerably   reduces   influences   from   soil   and   surface  roughness   resulting   in   a   lowered   vegetation   index   signal.   Although   SAVI   reduces   soil   effects,   it   still   yields   imprecise  vegetation   estimates,   particularly   when   there   is   limited   vegetation   cover.   The   normalized   difference   water   index  (NDWI),  another  optical  remote-­‐sensing  method,  utilizes  a  water  absorption  band  at  1.24  μm.  However,  NDWI  is  not  a  better  predictor  of  vegetation  water  content  than  NDVI,  especially  at  sites  with  soil  background  reflectance  effects.  

Unlike   the  optical  methods   listed  above,  microwave  radar  measurements  are  not  hindered  by  cloud  cover  or   time  of  day.   In   the   microwave   wavelengths,   radar   signals   are   sensitive   to   surface   roughness   and   the   water   content   of  vegetation   and   surface   soil   [Ulaby   et   at,   1986].   Therefore,   the   primary   challenge   when   using   microwave   data   for  vegetation   studies   is   removing   the   effects   of   soil  moisture   and   surface   roughness.   Vegetation  mapping   via   Synthetic  Aperture  Radar  (SAR),  at  L-­‐  and  C  bands,  is  similarly  complicated  by  the  effects  of  soil  moisture  and  surface  roughness.  Although  active  microwave   sensing  can  be  used   to  estimate  biophysical  parameters,   this   type  of  data   is  not   currenly  used   to  monitor   changes   in   vegetation   status   at   high   frequencies   (i.e.,   daily).   Space-­‐bome   SAR   is   used   for   one-­‐time  surveys  or  multi-­‐temporal  analyses  with  repeat  times  of  months  or  longer.  

P-­‐band  instruments  are  more  suitable  for  direct  detection  of  the  biomass.  Because  of  its  wavelength,  much  longer  than  L-­‐  and  C-­‐band  instruments:  

• P-­‐band  backscatter  has  the  highest  sensitivity  to  biomass  compared  to  all  other  frequencies  that  can  be  exploited  from  space.  

• P-­‐band   displays   high   temporal   coherence   over   repeat   passes   separated   by   several  weeks,   even   in   dense   forest,  allowing   the   use   of   PolInSAR   to   retrieve   forest   height   and,   forest   vertical   structure   from   space   in   tomographic  mode.  

• P-­‐band  is  highly  sensitive  to  disturbances  and  temporal  change  of  biomass.  

A  polarimetric  P-­‐band  SAR  will  be  the  payload  of  ESA  Biomass  mission  [Biomass  MAG,  2012].  

5.5.4 E-EGM Applicablility

The   table   below   lists   the   GNSS-­‐R   retrieval   algorithms   for   vegetation   and   biomass   applications,   and   identifies   the  scenarios  from  which  these  algorithms  can  be  applied  using  green  or  red  background  color.  “E-­‐GEM”  in  red  characters  when  the  E-­‐GEM  system  particularities  hinders  the  applicability.  

Retrieval  algorithm  ID   GROUND-­‐BASED   AIR-­‐BORNE   SPACE-­‐BORNE  

RA-­‐V1:  Lin-­‐pol  IPT   APPLICABLE  but  not  for  E-­‐GEM¹   NOT  APPLICABLE   NOT  APPLICABLE  

RA-­‐V2:  GNSS-­‐MR  NMRI   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

RA-­‐V3:  pol-­‐ICF   APPLICABLE   APPLICABLE   UNCERTAIN,  to  be  verified  

¹  The  ground-­‐based  E-­‐GEM  system  is  has  not  dual-­‐polarization  capabilities.  

Table  5.5a:  Summary  of  applicability  of  the  GNSS-­‐R  vegetation/biomass  retrieval  algorithms.  

Page 54: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 54  of  88  

5.6 Hydrology: Inland-water Bodies Water-­‐level   monitoring   of   lakes,   rivers   and   other   inland   water   bodies   is   a   particular   application   of   the   algorithms  detailed  in  Section  5.1.  Some  of  the  techniques  and  experiments  detailed  in  Section  5.1  refer  to  GNSS-­‐R  studies  made  over  lakes  and  rivers.  

5.7 Cryosphere: Snow Climate  scientists  have  known  for  quite  some  time  that  polar  areas  experienced  an  enhanced  response  to  any  change  in  climate  as  a  consequence  of  a  number  of  positive  feedbacks  (e.g.  sea  ice  albedo)  operating  in  the  region.  At  the  same  time  polar  regions  are  also  thought  to  be  an  important  component  of  the  climate  system.  

[Lemke  et  al.,  2007]  stated  that,  due  to  the  extreme  polar  environmental  conditions,  the  surface  mass  balance  and   its  most   important   parameter,   the   snow   accumulation,   are   poorly   retrieved.   Moreover,   the   European   Commission,  through  the  GMES  Bureau,  has  identified  a  set  of  Essential  Climate  Variables  (ECV)  the  provision  of  which  needs  to  be  secured  at  European  and  global  scale.  The  snow  cover  is  among  them  [Uppala  et  al.,  2011;  Stitt  et  al.,  2011].  

Besides   its   relevance   for   global   climate   studies,   the   snow   is   also   an   important   component   of   the   regional   climate  systems,  as  well  as  a  critical   storage  component   in   the  hydrologic  cycle.  Snow  water  equivalence   (SWE),   is   the  most  important  parameter  for  hydrological  study  because  it  represents  the  amount  of  water  potentially  available  for  runoff  [Larson  et  al.,  2009].  Management  of  water  supply  and  flood  control  systems  requires  measurement  of  the  amount  of  water  stored  in  the  snowpack  and  forecasting  the  rate  of  melt  are  thus  essential.  Typically,  snow  data  such  as  SWE  and  snow   depth   are   often   available   in   considerable   temporal   detail   from   a   single   point   (e.g.   from   snowpack   telemetry  networks),  but  the  spatial  resolution  of  snow  property  data  is  poor.  

The  use  of  space-­‐based  systems  for  tracking  the  Polar  regions  started  approximately  in  the  late  70’s.  Since  1978,  a  wide  base  of  knowledge  about  microwave  and  optical  signatures  has  been  acquired,  initially  focused  on  sea-­‐ice  applications.  The  different  techniques  employed  are  mainly  based  on  radar  backscattering  or  radiometric  measurements,  including  combinations  of  multiple  sensors.  These  techniques  were  later  adapted  to  characterize  the  snow  cover  over  large  areas  [Drinkwater  et  al.,  

2001;  Markus  et  al.,  2006].  Despite  these  emerging  techniques,  snow  cover  as  an  ECV  presents  data  gaps.  For  instance,  snow   cover   data   from  many   sources   need   to   be   blended   to   obtain   globally   applicable   data   [Fabra,   2013].   Standard  methods  are  needed   to   validate  and  quantify   the  accuracy  of   satellite-­‐based  passive  microwave   retrieval   algorithms.  Snow-­‐cloud  discrimination  needs  to  be  improved  while  avoiding  sensor  saturation.  Errors  associated  with  not  detecting  snow  cover  under  forest  canopy  need  to  be  quantified  and  techniques  developed  to  adjust  for  these  errors  [Stitt  et  al.,  2011].  

Continental   snow   is   monitored   for   hydrological   reasons   in   a   limited   number   of   sites   by   dedicated   snowpack  measurement  networks.  However,  their  resolution  and  coverage  is  not  sufficient  [Molotch  and  Bales,  2006].  Remote  sensing   instruments   on   airborne   platforms   are   an   alternative   to   ground-­‐based   measurements   of   snow   properties.  Optical   sensors   provide   important   information   on   snow-­‐covered   area,   but   cannot   provide   information   about   snow  depth,   density,   or   SWE.   SWE   can   also   be   measured   with   passive   microwave   instruments   [e.g.   Chang   et   al.,   1982],  resulting  in  valuable  estimates  of  the  SWE  spatial  distribution  on  a  coarse  grid  (25  km),  when  terrain  is  gentle  and  over  high  latitudes.  However,  the  technique  is  prone  to  errors  over  mountain  areas.  SAR  and  Lidar  represent  new  techniques  for  snow  characterization,  both  promising  to  achieve  fine  spatial  resolutions.  

Page 55: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 55  of  88  

As  stated  in  [Scherer  et  al.,  2005],  unfortunately  not  all  of  the  snow  variables  can  be    retrieved  with  sufficient  accuracy  at  the  spatial  and  temporal  scales  provided  by  current  spaceborne  systems.  This  holds  true  particularly  for  SWE,  which  is  one  of  the  most  important  snow  variables  in  hydrology.  Future  research  and  technological  developments  with  respec  to  remote   sensing   of   snow   cover   from   space   should   set   emphasis   on   SWE   determination   at   higher   spatial   resolutions  without  decreasing  temporal  resolution.  Multiscale  approaches  by  different  sensors  on  the  same  satellite  platform  can  be  highly   interesting,   since  down-­‐scaling  approaches   for  different  snow  properties  may  be  tested  on  optimally  suited  data  sets.  

The  E-­‐GEM  project  migh  have  potential  to  contribute  to  this  observational  system.  

5.7.1 GNSS-R Status on Snow Applications and Retrieval Algorithms

Low  density  snow,  dry  snow  with  little  wet  content,  is  rather  transparent  to  L-­‐band  signals.  The  monitoring  of  large  ice  sheet  extensions,   such   the  Antarctic  plateau,  might  benefit   from  the   transparency  of   snow  to  L-­‐band  GNSS-­‐R  signals.  This  property  could  be  employed  to  retrieve  the  internal  layering  of  large  ice  sheets  extensions,  which  is  related  to  the  accumulation  rate  [Eisen  et  al.,  2008].  Theoretical  models  developed  by  [Wiehl  et  al.,  2003],  represented  the  first  study  on  GNSS-­‐R  over  thick  –several  meters–  dry  snow  masses.  

These   studies,   based   on   modelling   work,   suggest   the   potential   of   inferring   snow   surface   roughness   and   firnpack  parameters   like   accumulation   rates   from   GNSS-­‐R   measurements.   Other   works   employing   GNSS   signals   for   snow  observation  exploit  the  interference  pattern  experienced  by  the  direct  signal’s  power  along  different  elevation  angles,  that  can  be  measured  with  geodetic  GPS  receivers  located  near  the  ground  level  (GNSS-­‐MR).  In  [Larson  et  al.  2009],  this  pattern   is  modeled   by   the   impact   of   a   signal   reflected   off   a   snow   cover,  which   is   a   function   of   the   vertical   distance  between   the   receiver   and   the   surface  point  of   reflection.   The   thickness  of   the   snow   layer   is   then   retrieved   from   the  estimated   height   variations   during   snowy   seasons   (at   the   order   of   several   centimeters).   Similarly,   [Jacobson,   2010]  studies   the   impact  produced  by  a  signal   reflected  off  a  soil   surface  beneath  a  snow  cover,  which   is  a   function  of   this  layer’s  thickness  and  the  dielectric  characteristics  of  the  different  mediums  involved,  to  retrieve  snow  depth  and  snow  water   equivalent   from   this   single   and   thin   –several   centimeters–snow   layer.   Similar   results   are   also   obtained   in  [Rodriguez-­‐Alvarez  et  al.,  2011]  with  a  dedicated  GNSS-­‐R  receiver  that  works  with  linear  polarizations  and  exploiting  the  same  type  of  approach.  

Experimental  GNSS-­‐R  work  at  Concordia  Station  (Dome-­‐C,  Antarctica),  presented  highly  coherent  reflections  off  its  dry-­‐snow,  but  strongly  and  systematically  distorted.   In  order   to  explain   these  observational   facts   [Cardellach  et  al.,  2012;  Fabra  2013]  developed  a  model  of  GNSS  reflections  off  multiple   layers  of  dry-­‐snow,  down  to  ~300  meters  depth.  The  interferometric   patterns   resulting   from   the   coherent   sum   of   all   these   external   and   internal   interfaces   had   to   be  captured  using  spectral  analysis  (radio-­‐holographic  approach).  Because  some  of  the  reflections  were  produced  down  to  ~300  deep  layers  of  the  snow,  the  delay-­‐filtering  associated  to  the  C/A  code  modulation  impeded  to  capture  them.  The  radio-­‐holographic  approach  was  then  extended  to  the  entire  waveform,  to  be  able  to  capture  the  spectral  signatures  of  the  most  deep  reflections  (lag-­‐hologram).  The  frequency  bands  appearing  in  the  lag-­‐hologram  could  then  be  related  to  different  depths  of  the  reflecting  layer.  

The  GNSS-­‐R  retrieval  algorithms  for  snow  applications  are  listed  below  (labelled  [RA-­‐Sn#]):  

• [RA-­‐Sn1]  Frequency  GNSS-­‐MR,  [Larson  et  al.,  2009],  using  the  same  principle  as  in  [RA-­‐A8]  for  water  altimetry  using  the  multipath  reflectometry  or  IPT.  E-­‐GEM  applicability:  ground-­‐based.  

Page 56: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 56  of  88  

• [RA-­‐Sn2]  Frequency  and  amplitude  GNSS-­‐MR:  [Jacobson,  2010]  measures  snow  thickness  variations  (at  the  order  of  several  centimeters)  from  the  interference  pattern  measured  with  a  geodetic  GPS  receiver  on  ground.  Similarly  to  [RA-­‐Sn1],  this  approach  models  the  pattern  by  the  contribution  of  a  signal  reflected  off  the  snow  surface  level,  but  now  taking  into  account  both  snow  depth  and  snow  water  equivalence,  which  in  turn  can  be  retrieved  from  the  interference  pattern  measured  with  a  geodetic  GPS  receiver  on  ground.  The  approach  models  the  pattern  by  the  contribution  of  a  signal  reflected  off  a  soil  surface  beneath  a  thin  –several  centimeters–  and  single  snow  layer.  E-­‐GEM  applicability:  ground-­‐based.  

• [RA-­‐Sn3]  linear-­‐pol  IPT:  similarly  to  the  soil  moisture  and  vegetation  applications,  the  IPT  is  here  used  to  infer  snow  thickness   retrieved   from   the   interference   pattern  measured  with   a   dedicated   GNSS-­‐R   receiver   located   near   the  ground   level   [Rodriguez-­‐Alvarez   et   al.,   2011].   The   approach  models   the   pattern   by   the   contribution   of   a   signal  reflected  off  the  snow  surface  considering  the  internal  properties  of  a  thin  –several  centimeters–  and  single  snow  layer.  E-­‐GEM  applicability:  ground-­‐based  if  it  were  polarimetric  (it  is  not).  

• [RA-­‐Sn4]   lag-­‐holograms:   GNSS-­‐R   reflections   off   deep   sheets   of   dry-­‐snow   (e.g.   Antarctica)   produce   a   complex  interference  patters  induced  by  the  multiple  reflections  occurring  at  different  layer-­‐interfaces  of  the  sheet,  down  to  ~300   meters   depth.   Radio-­‐holographic   techniques   are   used   on   each   lag   of   the   delay   waveform   to   identify   the  spectral   content   of   the   signal,   and   to   identify   each   frequency-­‐component   to   different   snow   depths.   E-­‐GEM  applicability:  ground-­‐based.  

5.7.2 GNSS-R Snow Missions:

In  principle,  some  of  the  missions  listed  in  Sections  5.1  and  5.2  will  over-­‐pass  polar  and  continental  snow  areas,  which  could  be  used  to  investigate  the  potential  use  of  space-­‐based  GNSS-­‐R  for  snow  retrievals.  At  the  moment,  however,  the  performance  of  this  technique  for  snow  characterization  from  the  Space  is  still  unclear.  The  planned/under  study  GNSS-­‐R  missions  expected  to  be  allocated  in  polar  orbit  are:  UK-­‐TDS1,  E-­‐GEM's  ³CAT-­‐2,  and  ESA  PARIS-­‐IOD.  

5.7.3 Other Related Techniques:

The   table   below,   with   information   partially   extracted   from   [Fabra,   2013],   summarizes   the   different   remote   sensing  approaches  to  sense  the  snow  properties.  

SENSOR  TYPE:   SNOW  PROPERTY  SENSED:   REFERENCES:  

SCATTEROMETERS   Snow  accumulation   [Drinkwater  et  al.,  2001]  

SYNTHETIC  APERTURE    

RADAR  

Snow  mapping   [Koskinen  et  al.,  1997;  

Nagler  and  Rott,  2000]  

MICROWAVE    

RADIOMETERS  

SWE   [Chang  et  al.,  1982]  

Snow  mapping   [Amlien,  2008]  

Snow  depth  and  SWE   [Amlien,  2008]  

OPTICAL/NEAR-­‐INFRARED     Snow  mapping   [Hall  et  al.,  2002]  

Page 57: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 57  of  88  

RADIOMETERS   Snow  grain  size   [Lyapustin  et  al.,  2009]  

Table  5.7a:  Some  of  the  remote  sensing  approaches  used  to  sense  snow  properties.  Partially  extracted  from  [Fabra,  2013].  

5.7.4 E-GEM Aplicabillity

The   table  below   lists   the  GNSS-­‐R   retrieval   algorithms   for   snow  applications,   and   identifies   the   scenarios   from  which  these  algorithms  can  be  applied  using  green  or  red  background  color.  “E-­‐GEM”  in  red  characters  indicates  that  despite  the  technique  can  in  general  be  applied  to  this  scenario,  E-­‐GEM  particularities  hinder  it.  

 

Retrieval  algorithm  ID   GROUND-­‐BASED   AIR-­‐BORNE   SPACE-­‐BORNE  

RA-­‐Sn1:  GNSS-­‐MR  Freq   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

RA-­‐Sn2:  GNSS-­‐MR  Freq/Ampl   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

RA-­‐Sn3:  Lin-­‐pol  IPT   APPLICABLE  but  no  to  E-­‐GEM¹   NOT  APPLICABLE   NOT  APPLICABLE  

RA-­‐Sn4:  Lag-­‐hologram   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

¹  The  ground-­‐based  E-­‐GEM  system  has  not  dual-­‐polarization  capabilities.  

Table  5.7b:  Summary  of  applicability  of  GNSS-­‐R  snow-­‐parameters  retrieval  algorithms.  

5.8 Cryosphere: Sea Ice The  fourth  assessment  report   (4AR)  by  the   Intergovernmental  Panel  on  Climate  Change  (IPCC)  put  climate  change  on  the  international  agenda  as  one  of  the  most  important  issue  the  world  is  currently  facing  [Lemke  et  al.,  2007].  It  states  that  the  heat  capacity  of  the  cryosphere  is  the  second  largest  component  of  the  climate  system  (after  the  ocean).  The  latest   assessment   report,   5AR   [Vaughan,   2013],   confirms   the   trends   reported   in   the   4AR,  with   annual  Arctic   sea   ice  extent  decreased  over  the  period  1979-­‐2012.  Given  the  societal  importance  of  global  warming  an  unprecedented  effort  has  been  put  in  trying  to  understand  the  processes  responsible  for  the  observed  changes.  Similar  effort  has  been  put  in  building  new  data-­‐sets  needed  for  assessing  the  skills  of  the  models  to  reproduce  current  climate.  

Climate  scientists  have  known  for  quite  some  time  that  polar  areas  experienced  an  enhanced  response  to  any  change  in  climate  as  a  consequence  of  a  number  of  positive  feedbacks  (e.g.  sea   ice  albedo)  operating   in  the  region.  Sea   ice   is  a  part   of   the   cryosphere   that   interacts   continuously   with   the   underlying   oceans   and   the   overlaying   atmosphere.   The  growth   and   decay   of   sea   ice   occur   on   a   seasonal   cycle   at   the   surface   of   the   ocean   at   high   latitudes.   As  much   as   30  million  km²  of  the  Earth’s  surface  can  be  covered  by  sea  ice.  

Sea  ice  is  a  sensitive  climate  indicator,  and  plays  an  important  role  in  exploration  and  exploitation  of  marine  resources.  Sea  ice  has  many  roles  in  the  global  climate  system:  

• Sea  ice  acts  as  an  effective  insulator  between  the  ocean  and  the  atmosphere,  restricting  exchange  of  heat,  mass,  momentum   and   chemical   constituents   (such   as  water   vapour   and   CO2).   In  winter   time,  with   large   temperature  

Page 58: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 58  of  88  

differences   between   the   cold   atmosphere   and   the   relatively   warm   ocean   surface,   ocean-­‐to-­‐atmosphere   heat  transfer  is  essentially  limited  to  areas  of  open  water  and  thin  ice  within  the  pack.  The  winter  flux  of  oceanic  heat  to  the  atmosphere   from  open  water  can  be   two  orders  of  magnitude   larger   than  the  heat   flux   through  an  adjacent  thick   ice   cover   [Sandven   and   Johannessen,   2006].   As   a   result,   the   distribution   of   open   water   and   thin   ice   is  particularly   important   to   the   regional   heat   balance.   The   transfer   of  momentum  between   atmosphere   and   ice   is  substantially   larger   over   a   rough   surface   compared   to   a   smooth   surface.   The   properties   of   the   sea-­‐ice   surface  therefore   influence   the   dynamical   and   thermal   structure   of   the   atmospheric   boundary   layer.   To   understand   the  transfer  of  momentum,  an  in-­‐depth  understanding  of  the  sea  ice  surface  roughness  is  required.  

• Sea  ice  affects  the  surface  albedo:   Ice-­‐free  ocean  generally  has  an  albedo  below  10–15%,  whereas  snow-­‐covered  sea  ice  albedos  average  about  80%.  

• Sea  ice  affects  oceanic  circulation  directly  by  the  rejection  of  salt  to  the  underlying  ocean  during  ice  growth,  which  makes  in  turn  increase  the  density  of  the  water  layers  directly  under  the  ice.  This  induces  convection  processes  that  tends  to  deepen  the  mixed  layer.  This  convection  contributes  to  driving  the  thermohaline  circulation  of  the  ocean.  

• Sea  ice    is  also  a  major  component  of  polar  ecosystems:  plants  and  animals  at  all  trophic  levels  find  a  habitat  in,  or  are  associated  with,  sea  ice.  

General  circulation  models  predict  enhanced  climatic  warming   in  polar  areas,  which  could   reduce  the  sea   ice  area  as  well  as  the  mean  sea   ice  thickness  [Johannessen  et  al.  2004].  Only  a  satellite-­‐borne  method  can  achieve  the  required  coverage  to  monitor  this  change  in  time  and  space  without  prohibitive  costs.  One  of  the  key  objectives  in  sea  ice  science  is  to  achieve  the  capability  of  synoptically  measuring  sea  ice  thickness   in  both  hemispheres.  Data  on  ice  thickness  are  very  sparse,  especially  in  the  Antarctic.  Present  estimates  of  sea  ice  volume,  mainly  based  on  model  results  due  to  lack  of  data,  can  have  errors  of  50%.  

Sea   ice   research  and  monitoring   is   also   important   for  many  countries  at  high   latitudes,   and   to   those  who  operate   in  Antarctica.  Sea   ice   imposes   severe   restrictions  on  ship   traffic   in   the  Arctic,  where   it   represents  a  major   limitation   for  ships  and  offshore  operations.  The  sea  ice,  which  is  on  average  2–3  m  thick,  can  only  be  penetrated  by  ice-­‐strengthened  vessels   or   icebreakers   with   a   sufficient   ice   class.  When   the   ice   concentration   is   100%   the   ice   pressure   can   be   high  enough  to  hinder  the  operations  of  most  powerful  icebreakers.  Similarly,  offshore  platforms  for  ice-­‐covered  areas  must  have  much  stronger   construction   than   is   required   in   ice-­‐free  waters,   and  harbors  and   loading   terminals  on   the  coast  require  stronger  construction  in  areas  of  sea  ice.  In  such  areas,  it  is  therefore  of  primary  importance  to  monitor  the  sea  ice  daily  and  produce  ice  forecasts  to  assist  ship  traffic,  fisheries  and  other  marine  operations.  

5.8.1 GNSS-R Status on Sea-Ice Applications and Retrieval Algorithms:

[Komjathy  et  al.,  2000a]  first  showed  correlation  between  the  peak  power  of  GPS  returns  and  RADARSAT  backscattered  measurements  over  this  type  of  surfaces.  More  recently,  similar  results  have  been  achieved  from  space  [Gleason,  2010].  In   [Belmonte   et   al.,   2009],   permittivity   and   roughness   retrievals   are   obtained   from   the   analysis   of   the   shape   of  GPS  waveforms  reflected  off  different  types  of  sea  ice.  These  measurements  were  compared  against  polarimetric  microwave  emissions,   RADARSAT   backscatter,  MODIS   imagery   and   a   LIDAR   profiler.   The   results   obtained   concluded   that   GPS-­‐R  retrievals  (and  thus  GNSS-­‐R)  are  helpful  in  the  interpretation  of  signatures  observed  by  the  more  traditional  sensors,  in  particular,  for  the  detection  of  surface  glaze  effects  in  microwave  emission  and  the  breaking  of  the  salinity/roughness  ambiguity  in  radar  backscatter.  In  addition,  the  large  GPS  wavelength  avoids  volume  effects  from  snow  and  ice  internal  inhomogeneities.  This  property  is  also  related  to  ice  thickness  retrieval,  which  is  one  of  the  most  important  features  in  the  determination  of  sea  ice  development  stage.  This  parameter  can  be  estimated  from  the  measurement  of  the  normal  

Page 59: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 59  of  88  

distance   between   the   floating   line   and   the   ice   surface   (freeboard   level)   with   accurate   laser   altimetry   [Zwally   et   al.,  2008].  However,  the  snow  loading  plays  a  key  role  in  this  estimation  and  the  accuracy  of  its  determination  with  other  instruments   affects   the   final   result.   The   use   of   L-­‐band   GNSS-­‐R   signals   for   precise   altimetry,   with   snow   penetration  depths   ranging   from   ~1  meter   to  more   than   100  meters   (as   shown   in   Section   5.7),   would   overcome   this   limitation,  providing  additional  means  and  knowledge  towards  a  better  sea  ice  classification.  

GNSS-­‐R   experiments   on  Disko  Bay,  Greenland,   acquired   polarimetric  GNSS-­‐R   data   for   8  months   from  700  m   altitude  [Fabra,   2013].   During   this   period,   the   formation,   evolution,   and  melting   of   sea   ice   could   be  monitored   [Fabra   et   al.,  2011].   The   sea   ice   parameters   inferred  were:   ice   altimetry   (linked   to   thickness)   [Semmling   et   al.,   2011;   Fabra   et   al.,  2011],  ice  surface  roughness,  and  variations  in  its  permittivity  [Fabra  et  al.,  2011].  

The  GNSS-­‐R  retrieval  algorithms  found   in  the   literature   for  sea   ice  characterization  are   listed  below  (labelled  [RA-­‐I#]).  This  list  is  partially  extracted  from  [Cardellach  et  al.,  2011]:  

• [RA-­‐I1]   Phase-­‐delay   altimetry:   certain   sea   ice   surfaces   are   smooth   enough   to   permit   phase-­‐delay   observations  [Semmling  et  al.,  2011;  Fabra  et  al.,  2011].  [Semmling  et  al.,  2011;  Fabra  et  al.  2011]  monitored  the  tidal  signatures  of   floating  sea   ice   in  Greenland.   [Fabra  et  al.,  2011;  Fabra,  2013]  also  measured   the  sea   ice  altimetry   for   several  months   in  Greenland   to   find  how   its   freeboard   level   anti-­‐correlated  with   the   temperature   (growing   and  melting  processes).   The   technique   is   essentially   the   same   as   [RA-­‐A7].   E-­‐GEM   applicability:   ground-­‐based   and   air-­‐borne  systems,  space-­‐borne  system  TBC.  

• [RA-­‐I2]  Permittivity  by  peak-­‐power:  this  method  obtains  the  effective  dielectric  constant  empirically,  as  a  function  of  the  peak  power  [e.g.  Komjathy  et  al.,  2000].  The  empirical  model  was  generated  after  comparing  the  peak  power  of  GPS  reflections  received  by  airborne  instruments  with  RADARSAT  backscattered  peak  power.  It  was  also  applied  to   space-­‐borne  UK-­‐DMC   data   and   compared   to   ice   concentration  measurements   obtained  with   AMSR-­‐E   and   ice  charts  [Gleason,  2010].  However,  this  observable  can  be  strongly  affected  by  the  sea  ice  surface  roughness.  E-­‐GEM  applicability:  ground-­‐based,  air-­‐borne  and  space-­‐borne  systems.  

• [RA-­‐I3]   Permittivity   by   polarimetric   ratio:   the   ratio   between   the   amplitudes   of   both   circular   (cross-­‐   and   co-­‐)  polarizations  relates  to  variations  in  the  permittivity  of  the  sea  ice  (temperature  and  brine),  especially  at  relatively  low  elevation  angles  of  observation,  around  the  Brewster  angle  [Cardellach  et  al.,  2011;  Fabra,  2013].  This  method  is  in  principle  less  affected  by  the  sea  ice  surface  roughness,  although  some  remaining  effect  has  been  reported.  E-­‐GEM  applicability:  ground-­‐based  and  air-­‐borne  systems   if   they  were  polarimetric   (they  are  not),  and  space-­‐borne  system  (it  is  polarimetric).  

• [RA-­‐I4]   Permittivity   by   linear-­‐polarimetric   phase-­‐shift   (l-­‐POPI):   for   vertical   and   the   horizontal   polarizations,  [Zavorotny  and  Zuffada,  2002]  suggested  inferring  the  first-­‐year  thickness  from  the  phase  difference  between  the  vertical  and  the  horizontal  polarized  components.  E-­‐GEM  applicability:  ground-­‐based  and  air-­‐borne  systems  if  they  were  polarimetric  (they  are  not),  and  space-­‐borne  system  (it  is  polarimetric).  

• [RA-­‐I5]  Permittivity  by  circular  polarimetric  phase-­‐shift  (c-­‐POPI):  the  technique  is  the  same  as  in  [RA-­‐OS1],  it  uses  the   phase   difference   between   the   co-­‐polar   and   cross-­‐polar   circular   polarized   components.   It   was   applied   in  Greenland   GNSS-­‐R   data   sets,   and   the   signatures   correlated   with   those   found   in   [RA-­‐I3]   [Fabra,   2013].   E-­‐GEM  applicability:  ground-­‐based  and  air-­‐borne  systems  if  they  were  polarimetric  (they  are  not),  and  space-­‐borne  system  (it  is  polarimetric).  

Page 60: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 60  of  88  

• [RA-­‐I6]  Sea  ice  roughness  and  permittivity  by  DM-­‐fit:  [Belmonte,  2007;  Belmonte  et  al.,  2009]  obtained  the  sea  ice  roughness  by  fitting  the  waveform  shape.  The  method  showed  potential  for  characterization  of  the  different  stages  of   sea   ice,  after   comparison  with  other   remote   sensing   techniques.  E-­‐GEM  applicability:   ground-­‐based,  air-­‐borne  and  space-­‐borne  systems.  

• [RA-­‐I7]   Sea   ice   roughness   by   scatterometric   fit:   [Fabra,   2013]   applies   the   algorithm   [RA-­‐S6]   to   infer   the  mean  squared  slopes  (MSS)  of  the  sea  ice  surface.Although  this  techniques  was  applied  from  a  ground-­‐based  experiment,  the   conditions   do   apply   for   the   E-­‐GEM   ground-­‐based   case   (very   low   altitude).   At   space-­‐borne   altitudes,   and   for  roughness   scales   typical   of   the  open  ocean,   this   delay   tends   to  quickly   saturate.  However,   it   could  work   around  gentle  roughness  scales  in  your  sea  ice  (TBC).  E-­‐GEM  applicability:  ground-­‐based  (if  receiver  high  enough  over  the  surface),  air-­‐borne  systems,  space-­‐borne  system  TBC.  

• [RA-­‐I8]  Sea  ice  roughness  by  coherence  time/phase  dispersion:  similarly  to  [RA-­‐S10]  [Semmling  et  al.,  2011]  finds  correlation   between   the   coherence   time   of   the   reflected   signals   and   the   wind   over   the   zone.   Similarly,   [Fabra,  2013]  looks  at  the  RMS  dispersion  of  the  interferometric  phase  to  link  it  to  RMS  of  the  surface  heights.  Both  tend  to  saturate,  essentially  because  the  phase-­‐related  methods  are  constraint  by  the  electromagnetic  wavelength  (~19  cm  for  GPS  L1).  E-­‐GEM  applicability:  ground-­‐based.  

5.8.2 GNSS-R Sea-Ice Missions

In   principle,   some   of   the  missions   listed   in   Sections   5.1   and   5.2   will   over-­‐pass   polar   areas,   which   could   be   used   to  investigate   the  potential  use  of   space-­‐based  GNSS-­‐R   for   sea-­‐ice   retrievals.  The  planned/under   study  GNSS-­‐R  missions  expected  to  be  allocated  in  polar  orbit  are:  UK-­‐TDS1,  E-­‐GEM's  ³CAT-­‐2,  and  ESA  PARIS-­‐IOD.  

5.8.3 Other Related Techniques

The   table  below,  with   information  extracted   from   [Fabra,  2013],   summarizes  different   remote  sensing  approaches   to  sense  the  sea-­‐ice  properties.  

SENSOR  TYPE:   ICE  PROPERTY  SENSED:   REFERENCES:  

RADAR  ALTIMETERS   Sea  ice  type  and  concentration   [Fetterer  et  al.,  1992]  

Sea  ice  thickness   [Zwally  et  al.,  2008]  

Ice  sheet  mass  balance   [Rémy  and  Parouty,  2009]  

SCATTEROMETERS   Sea  ice  mapping  

 

[Onstott,  1992;  Remund  and  Long,  1999;  

Anderson  and  Long,  2005;  

Belmonte-­‐Rivas  and  Stoffelen,  2011]  

Sea  ice  classification   [Onstott,  1992]  

SYNTHETIC  APERTURE     Sea  ice  concentration   [Onstott,  1992;  

Page 61: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 61  of  88  

RADAR   Onstott  and  Shuchman,  2004]  

Sea  ice  classification   [Onstott,  1992;  

Onstott  and  Shuchman,  2004;  

Partington  et  al.,2010;  

Ochilov  and  Clausi,  2012]  

Sea  ice  thickness   [Onstott,  1992;  

Onstott  and  Shuchman,  2004]  

Ice  sheet  dynamics   [Rignot  et  al.,  1995;  

Shuchman  et  al.,  2004;  

Mouginot  et  al.,  2012]  

MICROWAVE  

 RADIOMETERS  

Sea  ice  concentration   [Eppler  et  al.,  1992;  Kwok,  2002;  

Comiso  et  al.,  2003]  

Sea  ice  classification   [Eppler  et  al.,  1992]  

Thin  sea  ice  thickness   [Kaleschke  et  al.,  2012]  

OPTICAL/NEAR-­‐INFRARED  

 RADIOMETERS  

Sea  ice  surface  temperature   [Key  and  Haefliger,  1992;  

Hall  et  al.,  2004]  

Sea  ice  concentration   [Burns  et  al.,  1992;  

Drüe  and  Heinemann,  2004]  

Sea  ice  thickness   [Yu  and  Rothrock,  1999]  

Table  5.8a:  Some  remote  sensing  approaches  for  sea-­‐ice  monitoring.  From  [Fabra,  2013].  

5.8.4 E-GEM Applicability

The  table  below  lists  the  GNSS-­‐R  retrieval  algorithms  for  sea  ice  applications,  and  identifies  the  scenarios  from  which  these  algorithms  can  be  applied  using  green  or  red  background  color.  White  background  for  uncertain  cases  (TBC).  “E-­‐GEM”   characters   in   red/white   indicate   that   despite   the   technique   can   in   general   be   applied   to   this   scenario,   E-­‐GEM  system  particularities  will  hinder  it  (red)  or  it  is  uncertain  (white).  

Retrieval  algorithm  ID   GROUND-­‐BASED     AIR-­‐BORNE   SPACE-­‐BORNE  

Page 62: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 62  of  88  

RA-­‐I1:  Altim.  phase-­‐delay   APPLICABLE   APPLICABLE   UNCERTAIN  but  not  E-­‐GEM³  

RA-­‐I2:  Permitt.  peak   APPLICABLE   APPLICABLE   APPLICABLE  

RA-­‐I3:  Permitt.  pol-­‐ratio   E-­‐GEM¹   E-­‐GEM¹   APPLICABLE  

RA-­‐I4:  Permitt.  lin-­‐POPI   E-­‐GEM¹   E-­‐GEM¹   APPLICABLE  but  uncertain  for  E-­‐GEM²  

RA-­‐I5:  Permitt.  circ-­‐POPI   E-­‐GEM¹   E-­‐GEM¹   APPLICABLE  

RA-­‐I6:  Permitt.+MSS  DM-­‐fit   APPLICABLE   APPLICABLE   APPLICABLE  

RA-­‐I7:  MSS  scatt.  delay   NOT  APPLICABLE   APPLICABLE   UNCERTAIN  depending  on  saturation?  

RA-­‐I8:  Rough.  coh-­‐time   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

¹  The  ground-­‐based  and  air-­‐borne  E-­‐GEM  systems  have  not  dual-­‐polarization  capabilities.  

²  The  space-­‐borne  E-­‐GEM  system  have  2-­‐pol  circular  capabilities.  Extraction  of  linear-­‐pol  observables  TBC.  

³  The  space-­‐borne  E-­‐GEM  system  will  not  provide  phase-­‐information.  

Table  5.8b:  Summary  of  applicability  of  the  GNSS-­‐R  sea  ice  retrieval  algorithms.  

5.9 Cryosphere: Glaciers Monitoring  glaciers  with  GNSS-­‐R  techniques  can  potentially  be  done  using  the  same  algorithms  detailed  in  Section  5.8.  

5.10 Atmosphere At  very  slant  observation  geometries,  such  as  in  GNSS  radio-­‐occultation  (RO)  observations,  the  reflected  signals  signal-­‐path   cross   a   large   portion   of   the   atmosphere.   In   these   cases,   the   reflected   signal   can   be   a   significant   source   of  information   about   the   atmosphere.   When   compared   to   the   direct   signal,   the   delay   of   the   reflected   one   is   more  influenced  by  the  troposphere  than  by  the  altimetric  signature  (Cardellach  personal  communication).  [Cardellach  et  al.,  2008]   showed   that   standard   RO   measurements   (by   means   of   direct   line-­‐of-­‐sight   signals)   of   the   troposphere   better  compared  to  ECMWF  background  profiles  when  the  same  RO  observation  captured  reflected  signals.  

The  improvement  in  the  RMS  variation  was  up  to  a  factor  of  two.  Later  on,  [Boniface,  et  al.,  2011]  presented  a  method  [RA-­‐At1]   to   extract   the   refractivity   profiles   of   the   lower   troposphere   from   the   interferometric   delay   (delay   of   the  reflected   signal  with   respect   to   the   direct   one).   These   delays  were   obtained   following   [Cardellach   et   al.,   2004].   The  retrievals  in  [Boniface  et  al.,  2008]  have  potential  to  refine  the  standard  RO  measurements,  often  biased  in  the  lowest  layers  of  the  troposphere.  

At  higher  elevation  angles,   the  bi-­‐static  path  of  double-­‐frequency  GNSS-­‐R  reflected  signals  could  be  used  to   [RA-­‐At2]  complement   ionospheric   tomography.   The   ionospheric   double-­‐path   slant   delay   data   (biTEC)   would   be   its   main  observable  [Ruffini  et  al.,  2001].  This  concept  was  further  investigated  by  means  of  simulated  work  in  [Pallares,  et  al.,  2005].  

Page 63: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 63  of  88  

The   table   below   lists   the  GNSS-­‐R   retrieval   algorithms   for   atmospheric   applications,   and   identifies   the   scenarios   from  which   these  algorithms  can  be  applied  using  green  or   red  background  color.     “E-­‐GEM”  white  characters   indicate   that  despite  the  technique  can  in  general  be  applied  to  this  scenario,  it  is  uncertain  because  of  E-­‐GEM  system  particularities.  

Retrieval  algorithm  ID  GROUND-­‐BASED      

AIR-­‐BORNE   SPACE-­‐BORNE  

RA-­‐At1:  Troposphere   NOT  APPLICABLE   NOT  APPLICABLE   APPLICABLE,  but  uncertain  for  E-­‐GEM¹  

RA-­‐At2:  Ionosphere   NOT  APPLICABLE   NOT  APPLICABLE   APPLICABLE  

¹  Only  possible  when  the  E-­‐GEM  space-­‐borne  system  points  to  the  limb  (maneuvring...).  

Table  5.10a:  Applicability  of  the  GNSS-­‐R  atmospheric  retrieval  algorithms.  

5.11 Civil ian Applications: Ship Detection The  possibility  of  using  GNSS  reflected  signals  to  detect  vessels  in  the  ocean  was  first  proposed  during  the  GNSS-­‐R  2010  workshop   [Soulat,   et   al.,   2010]   and   CCT   Space   Reflectometry-­‐2010   [Soulat,   2010]     where   a   feasibility   study   was  presented.   [RA-­‐Sh1]   The   algorithm   was   based   on   tracking   the   ship   features   in   the   delay   and   Doppler   dimensions  through  DDMs.  The  studies  were  complemented  with  air-­‐borne  experimental  data  in  [Soulat  et  al.,  2012].  

An  independent  study  [Carrie  et  al.,  2011]  concluded  that  the  ships  at  ~20⁰  around  the  specular  could  not  be  detected,  because  of  the  large  masking  effect  of  the  sea  surface  scattering  around  the  specular.  Their  simulations,  corresponding  to  an  air-­‐borne  scenario  with  4  visible  satellites  and  L2C  signals  only,  resulted  in  3D-­‐RMS  localization  errors  between  a  few  and  200  meters,  with  a  detection  range  of  up  to  13  km  for  large  vessels.  

Recently,  these  techniques  have  been  also  studied  by  a  Chinese  group  [Liu  et  al,  2014],  analyzing  the  feasibility  of  the  concept  from  space-­‐borne  platforms.  [RA-­‐Sh2]  The  suggested  approach  uses  DDM  to  analyze  both  power  and  phase  features.  

The   table  below   lists   the  GNSS-­‐R   retrieval  algorithms   to  detect  and   localize  vessels,  and   identifies   the  scenarios   from  which  these  algorithms  can  be  applied  using  green  or  red  background  color.    “E-­‐GEM”   in  red  characters   indicate  that  despite  the  technique  can  in  general  be  applied  to  this  scenario,  E-­‐GEM  system  particularities  will  hinder  it.  

Retrieval  algorithm  ID  GROUND-­‐BASED      

AIR-­‐BORNE   SPACE-­‐BORNE  

RA-­‐Sh1:  DDM  power   NOT  APPLICABLE   APPLICABLE   APPLICABLE  

RA-­‐Sh2:  DDM  complex   NOT  APPLICABLE   APPLICABLE   APPLICABLE  but  not  for  E-­‐GEM¹  

¹  E-­‐GEM  space-­‐borne  system  will  not  provide  phase-­‐information.  

Table  5.11a:  Applicability  of  the  GNSS-­‐R  ship  detection  algorithms.  

Page 64: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 64  of  88  

5.12 Civil ian Applications: Buried Metallic Bodies The   potential   use   of   GNSS-­‐R   to   detect   ground-­‐buried   metallic   bodies   was   suggested   in   [Notarpietro   et   al.,   2014].  Although  the  penetration  depth  of  GNSS  signals  into  the  ground  is  not  optimal  and  depends  on  the  soil  moisture,  GNSS  signals   can   likely   interact  with   the   first   few  cm  of   the  ground,  where   typically  personal  mines  are   located.  Therefore  GNSS  signals  could  be  reflected  back  by  any  metallic  object  buried  on  the  first  terrain  layer.  The  method  suggested  [RA-­‐B1]  uses  sharp  variations  of  the  SNR  to  identify  the  location  of  the  metallic  plates,  when  slowly  overpassing  the  area  at  very  low  altitude  (a  few  meters).  

The  table  below  lists  the  GNSS-­‐R  retrieval  algorithms  to  localize  buried  metallic  bodies,  and  identifies  the  scenarios  from  which  these  algorithms  can  be  applied  using  green  or  red  background  color.  

Retrieval  algorithm  ID   GROUND-­‐BASED   AIR-­‐BORNE   SPACE-­‐BORNE  

RA-­‐B1:  SNR  variations   APPLICABLE   NOT  APPLICABLE   NOT  APPLICABLE  

Table  5.12a:  Applicability  of  the  GNSS-­‐R  algorithms  for  detection  of  buried  metallic  objects.  

Page 65: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 65  of  88  

6 REFERENCES Alonso-­‐Arroyo,  A.,  G.  Forte,  A.  Camps,  H.  Park,  D.  Pascual,  R.  Onrubia,  and  R.  Jove-­‐Casulleras,  “Soil  Moisture  mapping  using   forward   scattered   GPS   L1   signals,”   in   2013   IEEE   International   Geoscience   and   Remote   Sensing   Symposium   -­‐  IGARSS,  2013,  pp.  354–357.  

Alonso-­‐Arroyo,  A.,  Forte,  G.,  Monerris-­‐Belda,  S.,  Camps  A.,  Park  H.,  Pascual,  D.,  Onrubia,  R.  (2013).  The  Light  Airborne  Reflectometerfor   GNSS-­‐R   Observations   (LARGO)   Instrument:   Towards   Soil   Moisture   Retrievals.   URSI   2013,   Aalto  University,  Finland,  Oct.  28-­‐31,  2013  

Amlien,   J.   (2008).   Remote   sensing   of   snow   with   passive   microwave   radiometers   –   A   review   of   current   algorithms.  Technical  Report  Report  No  1019,  Norsk  Regnesentral  /  Norwegian  Computing  Center.  

Andersen,  S.,  Tonboe,  R.,  Kaleschke,  L.,  Heygster,  G.,  and  Pedersen,  L.  T.  (2006).  Intercomparison  of  passive  microwave  sea  ice  concentration  retrievals  over  the  high  concentration  Arctic  sea  ice.  Journal  of  Geophysical  Research.  

Apel,  J.,  An  improved  model  of  the  ocean  surface  wave  vector  spectrum  and  its  effects  on  radar  backscatter,  J.  Geophys.  Res.,  99,16,269–16,291,  1994  

Armatys,  M.  (2001),  Estimation  of  sea  surface  winds  using  reflected  GPS  signals,  Ph.D.  thesis,  University  of  Colorado.  

Armstrong,  R.L.  (2014),  Global  snow  cover  ECV,  status  and  progress  in  observations,    16th  Session  of  the  GCOS/WCRP  Terrestrial   Observation   Panel   for   Climate   (TOPC-­‐16)   10-­‐11   March   2014,   Ispra,   Italy,   available   at:    http://www.wmo.int/pages/prog/gcos/TOPCXVI/presentations/3.2_Armstrong_Snow_ECV_final.ppt.  

Avila-­‐Rodriguez,  J.A.,  G.W.  Hein,  S.  Wallner,  J-­‐L.  Issler,  L.  Ries,  L.  Lestarquit,  A.  De  Latour,  J.  Godet,  F.  Bastide,  T.  Pratt,  and  J.  Owen  (2007),  The  MBOC  Modulation:  a  final  touch  for  the  Galileo  frequency  and  signal  plan,  InsideGNSS,  pp:  43-­‐58,  September/October  2007  

Bahurel,    P.  (2011),  MyOcean  Ocean  Monitoring  and  Forecasting,  presented  at  Marine  Sciences  and  European  Research  Infrastructures,   28   June   -­‐   1   July   2011,   Brest   ,   available   at:    http://www.europolemer.eu/content/download/1018/5297/file/Session%205%20-­‐%20MyOcean%20-­‐%20BAHUREL.pdf.  

Beckmann,  P.,  and  Spizzichino,  A.  (1987),  The  scattering  of  electromagnetic  waves  from  rough  surfaces,  Norwood,  MA,  Artech  House,  Inc.,  511  p.  

Belmonte,  M.   (2007),  Bistatic  scattering  of  global  positioning  system  signals   from  Arctic  sea   ice,  Ph.D.   thesis,  Univ.  of  Colo.  at  Boulder,  Boulder,  CO,  USA.  

Belmonte,  M.,   J.  A.  Maslanik,  and  P.  Axelrad   (2009),   “Bistatic   scattering  of  GPS  signals  off  Arctic   sea   ice,”   IEEE  Trans.  Geosci.  and  Remote  Sens.,  vol.  48,  2009.  

Belmonte-­‐Rivas,   M.   and   Stoffelen,   A.   (2011).   New   Bayesian   Algorithm   for   Sea   Ice   Detection   With   QuikSCAT.   IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  49(6):1894–1901.  

Page 66: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 66  of  88  

Beyerle,  G.,  K.  Hocke,  J.  Wickert,  T.  Schmidt,  C.  Marquardt  and  C.  Reigber,  GPS  radio  occultations  with  CHAMP:  A  radio  holographic   analysis   of   GPS   signal   propagation   in   the   troposphere   and   surface   reflections,   Journal   of   Geophysical  Research:  Atmospheres,  Volume  107,  Issue  D24,  pages  ACL  27-­‐1–ACL  27-­‐14,  DOI:10.1029/2001JD001402,  2002  

Bindoff,  N.L.,  J.  Willebrand,  V.  Artale,  A,  Cazenave,  J.  Gregory,  S.  Gulev,  K.  Hanawa,  C.  Le    Quéré,  S.  Levitus,  Y.  Nojiri,  C.K.  Shum,  L.D.  Talley  and  A.  Unnikrishnan,  2007:  Observations:  Oceanic  Climate  Change  and  Sea  Level.  In:  Climate  Change  2007:   The   Physical   Science   Basis.   Contribution   of   Working   Group   I   to   the   Fourth   Assessment   Report   of   the  Intergovernmental   Panel   on  Climate  Change   [Solomon,   S.,  D.  Qin,  M.  Manning,   Z.   Chen,  M.  Marquis,   K.B.  Averyt,  M.  Tignor  and  H.L.  Miller  (eds.)].  Cambridge  University  Press,  Cambridge,  United  Kingdom  and  New  York,  NY,  USA.  

Biomass   MAG   (2012),   Report   for   Mission   Selection:   BIOMASS.   ESA-­‐SP   1324/1,   available   at  http://esamultimedia.esa.int/docs/EarthObservation/SP1324-­‐1_BIOMASSr.pdf  

Blanch,  S.,  and  A.  Aguasca  (2004),  Seawater  dielectric  permittivity  model  from  measurements  at  L  band,  in  Proceedings  of   2004   IEEE   International   Geoscience   and   Remote   Sensing   Symposium,   IGARSS04,   vol.   2,   pp.   13621365,   IEEE   Press,  Piscataway,  N.  J.,  doi:10.1109/IGARSS  

Boniface,   K.,   J.M.   Aparicio,   Cardellach,   E.,   Meteorological   information   in   GPS-­‐RO   reflected   signals,   Atmospheric  Measurement   Techniques,   4,   pp.   1397-­‐1407,   2011,   jul,   http://www.atmos-­‐meas-­‐tech.net/4/1397/2011/amt-­‐4-­‐1397-­‐2011.pdf,  10.5194/amt-­‐4-­‐1397-­‐2011.  

Bourassa,   M.,   A.   Stoffelen,   H.   Bonekamp,   et   al.,   REMOTELY   SENSED   WINDS   AND   WIND   STRESSES   FOR   MARINE  FORECASTING  AND  OCEAN  MODELING,  White  Paper  of  OceanObs  2009,  available  at  http://coaps.fsu.edu/,  2009.  

Brown,  M.E.  and  V.M.  Escobar  (2014),  Assessment  of  Soil  Moisture  Data  Requirements  by  the  Potential  SMAP  Data  User  Community:  Review  of  SMAP  Mission  User  Community,   IEEE  Journal  on  Selected  Topics   in  Applied  Earth  Observations  and  Remote  Sensing,  Vol.7,  N.1,  January  2014,  doi:  10.1109/JSTARS.2013.2261473  

Burns,  B.  A.,  Schmidt-­‐Gröttrup,  M.,  and  Viehoff,  T.   (1992).  Methods  for  digital  analysis  of  AVHRR  sea   ice   images.   IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  30(3):589-­‐602.  

Camps,  A.,  Caparrini  M,  Sabia  R.,  and  Ruffini  G.:  Sea  Surface  Salinity  Retrieval  from  Space:  Potential  Synergetic  Use  of  GNSS-­‐R   Signals   to   Improve   the   Sea   State   Correction   and   Application   to   the   SMOS   Mission,   Proc.   IEEE   Microwave  Radiometry  and  Remote  Sensing  of  the  Environment  (MicroRad  2006),  February  2006  

Camps,  A.  X.  Bosch-­‐Lluis,  and  Hyuk  Park,  “Impact  of  receiver’s  frequency  response  in  GNSS  reflectometers”,  in  Geosci.  Remote  Sens.  Symp.  IGARSS2010,  3817-­‐3820,  2010  

Camps,   A.,   J.F.   Marchan,   E.   Valencia,   I.   Ramos,   X.   Bosch-­‐Lluis,   N.   Rodriguez,   H.   Park,   A.   Alcayde,   A.   Mollfulleda,   J.  Galindo,   P.  Martinez,   S.   Chavero,  M.  Angulo,   and  A.   Rius   (2011),   PAU   instrument   aboard   INTA  MicroSat-­‐1:  A  GNSS-­‐R  demonstration   mission   for   sea   state   correction   in   L-­‐band   radiometry,   Proceedings   of   IEEE   Geosc.   Remote   Sens.  Symposium  (IGARSS),  2011.  

Camps,  A.  et  al,  “Optimization  and  Performance  Analysis  of  Interferometric  GNSS-­‐R  Altimeters:  Application  to  the  PARIS  IoD  Mission,”  Sel.  Top.  Appl.  Earth  Obs.  Remote  Sensing,  IEEE  J.,  Vol.7,  N.5,  May  2014.  

Cardellach,  E.,  Sea  Surface  Determination  Using  GNSS  Reflected  Signals,  Ph.D.  Dissertation,  UPC,  Barcelona,  Spain,  2002.  https://www.ice.csic.es/files/estel/Cardellach_PhD.pdf  

Page 67: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 67  of  88  

Cardellach,  E.,  Ruffini,  G.,  Pino,  D.,  Rius,  A.,  Komjathy,  A.,  Garrison,  J.  L.,  Mediterranean  Balloon  Experiment:  ocean  wind  speed  sensing  from  the  stratosphere,  using  GPS  reflections,  Remote  Sensing  Environment,  88,  pp.  351-­‐-­‐362,  2003  

Cardellach,   E.,   Ao,   C.   O.,   de   la   Torre   Juárez,   M.,   Hajj,   G.   A.   (2004),   Carrier   phase   delay   altimetry   with   GPS-­‐reflection/occultation   interferometry   from   low   Earth   orbiters,   Geophysical   Research   Letters,   31,   pp.   10402-­‐+,   2004,  may,  10.1029/2004GL019775  

Cardellach,  E.,  Ribó,  S.,  Rius,  A.   (2006),  Technical  Note  on  POlarimetric  Phase   Interferometry  (POPI)   ,  CSIC-­‐IEEC,  2006,  arXiv:physics/0606099  v2  ,  jun  

Cardellach,  E.,  Rius,  A.  (2008),  A  new  technique  to  sense  non-­‐Gaussian  features  of  the  sea  surface  from  L-­‐band  bi-­‐static  GNSS  reflections,  Remote  Sensing  Environment,  112,  6,  pp.  2927-­‐2937,  2008,  jun,  10.1016/j.rse.2008.02.003  

Cardellach,   E.,   S.  Oliveras,   and  A.  Rius   (2008),  Applications  of   the  Reflected  Signals   Found   in  GNSS  Radio  Occultation  Events,  Proceedings  of   the  ECMWF/GRAS  SAF  Workshop  on  Applications  of  GPSRO  Measurements,  ECMWF,  Reading,  UK,   16-­‐18   June   2008.   Available:  http://old.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2008/gras_saf/Cardellach.pdf  

Cardellach,  E.,  Fabra,  F.,  Nogués-­‐Correig,  O.,  Oliveras,  S.,  Ribó,  S.,  Rius,  A.   (2011),  GNSS-­‐R  ground-­‐based  and  airborne  campaigns  for  Ocean,  Land,  Ice  and  Snow  techniques:  application  to  the  GOLD-­‐RTR  datasets,  Radio  Science,  46,  RS0C04,  2011,  oct,  doi:10.1029/2011RS004683  

Cardellach,  E.,  Fabra,  F.,  Rius,  A.,  S.  Pettinato,  S.  DAddio  (2012),  Characterization  of  Dry-­‐snow  Sub-­‐structure  using  GNSS  Reflected  Signals,  Remote  Sensing  Environment,  124,  pp.  122-­‐134,  2012,  10.1016/j.rse.2012.05.012  

Cardellach,  E.,  Rius,  A.,  Martín-­‐Neira,  M.,  Fabra,  F.,  Nogués-­‐Correig,  O.,  Ribó,  S.,  Kainulainen,  J.,  Camps,  A.,  D  Addio,  S.  (2013),  Consolidating  the  Precision  of  Interferometric  GNSS-­‐R  Ocean  Altimetry  using  Airborne  Experimental  Data,   IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  2013,  doi:10.1109/TGRS.2013.2286257  

Carreño-­‐Luengo,  H.  A.  Camps,  I.  Perez-­‐Ramos,  and  A.  Rius,  “Pycaro’s  instrument  proof  of  concept,”  in  2012  Workshop  on  Reflectometry  Using  GNSS  and  Other  Signals  of  Opportunity  (GNSS+R),  2012,  pp.  1–4.  

Carreño-­‐Luengo,  H.,  A.  Camps,  I.  Ramos-­‐Pérez,  G.  Forte,  R.  Onrubia,  and  R.  Díez,  “3Cat-­‐2:  A  P(Y)  and  C/A  experimental  nanosatellite  mission”,   Proceedings   of   the   2013   IEEE   International   Geoscience   and   Remote   Sensing   Symposium,   pp.  843-­‐846,  Melbourne,  Australia,  10.1109/IGARSS.2013.6721290,  July  2013.  

Carreño-­‐Luengo,   H.,   A.   Camps,   I.   Ramos-­‐Perez,   and   A.   Rius,   EXPERIMENTAL   EVALUATION   OF   GNSS-­‐REFLECTOMETRY  ALTIMETRIC   PRECISION   USING   THE   P(Y)   AND   C/A,     SIGNALS,     IEEE   Journal   of   Selected   Topics   in   Applied   Earth  Observations  and  Remote  Sensing,  Vol.7,  N.5,  May  2014.  

Carrie,   G.,   T.   Deloues,   J.   Mametsa,   S.   Angelliaume   (2011),     Ship   Detection   Based   on   GNSS   Reflected   Signals:   An  Experimental  Plan,  In  proceeding  of:  Space  Reflecto  2011,  At  Calais,  France.  

Carsey,  F.  (1992),  Microwave  Remote  Sensing  of  Sea  Ice,  Geophys.  Monogr.  Ser.,  vol.  68,  478  pp.,  AGU,  Washington,  D.  C.  

Chang,   A.   T.   C.,   J.   L.   Foster,   D.   Hall,   A.   Rango,   and   B.   Hartline   (1982),   Snow   water   equivalence   determination   by  microwave  radiometry,  Cold  Reg.  Sci.  Technol.,  5,  259  –  267,  doi:10.1016/0165-­‐232X(82)90019-­‐2.  

Page 68: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 68  of  88  

Chang   ,  P.  and  Z.   Jelenak   (editors),  NOAA  Operational  Satellite  Ocean  Surface  Vector  Winds  Requirements  Workshop  Report,   Miami,   Florida   June   5–7,   2006,   available   at:  http://www.ofcm.gov/tcr/reference/Ocean%20Surface%20Vector%20Winds_workshop_report_final.pdf  

Clarizia,  M.   P.,   Gommenginger   ,   C.,   Gleason,   S.,   Srokosz,  M.,   Galdi,   C.,   &   Di   Bisceglie,  M.:   Analysis   of   GNSS-­‐R   Delay-­‐Doppler  Maps  From  The  UK-­‐DMC  Satellite  Over  The  Ocean.  Geophys.  Res.  Lett.,  doi:10.1029/2008GL036292,  2009.  

Clarizia,  M.  P.,  C.  S.  Ruf,  P.  Jales,  and  C.  P.  Gommenginger,  2014:  Spaceborne  GNSS-­‐R  Minimum  Variance  Wind  Speed  Estimator.  IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  PP-­‐99,  1-­‐15,  Doi:  10.1109/TGRS.2014.2303831.  

Comiso,   J.   C.,   Cavalieri,   D.   J.,   and  Markus,   T.   (2003).   Sea   ice   concentration,   ice   temperature,   and   snow   depth   using  AMSR-­‐E  data.  IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  41(2):243–252.  

Cotton   et   al.   (2004),   Requirements   for   Future   Satellite   Altimetry:   Recommendations   for   Missions   and   Research  Programmes,  GAMBLE  Final  Report,  funded  by  the  EC  under  Framework  5,  EVR1-­‐CT-­‐  2001-­‐200091.  2004  

Cox,  C.,  and  W.  Munk   (1954),  Measurement  of  roughness  of   the  sea  surface  from  photographs  of   the  Sun’s  glitter,   J.  Opt.  Soc.  Am.,  44,  838–850.  

D'Addio,   S,   M.  Martín-­‐Neira,   Comparison   of   processing   techniques   for   remote   sensing   of   earth-­‐exploiting   reflected  radio-­‐navigation  signals,  ELECTRONICS  LETTERS,  Vol.49  No.  4,  Feb.  2013  

D'Addio,   S.,  M.  Martín-­‐Neira,  M.  di  Bisceglie,  C.  Galdi,  F.  Martín  Alemany,  GNSS-­‐R  Altimeter  Based  on  Doppler  Multi-­‐looking,  IEEE  Journal  of  Selected  Topics  in  Applied  Earth  Observations  and  Remote  Sensing,  Vol.7.  N.5,  May  2014.  

Dibarboure.G.   and   J.   Lambin   (2014):   The   delayed   launch   of   SARAL/AltiKa:   experience   feedback   and   impact   on   the  virtual  altimeter  constellation.  Submitted  to  Marine  Geodesy.  

Drinkwater,  M.  R.,  Long,  D.  G.,  and  Bingham,  A.  W.  (2001).  Greenland  snow  accumulation  estimates  from  satellite  radar  scatterometer  data.  Journal  of  Geophysical  Research,  106:33935–33950.  

Drüe,   C.   and   Heinemann,   G.   (2004).   High-­‐resolution   maps   of   the   sea-­‐ice   concentration   from   MODIS   satellite   data.  Geophysical  Research  Letters,  31.  

E-­‐GEM  Team  (2012),  European  GNSS-­‐R  Environmental  Monitoring,  Part  B  of  the  Proposal  to  the  EC  FP7  Call  FP7-­‐SPACE-­‐2013-­‐1  relevant  to  topic  SPA.2013.1.1-­‐07,  Proposal  Number  607126,  2012.  

Egido  A.,  Caparrini  M.,  Ruffini  G.,  Paloscia  S.,  Santi  E.,  Guerriero  L.,  Pierdicca  N.,  Floury  N.,  “Global  Navigation  Satellite  Systems  Reflectometry  as  a  remote  sensing  tool  for  agriculture”,  Remote  Sensing,  vol.  4,  pp.  2356-­‐2372,  2012.  

Egido,  A.,  S.  Paloscia,  E.  Motte,  L.  Guerriero,  N.  Pierdicca,  M.  Caparrini,  E.  Santi,  G.  Fontanelli  and  N.  Floury,  Airborne  GNSS-­‐R   Soil   Moisture   and   Above   Ground   Biomass   Observations,   IEEE   Journal   of   Selected   Topics   in   Applied   Earth  Observations  and  Remote  Sensing,  Vol.7,  N.5,  May  2014.  

Eisen,   O.,   Frezzotti,   M.,   Genthon,   C.,   Isaksson,   E.,   Magand,   O.,   van   den   Broeke,   M.   R.,   Dixon,   D.   A.,   Ekaykin,   A.,  Holmlund,  P.,  Kameda,  T.,  Karlöf,   L.,  Kaspari,   S.,   Lipenkov,  V.  Y.,  Oerter,  H.,   Takahashi,   S.,   and  Vaughan,  D.  G.   (2008).  Ground-­‐based  measurements  of   spatial   and   temporal   variability  of   snow  accumulation   in  East  Antarctica.  Reviews  of  Geophysics,  46:1–39.  

Page 69: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 69  of  88  

Elfouhaily,   T.,   B.   Chapron,   K.   Katsaros,   and  D.   Vandermark   (1997),   A   unified   directional   spectrum   for   long   and   short  wind-­‐driven  waves,  J.  of  Geosphys.  Res.,  vol.102,  N.C7,  pp:  15781-­‐15796.  

Elfouhaily,  T.,  D.  R.  Thompson,  and  L.  Linstrom  (2002),  Delay-­‐Doppler  analysis  of  bistatically  reflected  signals  from  the  ocean  surface:  Theory  and  application,  IEEE  Trans.  Geosci.  Remote  Sens.,  40,  560573,  doi:10.1109/TGRS.2002.1000316.  

Elfouhaily,  T.M.,  and  Guérin,  C-­‐A.  (2004),  A  critical  survey  of  approximate  scattering  wave  theories  from  random  rough  surfaces,  Waves  Random  Media,  14  R1-­‐R40,  doi:10.1088/0959-­‐7174/14/4/R01.  

Eppler,  D.  T.,  Farmer,  L.  D.,  Lohanick,  A.  W.,  Anderson,  M.  R.,  Cavalieri,  D.  J.,  Comiso,  J.,  Gloersen,  P.,  Garrity,  C.,  Grenfell,  T.  C.,  Hallikainen,  M.,  Maslanik,  J.  A.,  Mätzler,  C.,  Melloh,  R.  A.,  Rubinstein,  I.,  and  Swift,  C.  T.  (1992).  Passive  Microwave  Signatures  of  Sea  Ice.  In  Carsey,  F.  D.,  editor,  Microwave  Remote  Sensing  of  Sea  Ice,  chapter  4,  pages  47–72.  American  Geophysical  Union,  Washington  DC,  USA.  

ESA   EOP-­‐SE   (2011),   Annex   L:   Soil   Moisture   ECV   to   the   document   EOEP-­‐STRI-­‐EOPG-­‐SW-­‐11-­‐0001,   Issue   2,   Rev.   1,  12/05/2011.   Available   at     http://www.esa-­‐soilmoisture-­‐cci.org/sites/default/files/documents/public/Applicable%20Documents/ANNEX_L_Soil_Moisture_ECV.pdf  

ESA  (2013)  GEROS-­‐ISS  Mission  Requirement  Document.  Issue  1,  Rev.  0.  ESA  Ref.  EOP-­‐SM/2587/MK-­‐mk.  Issue  1,  Revision  0.  

Escudier.,  P.,  and  J.-­‐L.  Fellous  (2008):  The  next  15  years  of  Satellite  Altimetry:  Ocean  Surface  Topography  Constellation  User   Requirements   Document.   Report   of   the   Ocean   Surface   Topography   Virtual   Constellation   (OST   VC)   at   the   27th  Committee   on   Earth   Observation   Satellites   (CEOS)   SIT   Meeting.  http://ceos.org/images/OST/SatelliteAltimetryReport_2009-­‐10.pdf  

Fabra,  F.,  Cardellach,  E.,  Rius,  A.,  Ribó,  S.,  Oliveras,  S.,  Nogués-­‐Correig,  O.,  Belmonte  Rivas,  M.,  Semmling,  M.,  D  Addio,  S.  (2011),   Phase   Altimetry   with   Dual   Polarization   GNSS-­‐R   over   Sea   Ice   ,   IEEE   Transactions   on   Geoscience   and   Remote  Sensing,  50,  6,  pp.  10,  2011,  nov,  doi:10.1109/TGRS.2011.2172797,  2011.  

Fabra,   F.   (2013),   GNSS-­‐R   AS   A   SOURCE   OF   OPPORTUNITY   FOR   REMOTE   SENSING   OF   THE   CRYOSPHERE,   PhD   Thesis  Dissertation,  UPC,  Barcelona,  2013.  

Ferrazzoli   P.,  Guerriero  L.,   Solimini  D.,   “Simulating  bistatic   scatter   from  surfaces   covered  with  vegetation”,   Journal  of  Electromagnetic  Waves  and  Applications,  vol.  14,  pp.  233-­‐248,  2000.  

Ferrazzoli   P.,   Guerriero   L.,   Pierdicca   N.,   Rahmoune   R.,   "Forest   biomass   monitoring   with   GNSS-­‐R:   theoretical  simulations”,  Advances  in  Space  Research,  vol.  47,  pp.  1823-­‐1832,  2010.  

Fetterer,   F.  M.,  Drinkwater,  M.   R.,   Jezek,   K.   C.,   Laxon,   S.  W.   C.,  Onstott,   R.  G.,   and  Ulander,   L.  M.  H.   (1992).   Sea   Ice  Altimetry.   In   Carsey,   F.   D.,   editor,   Microwave   Remote   Sensing   of   Sea   Ice,   chapter   7,   pages   111–135.   American  Geophysical  Union,  Washington  DC,  USA.  

Font,  F.,    A.  Camps,  A.  Borges,  M.  Martín-­‐Neira,    J.  Boutin,  N.  Reul,  Y.  H.  Kerr,  A.  Hahne,  and  S.  Mecklenburg,    SMOS:  The  Challenging  Sea  Surface  Salinity  Measurement  from  Space,  Proceedings  of  the  IEEE  ,  vol  98,  5,649-­‐665,  2010.  

Page 70: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 70  of  88  

Fu,  L-­‐L,  D.  Alsdorf,  E.  Rodriguez,  R.  Morrow,  N.  Mognard,   J.  Lambin,  P.  Vaze,  and  T.  Lafon  (2009),"The  SWOT  (Surface  Water   and   Ocean   Topography)   Mission:   Spaceborne   Radar   Interferometry   for   Oceanographic   and   Hydrological  Applications.",  OCEANOBS'09  Conference,  2009.  

Fung,  A.K.,  and  Pan,  G.W.  (1986),  An  integral  equation  method  for  rough  surface  scattering,  Proceedings  of  the  Intern.  Symposium  on  multiple  scattering  of  waves  in  random  media  and  random  surfaces,  pp:  701-­‐714.  

Fung,  A.K.,  Li,  Z.,  and  Chen,  K.S.  (1992),  Backscattering  from  a  randomly  rough  dielectric  surface,  IEEE  Trans.  Geosci.  and  Remote  Sens.,  Vol.30,  No.2,  pp:356-­‐369.  

Fung,   A.K.   (1994),   Microwave   scattering   and   emission   models   and   their   applications,   Artech   House,   Norwood,  Massachusetts.  

Garrison,   J.L.,   A.   Komjathy,   V.U.   Zavorotny,   and   S.J.   Katzberg   (2002),   Wind   Speed   Measurement   Using   Forward  Scattered  GPS  Signals,  IEEE  Trans.  Geosc.  Remote  Sensing,  vol.40(1),  pp:  50-­‐65.  

Germain,   O.,   G.   Ruffini,   F.   Soulat,   M.   Caparrini,   B.   Chapron,   and   P.   Silvestrin   (2004),   The   eddy   experiment:   GNSSR  speculometry   for  directional   sea   rough-­‐ness   retrieval   from   low  altitude  aircraft,  Geophys.  Res.   Lett.,   31,   L21307,  doi:  10.1029/2004GL020991.  

Guerriero,  L.,  N.  Pierdicca,  A.  Egido,  M.  Caparrini,  S.  Paloscia,  E.  Santi,  N.  Floury,  (2013),  "Modeling  of  the  GNSS-­‐R  signal  as   a   function   of   soil   moisture   and   vegetation   biomass",   Proceedings   International   Geoscience   and   Remote   Sensing  Symposium  2013,  Melbourne.  

Gleason,   S.,   Hodgart,   S.,   Yiping,   S.,   Gommenginger,   C.,   Mackin,   S.,   Adjrad,   M.,   Unwin,   M.,   (2005).   Detection   and  processing   of   bistatically   reflected  GPS   signals   from   Low-­‐Earth  Orbit,   for   the   purpose   of   ocean   remote   sensing.   IEEE  Transactions  on  Geoscience  and  Remote  Sensing  43  (6),  1229–1241.  

Gleason,  S.  (2006),  Remote  sensing  of  Ocean,  Ice,  and  Land  surfaces  using  bistatically  scattered  GNSS  signals  from  Low  Earth  Orbit,  Ph.D.  thesis,  University  of  Surrey,  United  Kingdom.  

Gleason,  S.  and  Gebre-­‐Egziabher,  eds.,  GNSS  Applications  and  Methods,  ;  Artech  House,  2009  

Gleason,   S.   (2010),   Towards   Sea   Ice   Remote   Sensing   with   Space   Detected   GPS   Signals:   Demonstration   of   Technical  Feasibility   and   Initial   Consistency   Check   Using   Low   Resolution   Sea   Ice   Information,   Remote   Sensing,   pp.   2017–2039,  August  2010.  [Online].  Available:  http://www.mdpi.com/2072-­‐4292/2/8/2017/  

Grant,   M.S.,   S.T.   Acton   and   S.J.   Katzberg.   Terrain   Moisture   Classification   Using   GPS   Surface-­‐Reflected   signals.   IEEE  Geoscience  and  Remote  Sensing  Letters,  4,  2007.  

Gustafsson,   D.   (2012),     CryoLand   User   Requirements   on   Snow   Monitoring,   Snow   workshop   2012,   available   at:  http://www.globsnow.info/snow_workshop_2012/presentations/Gustafsson_SnowWS_CryoLand_User_Requirements.pdf  

Hajj,  G.A.,  and  C.  Zuffada,  Theoretical  description  of  a  bistatic  system  for  ocean  altimetry  using  the  GPS  signal,  Radio  Science,  38(5):1089,  2003.  

Hall,   D.   K.,   Riggs,   G.   A.,   Salomonson,   V.   V.,   DiGirolamo,   N.   E.,   and   Bayr,   K.   J.   (2002).   MODIS   snow-­‐cover   products.  Remote  Sensing  of  Environment,  83:181–194.  

Page 71: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 71  of  88  

Hall,   D.   K.,   Key,   J.   R.,   Casey,   K.   A.,   Riggs,   G.   A.,   and   Cavalieri,   D.   (2004).   Sea   Ice   Surface   Temperature   Product   From  MODIS.  IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  42:5.  

Helm,   A.,   G.   Beyerle,   and   M.   Nitschke   (2004),   Detection   of   coherent   reflections   with   GPS   bipath   interferometry,  http://arxiv.org/pdf/physics/0407091v1.pdf  

IEEC-­‐UPC,  speckle  noise  video  at  GNSS+R  2012  http://www.youtube.com/watch?v=gQJdsEBXoSo  

IEEC-­‐UPC,  report  on  PARIS  Phase-­‐A  contract:  PARIS-­‐PhA-­‐IEECUPC-­‐TN-­‐003,  ID-­‐11A  XCW  Model  Definition  Report,  2013  

Ingmann,  P.,  W.  Benesch,  P.  Bensi,  J.-­‐L.  Bézy,  B.  Bizzari,  F.  Cayla,  B.  Golding,  K.  Holmlund,  K.  Inglis,  U.  Klein,  C.-­‐C.  Lin,  P.  Pili,   G.   Prangsma,   J.   Schmetz,   R.   Stuhlmann,   Response   of   Remote   Sensing   Experts   (RSEs)   To   User   Requirements  Formulated  By  Applications  Expert  Groups  (AEGs),  Workshop  on  Post-­‐MSG  User  Requirements,  13-­‐15  November  2001,  available   at  http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=pdf_mtg_ucw1_12&RevisionSelectionMethod=LatestReleased&Rendition=Web.  

IORD  II  -­‐  Integrated  Operational  Requirements  Document,  December  10,  2001.  

IOWVST  Climate  Working  Group,  “Charter  for  IOVWST  Climate  Working  Group”,  April  2014.  

Ishimaru,  A.  (1978),  Wave  Propagation  and  Scattering  in  Random  Media,  vol.2,  New  York,  Academic  Press,  Inc.,  572  p.  

Jacobson,  M.  D.   (2010).   Inferring   Snow  Water   Equivalent   for   a   Snow-­‐Covered  Ground  Reflector  Using  GPS  Multipath  Signals.  Remote  Sensing,  2:2426–2441.  

Jin,   S.,   E.   Cardellach,   F.   Xie,   GNSS   Remote   Sensing,   Theory,   Methods   and   Applications,   Springer,   ISSN   1567-­‐3200,  doi:10.1007/978-­‐94-­‐007-­‐7482-­‐7,  2014.  

Johannessen,  O.  M.,  L.  Bengtsson,  M.  W.  Miles,  S.  I.  Kuzmina,  V.  Semenov,  G.  V.  Alekseev,  A.  P.  Nagurny,  V.  F.  Zakharov,  L.  P.  Bobylev,  L.  H.Pettersson,  K.  Hasselmann,  and  H.  P.  Cattle.  2004.  Arctic  Climate  Change  –  Observed  and  Modelled  Temperature  and  Sea  Ice.  Pages  328–341  in  Dynamic  Meteorology  and  Oceanography,  Tellus  Series  A,  vol.  56A,  no.  4.  Stockholm:  Swedish  Geophysical  Society  

Kaleschke,   L.,   Tian-­‐Kunze,   X.,   Mäkynen,   N.   M.   M.,   and   Drusch,   M.   (2012).   Sea   ice   thickness   retrieval   from   SMOS  brightness  temperatures  during  the  Arctic  freeze-­‐up  period.  Geophysical  Research  Letters,  39.  

Katzberg,  S.J.,  R.A.  Walker,  J.H.  Roles,  T  Lynch,  and  P.G.  Black  (2001),  First  GPS  signals  reflected  from  the  interior  of  a  tropical  storm:  preliminary  results  from  Hurricane  Michael,  Geophys.  Res.  Lett.,  vol.28,  N.10,  pp:  1981-­‐1984,  May.  

Katzberg,   S.J.,  O.   Torres,   and  G.  Ganoe   (2006),   Calibration   of   reflected  GPS   for   tropical   storm  wind   speed   retrievals,  Geophys.  Res.  Lett.,  vol.33,  N.L18602,  doi:10.1029/2006GL026825.  

Katzberg   S.J.,   Torres   O.,   Grant   M.S.,   Masters   D.   (2006b),   “Utilizing   calibrated   GPS   reflected   signals   to   estimate   soil  reflectivity   and   dielectric   constant:   results   from   SMEX02”,   Remote   Sensing   of   environment,   vol.   100,   pp.   17-­‐28.  doi:10.1026/j.rse.2005.09.015.  

Katzberg,   S.J.,   and   J.  Dunion   (2009),   Comparison  of   reflected  GPS  wind   speed   retrievals  with  drop-­‐sondes   in   tropical  cyclones,  Geophys.  Res.  Lett.,  vol.36,  N.L17602,  doi:10.1029/2009GL039512.  

Page 72: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 72  of  88  

Katzberg,   S.,   J.   Dunion,   and  G.G.   Ganoe,   THE  USE  OF   REFLECTED  GPS   SIGNALS   TO   RETRIEVE  OCEAN   SURFACE  WIND  SPEEDS   IN   TROPICAL   CYCLONES,   Radio   Science,   Volume   48,   Issue   4,   pages   371–387,   July/August   2013,  doi:10.1002/rds.20042.  

Kavak,   A.,   G.   Xu,   and   W.   J.   Vogel,   “GPS   multipath   fade   measurements   to   determine   L-­‐band   ground   reflectivity  properties,”  in  Proc.  NAPEX  XX,  1996,  pp.  257–263.  

Kavak,  A.,  W.  J.  Vogel,  and  G.  Xu,  “Using  GPS  to  measure  ground  complex  permittivity,”  Electron.  Lett.,  vol.  34,  no.  3,  pp.  254–255,Feb.  1998.  

Key,   J.   and  Haefliger,   M.   (1992).   Arctic   ice   surface   temperature   retrieval   from   AVHRR   thermal   channels.   Journal   of  Geophysical  Research,  97(D5):5885–5893.  

Komjathy,  A.,  J.  Maslanik,  V.  U.  Zavorotny,  P.  Axelrad,  and  S.  J.  Katzberg  (2000),  “Sea  Ice  Remote  Sensing  Using  Surface  Reflected  GPS  Signals,”  in  Proc.  IEEE  IGARSS  2000,  Honolulu,  HI,  USA,  July  2000.  

Komjathy,  A.,  M.  Armatys,  D.  Masters,  and  P.  Axelrad  (2004),  Retrieval  of  ocean  surface  wind  speed  and  wind  direction  using  reflected  GPS  signals,  J.  Atmos.  Oceanic  Technol.,  21,  pp:  515-­‐526.  

Koskinen,  J.  T.,  Pulliainen,  J.  T.,  and  Hallikainen,  M.  T.  (1997).  The  Use  of  ERS-­‐1  SAR  Data  in  Snow  Melt  Monitoring.  IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  35(3):601–610.  

Kwok,  R.  (2002).  Sea  ice  concentration  estimates  from  satellite  passive  microwave  radiometry  and  openings  from  SAR  ice  motion.  Geophysical  Research  Letters,  29(9).  

Lagerloef,  G.S.E.   (2001),   "Satellite  Measurements  of  Salinity,"   in  Encyclopedia  of  Ocean  Sciences,   J.   Steele,  S.  Thorpe,  and  K.  Turekian,  Eds.  London:  Academic  Press,  2001,  pp.  2511-­‐2516  

Lagerloef,  G.   (2012),   Satellite  mission  monitors  ocean   surface   salinity,   Eos,   Transactions  American  Geophysical  Union  Volume  93,  Issue  25,  pages  233–234,  19  June  2012,  DOI:  10.1029/2012EO250001  

Larson,  K.M.,  E.D.  Gutmann,  V.U.  Zavorotny,    J.J.  Braun,  M.W.  Williams,  and  F.G.  Nievinski,  Can  we  measure  snow  depth  with  GPS  receivers?  GEOPHYSICAL  RESEARCH  LETTERS,  VOL.  36,  L17502,  doi:10.1029/2009GL039430,  2009  

Larson,   K.M.,   J.   Braun,   E.E.   Small,   V.   Zavorotny,   E.   Gutmann,   and   A.   Bilich,   GPS  Multipath   and   Its   Relation   to   Near-­‐Surface  Soil  Moisture  Content,  IEEE  J-­‐STARS,  Vol.3  pp  91-­‐99,  10.1109/JSTARS.2009.2033612,  2010  

Larson,   K.M.,   R.D.   Ray,   F.G.   Nievinski,   J.T.   Freymueller,   The   accidental   tide   gauge:   a   GPS   reflection   case   study   from  Kachemak  Bay,  Alaska,  IEEE  Geosc.  Remote  Sensing  Lett.,  10(5),  pp:1200-­‐1204,  2013.  

Larson,   K.M   and   E.E.   Small,   Normalized  Microwave   Reflection   Index:   A   Vegetation  Measurement   derived   from   GPS  Networks,  IEEE  Journal  of  Selected  Topics  in  Applied  Earth  Observations  and  Remote  Sensing,  Vol.  7,  N.  5,  May  2014.  

Laxon,   S.   and  M.  Roca,   “Envisat  RA-­‐2:  S-­‐band  performance,”   in  Proc.  Envisat  Calibration  Rev.,  H.   Sawaya-­‐Lacoste,  Ed.  Noordwijk,  The  Netherlands:  ESTEC  Publications  Division,  Nov.  2002,  pp.  1–6.  

Le  Traon,  P.Y.,  G.  Dibarboure,  G.  Ruffini,  E.  Cardellach,  Mesoscale  Ocean  Altimetry  Requirements  and  Impact  of  GPS-­‐R  measurements  for  Ocean  Mesoscale  Circulation  Mapping,  ESA/ESTEC  Contract  No.  15083/01/NL/MM,  Abridge  Technical  Extract  on  WP2000/3800,  (http://arxiv.org/abs/physics/0212068),  2002.  

Page 73: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 73  of  88  

Le  Traon,  .P.Y.,  H.  Bonekamp,  R.  Santoleri,  P.  DiGiacomo,  D.  Antoine,  G.  Dibarboure,  Y.  Faugère,  M.H.  Rio,  G.    Larnicol,  L.  Miller,  E.  Leuliette,  C.    Donlon,  G.    Corlett,  E.  Maturi,  M.  Martin,    P.  Le  Borgne,  H.  Roquet,  J.  Johannessen,  B.  Chapron,  A.  Bentamy,  N.  Reul,  G.  Lagerloef,  J.    Font,  J.  Wilkin,  R.  Morrow,  F.  Ardhuin,  L.A.  Breivik,  J.  Lambin,  L.  Mingsen,  E.  Lindstrom  (2014):   Use   of   satellite   observations   for   operational   oceanography   :   recent   achievements   and   future   prospects.  Submitted  to  the  Journal  of  Operational  Oceanography  

Lee,  T.,  Z.  Li,  S.  Lowe,  C.  Zuffada,  Observing  energetic  eddies  with  GNSS  reflections   from  the   ISS.  Communication  and  presentation  to  the  ESA  Science  Advisory  Group  of  the  GEROS  mission,  2013.  

Lemke,  P.,  Ren,  J.,  Alley,  R.  B.,  Allison,  I.,  Carrasco,  J.,  Flato,  G.,  Fujii,  Y.,  Kaser,  G.,  Mote,  P.,  Thomas,  R.  H.,  and  Zhang,  T.  (2007).  Observations:  Changes  in  Snow,  Ice  and  Frozen  Ground.  In  Solomon,  S.,  Qin,  D.,  Manning,  M.,  Chen,  Z.,  Marquis,  M.,  Averyt,  K.  B.,  Tignor,  M.,  and  Miller,  H.  L.,  editors,  Climate  Change  2007:  The  Physical  Science  Basis.  Contribution  of  Working  Group  I  to  the  Fourth  Assessment  Report  of  the  Intergovernmental  Panel  on  Climate  Change,  chapter  4,  pages  337–383.  Cambridge  University  Press,  Cambridge,  United  Kingdom  and  New  York,  NY,  USA.  

Li,  P:W.,  Y.  Dongkai,  S.  D'Addio,  M.  Martín-­‐Neira,  Partial  Interferometric  Processing  of  Reflected  GNSS  Signals  for  Ocean  Altimetry,  accepted  in  IEEE  Geoscience  and  Remote  Sensing  Letters,  2013.  

Liu,  W.,   Y.  Hu,   and  D.   Yang,   Ship  Monitoring   and   location   Estimation  Based   on   Spaceborne  GNSS  Reflections,     to   be  presented   in   ION   GNSS+   Meeting,   Sept.   8-­‐12,   2014,   Tampa,   FL,   USA.   Abstract   available   at:  http://www.ion.org/gnss/abstracts.cfm?paperID=1853  

Löfgren,  J.S.,  Local  Sea  Level  Observations  Using  Reflected  GNSS  Signals,  Ph.D.  Thesis,  Department  of  Earth  and  Space  Sciences,  Chalmers  University  of  Technology,  Gothenburg,  Sweden,  2014.  

Lowe,  S.  T.,  C.  Zuffada,  Y.  Chao,  P.  Kroger,  L.  E.  Young,  and  J.  L.  LaBrecque  (2002),  5-­‐cm  precision  aircraft  ocean  altimetry  using  GPS  reflections,  Geophys.  Res.  Lett.,  29(10),  1375,  doi:10.1029/2002GL014759.  

Lowe,  S.  T.,  LaBrecque,  J.  L.,  Zuffada,  C.,  Romans,  L.,  Young,  L.,  Hajj,  G.,  2002.  First  spaceborne  observation  of  an  earth-­‐reflected  GPS  signal.  Radio  Science,  37(1).  

Lowe,  S.,  T.  Meehan,  and  L.  Young,  Direct-­‐Signal  Enhanced  Semi-­‐Codeless  Processing  of  GNSS  Surface-­‐Reflected  Signals,  IEEE  Journal  of  Selected  Topics  in  Applied  Earth  Observations  and  Remote  Sensing,  Vol.7,  N.5,  May  2014.  

Lyapustin,  A.,  Tedesco,  M.,  Wang,  Y.,  Aoki,  T.,  Hori,  M.,  and  Kokhanovsky,  A.  (2009).  Retrieval  of  snow  grain  size  over  Greenland  from  MODIS.  Remote  Sensing  of  Environment,  113:1976–1987.  

Makin,  V.K.,  V.N.  Kudryavtsev,  and  C.  Mastenbroek  (1995),  Drag  of  the  sea  surface,  Boundary-­‐Layer  Meteorology,  73,  pp:  159-­‐182.  

Marchan-­‐Hernandez,   J.,   N.   Rodriguez-­‐Alvarez,   A.   Camps,   X.   Bosch-­‐Lluis,   I.   Ramos-­‐Perez,   and   E.   Valencia   (2008),  Correction   of   the   sea   state   impact   in   the   Lband   brightness   temperature   by  means   of   delay   doppler  maps   of   Global  Navigation  Satellite  Signals  reflected  over  the  sea  surface,  IEEE  Trans.  Geosci.Remote  Sens.,  46,  29142923.  

Marghany,  M.  and  M.  Hashim   (2011),  Retrieving  seasonal   sea  surface  salinity   from  MODIS  satellite  data  using  a  Box-­‐Jenkins   algorithm,   Proceedings   of   the   IEEE   International  Geoscience   and   Remote   Sensing   Symposium   (IGARSS),   2011  IEEE,  08/2011  

Page 74: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 74  of  88  

Markus,  T.,  Cavalieri,  D.  J.,  Gasiewski,  A.  J.,  Klein,  M.,  Maslanik,  J.  A.,  Powell,  D.  C.,  Stankov,  B.  B.,  Stroeve,  J.,  and  Sturm,  M.   (2006).   Microwave   Signatures   of   Snow   on   Sea   Ice:   Observations.   IEEE   Transactions   on   Geoscience   and   Remote  Sensing,  44(11):3081–3090.  

Martín,  F.,  S.  DAddio,  A.  Camps,  and  M.  Martin-­‐Neira,  “Modelling  and  Analysis  of  GNSS-­‐R  Waveforms  Sample-­‐to-­‐Sample  Correlation,”  Journal  of  Selected  Topics  in  Applied  Earth  Observations  and  Remote  Sensing,  vol.  7,  no.  5,  May  2014.  

Martín,   F.,   A.   Camps,  H.   Park,   S.  DAddio,  M.  Martin-­‐Neira,   and  D.   Pascual,   “Cross-­‐Correlation  Waveform  Analysis   for  Conventional   and   Interferometric  GNSS-­‐R  Approaches,”   Journal  of   Selected  Topics   in  Applied  Earth  Observations  and  Remote  Sensing,  vol.  7,  no.  5,  May  2014.  

Martín-­‐Neira,  M.  A  Passive  Reflectometry  and  Interferometry  System  (PARIS):  Application  to  Ocean  Altimetry.    ESA  J.,  17:331-­‐355,  December  1993.  

Martín-­‐Neira,  M.,  M.  Caparrini,   J.   Font  Rosselló,   S.   Lannelongue,  and  C.  S.  Vallmitjana   (2001),  The  PARIS  concept:  An  experimental  demonstration  of  sea  surface  altimetry  using  GPS  reflected  signals,  IEEE  Trans.  Geosci.  Remote  Sens.,  39,  142149.  

Martín-­‐Neira,  M.,   P.   Colmenarejo,  G.  Ruffini,   and  C.   Serra   (2002),  Altimetry  precision  of   1   cm  over   a  pond  using   the  wide-­‐lane  carrier  phase  of  GPS  reflected  signals,  Canadian  J.  of  Remote  Sensing,  28  (3),  394-­‐403,  June.  

Martín-­‐Neira,   M.,   S.   D’Addio,   C.   Buck,   N.   Floury,   and   R.   Prieto-­‐Cerdeira,   The   PARIS   Ocean   Altimeter   In-­‐Orbit  Demonstrator,  IEEE  Trans.  Geosc.  Remote  Sens.,    VOL.  49,  NO.  6,  JUNE  2011  doi:  10.1109/TGRS.2010.2092431  

Martín-­‐Neira,  M.,  S.  D'Addio,  and  R.  Vitulli,  Study  of  Delay  Drift  in  GNSS-­‐R  Altimetry,  IEEE  Journal  of  Selected  Topics  in  Applied  Earth  Observations  and  Remote  Sensing,  Vol.7,  N.5,  May  2014.  

Masters   D.,   Axelrad   P.,   Katzberg   S.,   “Initial   results   of   land-­‐reflected   GPS   bistatic   radar   measurements   in   SMEX02”,  Remote  Sensing  of  Environment,  vol.  92,  pp.  507-­‐520,  2004.  

Molotch,   N.   P.,   and   R.   C.   Bales   (2006),   SNOTEL   representativeness   in   the   Rio   Grande   headwaters   on   the   basis   of  physiographics  and  remotely  sensed  snow  cover  persistence,  Hydrol.  Processes,  20,  723  –  739,  doi:10.1002/hyp.6128.  

Mouginot,   J.,  Scheuchl,  B.,  and  Rignot,  E.  (2012).  Mapping  of   Ice  Motion  in  Antarctica  Using  Synthetic-­‐Aperture  Radar  Data.  Remote  Sensing,  4:2753–2767.  

Nagler,   T.   and   Rott,   H.   (2000).   Retrieval   of   Wet   Snow   by   Means   of   Multitemporal   SAR   Data.   IEEE   Transactions   on  Geoscience  and  Remote  Sensing,  38(2):754–765.  

Nievinski,   F.G.,   Forward   and   inverse  modeling   of   GPS  multi-­‐path   for   snow  monitoring,   Ph.D.   Thesis,   Department   of  Aerospace  Engineering  Sciences,  University  of  Colorado,  Boulder,  CO,  U.S.A.,  2013.  

Nievinski,  F.G.  and  K.M.  Larson  (2014a),  Inverse  Modeling  of  GPS  Multipath  for  Snow  Depth  Estimation,  I:  Formulation  and  Simulations,  IEEE  TGRS,  doi:10.1109/TGRS.2013.2297681  

Nievinski,  F.G.  and  K.M.  Larson  (2014b),  Inverse  Modeling  of  GPS  Multipath  for  Snow  Depth  Estimation,  II:  Application  and  Validation,  IEEE  TGRS,  doi:10.1109/TGRS.2013.2297688  

Page 75: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 75  of  88  

Nogués-­‐Correig,   O.,   Cardellach,   E.,   Sanz   Campderros,   J.,   Rius,   A.,   A   GPS-­‐Reflections   Receiver   That   Computes  Doppler/Delay  Maps  in  Real  Time,  IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  45,  1,  pp.  156-­‐174,  2007,  jan,  10.1109/TGRS.2006.882257  

Nordeng.  T.E.  (1991),  On  the  wave  age  dependent  drag  coefficient  and  roughness  length  at  sea,  J.  Geophys.  Res.,  vol.96,  N.C4,  pp:  7167-­‐7174,  April.  

Notarpietro,  R.,    S.  De  Mattia,  P.    Savi,    Y.  Pei,  Detection  of  buried  objects  using  reflected  GNSS  signals,  submitted  to  EURASIP,  2014.  

Ochsner  et  al.   (2013),    State  of  the  Art   in  Large-­‐Scale  Soil  Moisture  Monitoring,  Soil  Sci.  Soc.  Am.  J.   ,  Received  8  Mar.  2013,  doi:10.2136/sssaj2013.03.0093  

Ochilov,  S.  and  Clausi,  D.  A.  (2012).  Operational  SAR  Sea-­‐Ice  Image  Classification.  IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  50(11):4397–4408.  

Onstott,  R.  G.  (1992).  SAR  and  Scatterometer  Signatures  of  Sea  Ice.  In  Carsey,  F.  D.,  editor,  Microwave  Remote  Sensing  of  Sea  Ice,  chapter  5,  pages  73–104.  American  Geophysical  Union,  Washington  DC,  USA.  

Onstott,   R.   G.   and   Shuchman,   R.   A.   (2004).   SAR  Measurements   of   Sea   Ice.   In   Jackson,   C.   R.   and   Apel,   J.   R.,   editors,  Synthetic   Aperture   Radar   Marine   User’s   Manual,   chapterpages   81–115.   NOAA/NESDIS   Office   of   Research   and  Applications,  Washington  DC,  USA.  

Pallares,   J.M.,  Ruffini,  G.,  and  Ruffini,   L.   (2005),   Ionospheric   tomography  using  GNSS  reflections,   IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  Volume:43,  Issue:  2,  Feb.  2005.  

Park,   H.,   A.   Camps,   E.   Valencia,   N.   Rodriguez-­‐Alvarez,   X.   Bosch-­‐Lluis,   I.   Ramos-­‐Perez,   and   H.   Carreno-­‐Luengol,  “Retracking  Consideration  in  spaceborne  GNSS-­‐R  altimetry”,  GPS  Solut.,  doi:  10.1007/s10291-­‐011-­‐0251-­‐7,  2011  

Park,  H.  et  al.,  ID-­‐17A:  Contribution  to  system  end-­‐to-­‐end  performance  model  and  validation  report,  ref  ID-­‐17A,  PARIS-­‐PhA-­‐IEEC-­‐UPC-­‐TN-­‐11,  24/09/2012  

Park,  H.,  A.  Camps,  D.  Pascual,  A.  Alonso,  F.  Martin,  and  H.  Carreno-­‐Luengo,  “Improvement  of  the  PAU/PARIS  End-­‐to-­‐end   Performance   Simulator   (P2EPS)   in   preparation   for   upcoming   GNSS-­‐R   missions,”   in   2013   IEEE   International  Geoscience  and  Remote  Sensing  Symposium  -­‐  IGARSS,  2013,  pp.  362–365.  

Park,    H.,  D.   Pascual,  A.   Camps,   F.  Martin,  A.  Alonso-­‐Arroyo,   and  H.   Carreño-­‐Luengo,  Analysis   of   Spaceborne  GNSS-­‐R  Delay-­‐Doppler  Tracking,  IEEE  Journal  of  Selected  Topics  in  Applied  Earth  Observations  and  Remote  Sensing,  vol.  7,  no.  5,  May  2014.  

Partington,   K.   C.,   Flach,   J.   D.,   Barber,   D.,   Isleifson,   D.,  Meadows,   P.   J.,   and   Verlaan   (2010).   Dual-­‐Polarization   C-­‐Band  Radar  Observations  of  Sea  Ice  in  the  Amundsen  Gulf.  IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  48(6):2685–2691.  

Pierdicca  N.,  Pulvirenti   L.,  Ticconi  F.,  Pampaloni  P.,  Macelloni  G.,  Brogioni  M.,  Pettinato  S.,  Guerriero  L.,   Ferrazzoli  P.,  della  Pietra  G.,  Capobianco  F.,   “Use  of  Bistatic  Microwave  Measurements   for  Earth  Observation”,  Final  Report  of  ESA  Contract  19173/05/NL/GLC,  2007.  

Page 76: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 76  of  88  

Pierdicca,  N.,  Pulvirenti,  Pace,  "A  Prototype  Software  Package  to  Retrieve  Soil  Moisture  from  Sentinel-­‐1  Data  by  Using  a  Bayesian  Multitemporal  Algorithm",  IEEE  Journal  of  Selected  Topics  in  Applied  Earth  Observations  and  Remote  Sensing,  JSTARS-­‐2012-­‐00693,  2012.  

Pierdicca,  N.,  L.  Guerriero,  R.  Giusto,  M.  Brogioni,  A.  Egido,  (2014),  "SAVERS:  A  Simulator  of  GNSS  Reflections  from  Bare  and  Vegetated  Soils",  IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  Vol.  52,  pp.  6542—6554.  

Remund,  Q.  P.  and  Long,  D.  G.  (1999).  Sea  ice  extent  mapping  using  Ku  band  scatterometer  data.  Journal  of  Geophysical  Research,  104:11515–11528.  

Rémy,  F.  and  Parouty,  S.  (2009).  Antarctic  Ice  Sheet  and  Radar  Altimetry:  A  Review.  Remote  Sensing,  1:1212–1239.  

Reul,   N.,   S.   Saux-­‐Picart,   B.   Chapron,   D.   Vandemark,   J.   Tournadre,   and   J.   Salisbury   (2009),   Demonstration   of   ocean  surface  salinity  microwave  measurements  from  space  using  AMSR-­‐E  data  over  the  Amazon  plume,  Geophys.  Res.  Lett.,  36,  L13607,  doi:10.1029/2009GL038860.  

Rhein,  M.,  S.R.  Rintoul,  S.  Aoki,  E.  Campos,  D.  Chambers,  R.A.  Feely,  S.  Gulev,  G.C.  Johnson,  S.A.  Josey,  A.  Kostianoy,  C.  Mauritzen,  D.  Roemmich,  L.D.  Talley  and  F.  Wang,  2013:  Observations:  Ocean.   In:  Climate  Change  2013:  The  Physical  Science   Basis.   Contribution   of   Working   Group   I   to   the   Fifth   Assessment   Report   of   the   Intergovernmental   Panel   on  Climate  Change  [Stocker,  T.F.,  D.  Qin,  G.-­‐K.  Plattner,  M.  Tignor,  S.K.  Allen,  J.  Boschung,  A.  Nauels,  Y.  Xia,  V.  Bex  and  P.M.  Midgley  (eds.)].  Cambridge  University  Press,  Cambridge,  United  Kingdom  and  New  York,  NY,  U  

Ribó,  S.,  J.C.  Arco,  S.  Oliveras,  E.  Cardellach,  A.  Rius,  C.  Buck,    Experimental  Results  of  an  X-­‐Band  PARIS  Receiver  Using  Digital   Satellite   TV   Opportunity   Signals   Scattered   on   the   Sea   Surface,   IEEE   Transactions   on   Geoscience   and   Remote  Sensing,  doi:10.1109/TGRS.2013.2292007,  2014  

Rice,  S.O.  (1951),  Reflection  of  electromagnetic  waves  from  slightly  rough  surfaces,  Commun.  Pure  Appl.  Math.,  vol.4,  pp:  351-­‐378.  

Rice,  S.O.  (1963),  Reflection  of  EM  from  slightly  rough  surfaces,  Interscience,  New-­‐York.  

Rignot,  E.,  Jezek,  K.  C.,  and  Sohn,  H.  G.  (1995).  Ice  flow  dynamics  of  the  Greenland  Ice  Sheet  from  SAR  interferometry.  Geophysical  Research  Letters,  22(5):575–578.  

Rius,  A.,  Aparicio,  J.  M.,  Cardellach,  E.,  Martín-­‐Neira,  M.,  Chapron,  B.,  Sea  surface  state  measured  using  GPS  reflected  signals,  Geophysical  Research  Letters,  29,  pp.  37-­‐1,  Dec,  2002  

Rius,  A.,  Cardellach,  E.,  Martín-­‐Neira,  M.,  Altimetric  Analysis  of  the  Sea-­‐Surface  GPS-­‐Reflected  Signals,  IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  48,  4,  pp.  2119  -­‐  2127,  2010,  apr,  10.1109/TGRS.2009.2036721  

Rius,  A.,  Cardellach,  E.,  Oliveras,  S.,  Valencia,  E.,  Park,  H.,  Camps,  A.,  van  der  Marel,  H.,  van  Bree,  R.,  Altena,  B.,  Nogués-­‐Correig,  O.,  Ribó,  S.,  et  al,  Altimetry  with  GNSS-­‐R  interferometry:  first  proof  of  concept  experiment,  GPS  Solutions,  pp.  1-­‐11,  2011,  jun,  10.1007/s10291-­‐011-­‐0225-­‐9  

Rodriguez-­‐Alvarez,  N.,  X.  Bosch-­‐Lluis,  A.  Camps,  M.  Vall-­‐llossera,  E.  Valencia,   J.   F.  Marchan-­‐Hernandez,  and   I.  Ramos-­‐Perez,   “Soil   Moisture   Retrieval   Using   GNSS-­‐R   Techniques:   Experimental   Results   Over   a   Bare   Soil   Field,”   IEEE   Trans.  Geosci.  Remote  Sens.,  vol.  47,  no.  11,  pp.  3616–3624,  Nov.  2009.  

Page 77: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 77  of  88  

Rodriguez-­‐Alvarez,   N.,   Camps   A.,   Vall-­‐llosera  M.,   Bosch-­‐Lluis   X.,   Monerris   A.,   Ramos-­‐Perez   I.,   Valencia   E.,   Marchan-­‐Hernandez   J.F.,   Martinez-­‐Fernandez   J.,   Baroncini-­‐Turricchia   G.,   Pérez-­‐Gutiérrez   C.,   Sánche   N.,   “Land   Geophysical  Parameters  Retrieval  Using  the  Interference  Pattern  GNSS-­‐R  Technique”,  IEEE  Transactions  on  Geosciences  and  Remote  Sensing,  vol.  32,  pp.  47-­‐61,  Jan.,  doi:  .10.1109/TGRS.2010.2049023,  2011  

Rodriguez-­‐Alvarez,  N.,  X.  Bosch-­‐Lluis,  A.  Camps,   I.  Ramos-­‐Perez,  E.  Valencia,  H.  Park,  M.  Vall-­‐llossera,  and  A.  Aguasca,  “Vegetation  Water  Content  Estimation  Using  GNSS  Measurements,”  Geosci.  Remote  Sens.  Lett.   IEEE,  vol.  9,  no.  6,  pp.  1109–1113,  2012.  

Ruff,  C.,  S.  Gleason,  Z.  Jelenak,  S.  Katzberg,  A.  Ridley,  R.  Rose,  J.  Scherrer,  and  V.  Zavorotny,  “The  CYGNSS  nanosatellite  constellation   hurricane   mission”,   Proceedings   of   the   2012   IEEE   International   Geoscience   and   Remote   Sensing  Symposium,  pp.  214-­‐216,  Munich,  Germany,  10.1109/IGARSS.2012.6351600,  July  2012.  

Ruffini,   G.,  M.   Caparrini,   F.   Soulat,  Manuel  Martin-­‐Neira,   P.   Silvestrin,   K.   Sharman   (2001),   Using  GNSS   re   ections   for  Ionospheric  Studies,  Proceeding  of  Space  Weather  Workshop:  Looking  towards  a  European  Space  Weather  Programme,  17-­‐19  December  2001,  ESTEC,  Noordwijk,  The  Netherlands.  

Ruffini,   G.,   F.   Soulat,  M.   Caparrini,  O.  Germain,   and  M.  Martín-­‐Neira   (2004),   The   eddy   experiment:   accurate  GNSS-­‐R  Ocean  altimetriy  from  low  altitude  aircraft,  Geophys.  Res.  Lett.,  vol.31,  N.L12306,  doi:  10.1029/2004GL019994.  

Sandven,   J.,   and   O.M.   Johannessen,   Sea   Ice  Monitoring   by   Remote   Sensing,   Chapter   8,   Published   by   The   American  Society  for  Photogrammetry  &  Remote  Sensing,  2006,  http://hdl.handle.net/1956/1135  

Scherer  D.  D.K.  Hall,  V.  Hochschild,  M.  König,  J.-­‐G.  Winther,  C.R.  Duguay,  F.  Pivot,  C.  Mätzler,  F.  Rau,  K.  Seidel,  R.  Solberg,  and  A.E.  Walker,  Remote  Sensing  of  Snow  Cover,  Remote  Sensing  in  Northern  Hydrology  Geophysical  Monograph  Series  163,  AGU,  2005  doi:  10.1029/163GM03  

Schiavulli,   G.,   Domenico  Nunziata,   Ferdinando   Pugliano   and  M.  Migliaccio,   “Reconstruction   of   the  Normalized   Radar  Cross  Section  field  from  GNSS-­‐R  Delay-­‐Doppler  Map,”  IEEE  Journal  of  Selected  Topics  in  Applied  Earth  Observations  and  Remote  Sensing,  vol.  7,  no.  5,  May  2014.  

Semmling,  M.,  Beyerle,  G.,  Stosius,  R.,  Dick,  G.,  Wickert,   J.,   Fabra,  F.,  Cardellach,  E.,  Ribó,  S.,  Rius,  A.,  Helm,  A.,  et  al,  Detection   of   Arctic   Ocean   Tides   using   Interferometric   GNSS-­‐R   Signals,   Geophysical   Research   Letters,   2011,  doi:10.1029/2010GL046005  

Semmling,   M.,   T.   Schmidt,   J.   Wickert,   S.   Schön,   Fabra,   F.,   Cardellach,   E.,   Rius,   A.,   On   the   Retrieval   of   the   Specular  Reflection   in   GNSS   Carrier   Observations   for   Ocean   Altimetry,   Radio   Science,   47,   RS6007,   2012,   dec,  10.1029/2012RS005007  

Semmling,  A.  M.,  Wickert,  J.,  Schön,  S.,  Stosius,  R.,  Markgraf,  M.,  Gerber,  T.,  Ge,  M.,  Beyerle,  G.,  A  zeppelin  experiment  to  study  airborne  altimetry  using  specular  Global  Navigation  Satellite  System  reflections.  -­‐  Radio  Science,  48,  4,  427-­‐440.  10.1002/rds.20049,  2013.  

Semmling,  A.  M.,  Beckheinrich,  J.,  Wickert,  J.,  Beyerle,  G.,  Schön,  S.,  Fabra,  F.,  Pflug,  H.,  He,  K.,  Schwabe,  J.,  Scheinert,  M.,  Sea  surface  topography  retrieved  from  GNSS  reflectometry  phase  data  of  the  GEOHALO  flight  mission,  Geophysical  Research  Letters,  41,  pp.  7,  2014,  jan,  10.1002/2013GL058725  

Page 78: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 78  of  88  

Shah,   R.,     J.  Garrison,   and  M.  Grant,  Demonstration  of  bistatic   radar   for  ocean   remote   sensing  using   communication  satellite  signals,  EEE  Geosci.  Remote  Sens.  Lett.,  vol.  9,  no.  4,  pp.  619–623,  Jul.  2012.  

Shuchman,  R.  A.,  Onstott,  R.  G.,   Johannessen,  O.  M.,  Sandven,  S.,  and   Johannessen,   J.  A.   (2004).  Processes  at   the   Ice  Edge  -­‐  The  Arctic.  In  Jackson,  C.  R.  and  Apel,  J.  R.,  editors,  Synthetic  Aperture  Radar  Marine  User’s  Manual,  chapter  18,  pages  373–395.  NOAA/NESDIS  Office  of  Research  and  Applications,  Washington  DC,  USA.  

Small,  E.E.,  K.M.  Larson,  and  J.  J.  Braun,  Sensing  Vegetation  Growth  With  Reflected  GPS  Signals,  Geophys.  Res.  Lett.,  Vol.  37,  L12401,  doi:10.1029/2010GL042951,  2010  

Small,   E.E.,   K.M.   Larson,   and   W.K.   Smith,   Normalized   Microwave   Reflection   Index:   Validation   of   Vegetation   Water  Content  Estimates  from  Montana  Grasslands,  IEEE  Journal  of  Selected  Topics  in  Applied  Earth  Observations  and  Remote  Sensing,  Vol.7,  N.5,  May  2014.  

Soulat,  F.,  M.  Caparrini,  O.  Germain,  P.  Lopez-­‐Dekker,  M.  Taani,  and  G.  Ruffini  (2004),  Sea  state  monitoring  using  coastal  GNSS-­‐R,  Geophys.  Res.  Lett,  vol.31.  

Soulat,   F.,   P.   Fabry,   J.P.   Malardé,   J.J.   Valette,   F.   Maussang,   G.   Hajduch,   O.   Germain,   J.D.   Desjonquères   (2010),   A  Feasibility   Study   for   Ship  Detection   using  GNSS   Reflections,   presented   at  Workshop   on  GNSS   Reflectometry   (GNSS-­‐R  2010),  21-­‐22  October,  Barcelona,  Spain.  

Soulat,   F.   (2010),  GNSS  Reflections  over  Ocean   Surfaces   State  of   the  Art,   presented   at   CCT   Space  Reflectometry,   1st  December   2010,   Toulouse,   France.   Available   at:   http://www-­‐lisic.univ-­‐littoral.fr/spacereflecto2010/____Workshop/__programme/pdf/__01_CCT_GNSSR_CLS_v2.pdf  

Soulat,   F.,   J.-­‐D.  Desjonquères,  N.   Pourthié,   P.   Thibaut,   J.-­‐C.   Souyris,   F.   Fabra,   and  A.   Rius,   Ship   detection   using  GNSS  reflections:   a   demonstration   study,   presented   at   Workshop   on   Reflectometry   using   GNSS   and   Other   Signals   of  Opportunity   (GNSS+R   2012),   October   10-­‐11,   2012.   Abstract   available   at:   http://www.gnssr2012.org/topics/technical-­‐program  

Stitt,   S.,   Dwyer,   J.   L.,   Dye,   D.   G.,   and   Josberger,   E.   G.   (2011).   Terrestrial   essential   climate   variables   at   a   glance.   U.S.  Geological  Survey  Scientific  Investigations  Map  2011-­‐3155,  plate.  1  

Torres,  O.  and  R.  Lawrence,  Retrieval  of  reflected  direct  broadcast  satellite  (DBS)  signals  for  earth  science  applications,  Proc.  IGARSS,  vol.  5,  pp.  240–243,  Jul.  2008.  

Treuhaft,  R.  N.,  S.  T.  Lowe,  C.  Zuffada,  and  Y.  Chao  (2001),  Two  cm  GPS  altimetry  over  Crater  Lake,  Geophys.  Res.  Lett.,  28(23),  43434346  

Treuhaft,   R.N.,   S.T.   Lowe,   Cardellach,   E.,   FORMULATING   A   VECTOR   WAVE   EXPRESSION   FOR   POLARIMETRIC   GNSS  SURFACE  SCATTERING,  Progress  In  Electromagnetics  Research  B,  33,  pp.  257-­‐276,  2011,  10.2528/PIERB11042910  

Ulaby,   F.T.,  Moore,   R.K.,   and   Fung   A.K.   (1982),  Microwave   Remote   Sensing:Active   and   Passive,   vol.2,   Norwood,  MA,  Artech  House,  Inc.,  1064  p.  

Ulaby,   F.T.,  Moore,  R.K.,   and  Fung  A.K.   (1986),  Microwave  Remote  Sensing:  Active  and  Passive,   vol.3,  Norwood,  MA,  Artech  House,  Inc.,  2162p.  

Page 79: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 79  of  88  

Unwin,  M.,  P.  Jales,  P.  Blunt,  S.  Duncan,  “Preparation  for  the  first  flight  of  SSTL’s  next  generation  space  GNSS  receivers”,  Proceedings  of   the  Satellite  Navigation  Technologies  and  European  Workshop  on  GNSS  Signals  and  Signal  Processing,  (NAVITEC),  6th  ESA  Workshop,  pp.  1-­‐6,  ESTEC,  Noordwijk,  The  Netherlands,  10.1109/NAVITEC.2012.6423101,  December  2012.  

Uppala,  S.,  Broad,  A.,  Delécluse,  P.,  Köchy,  M.,  Strahlendorff,  M.,  Doherty,  M.,  Schulz,   J.,  Simmons,  A.,  Kattenberg,  A.,  Noyes,   S.,   Fuchs,   T.,   Jol,   A.,   and   Ehrhard,  M.   (2011),   GMES   Climate   Service:   Towards   a   European   knowledge   base   in  support   of   Mitigation   and   Adaptation.   European   Commission   Enterprise   and   Industry   Directorate-­‐General.   Draft  Document  DG  ENTR/H.4/CC.  

Valencia,  E.,  J.F.  Marchan-­‐Hernandez,  A.  Camps,  N.  Rodriguez-­‐Alvarez,  J.M.  Tarongi,  M.  Piles,  I.  Ramos-­‐Perez,  X.  Bosch-­‐Lluis,  M.  Vall-­‐llossera,  and  P.  Ferre  (2009),  Experimental  relationship  between  the  sea  brightness  temperature  changes  and   the   GNSS-­‐R   delay-­‐Doppler   maps:   Preliminary   results   of   the   albatross   field   experiments,   IEEE   Proc.   IGARSS,   III  pp:741-­‐744,  doi:10.1109/IGARSS.2009.5417871.  

Valencia,   E.,   A.   Camps,   J.F.   Marchan-­‐Hernandez,   N.   Rodriguez-­‐Alvarez,   I.   Ramos-­‐Perez,   and   X.   Bosch-­‐Lluis   (2010),  Experimental  Determination  of  the  Sea  Correlation  Time  Using  GNSS-­‐R  Coherent  Data,  IEEE  Geosc.  And  Rem.  Sens.  Lett.,  vol.7,  N.4,  pp:  675-­‐679,  doi:10.1109/LGRS.2010.2046135.  

Valencia,  E.  A.  Camps,  N.  Rodriguez-­‐Alvarez,  I.  Ramos-­‐Perez,  X.  Bosch-­‐Lluis,  and  H.  Park,  Improving  the  accuracy  of  sea  surface  salinity  retrieval  using  GNSSR  data  to  correct  the  sea  state  effect,  Radio  Science,  vol.  46,  pp.  RS0C02,  Sep  2011.  

Valencia,   E.,   A.   Camps,   J.   F.   Marchan-­‐Hernandez,   H.   Park,   X.   Bosch-­‐Lluis,   N.   Rodriguez-­‐Alvarez,   and   I.   Ramos-­‐Perez  (2011b),  Ocean  Surface’s   Scattering  Coefficient  Retrieval  by  Delay-­‐Doppler  Map   Inversion,   IEEE  Geosci.  Remote  Sens.  Lett.,  vol.  8,  no.  4,  pp.  750–754,  2011.  

 

Valencia,  E.,  A.  Camps,  X.  Bosch-­‐Lluis,  N.  Rodriguez-­‐Alvarez,  I.  Ramos-­‐Perez,  F.  Eugenio,  and  J.  Marcello  (2011c),  On  the  Use  of  GNSS-­‐R  Data  to  Correct  L-­‐Band  Brightness  Temperatures   for  Sea-­‐State  Effects:  Results  of   the  ALBATROSS  Field  Experiments,"  IEEE  Transactions  on  Geoscience  and  Remote  Sensing,  vol.  49,  no.  9,  pp.  3225-­‐3235,  Sep  2011.  

Valencia,  E.,  A.  Camps,  N.  Rodriguez-­‐Alvarez,  H.  Park,  and   I.  Ramos-­‐Perez   (2013),  Using  GNSS-­‐R   Imaging  of   the  Ocean  Surface  for  Oil  Slick  Detection,  Sel.Top.  Appl.  Earth  Obs.  Remote  Sensing,  IEEE  J.,  vol.  6,  no.  1,  pp.  217–223,  2013.  

Valencia,   E.   ;   Zavorotny,  V.U.   ;  Akos,  D.M.   ;   Camps,  A.   :  Using  DDM  Asymmetry  Metrics   for  Wind  Direction  Retrieval  From  GPS  Ocean-­‐Scattered  Signals  in  Airborne  Experiments:  Geoscience  and  Remote  Sensing,  IEEE  Transactions  on,    vol.  52  (7),  2014  

Valenzuela,  G.   (1978),  Theories   for   the   interaction  of  electromagnetic  and  oceanic  waves   -­‐   a   review,  Boundary-­‐Layer  Meteorology,  13,  pp:  61-­‐85.  

Vall-­‐llossera,  M.,  M.  Cardona,  S.  Blanch,  A.  Camps,  A.  Monerris,  and  I.  Corbella  (2005),  L-­‐band  dielectric  properties  of  different   soil   types   collected   during   the   MOUSE   2004   field   experiment,   in   Proceedings   of   2005   IEEE   International  Geoscience   and   Remote   Sensing   Symposium,   IGARSS’05,   vol.   2,   pp.   1109–1112,   IEEE   Press,   Piscataway,   N.   J.,  doi:10.1109/IGARSS.2005.1525309.  

Page 80: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 80  of  88  

Vaughan,  D.G.,   J.C.  Comiso,   I.  Allison,   J.  Carrasco,  G.  Kaser,  R.  Kwok,  P.  Mote,  T.  Murray,  F.  Paul,   J.  Ren,  E.  Rignot,  O.  Solomina,  K.  Steffen  and  T.  Zhang,  2013:  Observations:  Cryosphere.  In:  Climate  Change  2013:  The  Physical  Science  Basis.  Contribution   of  Working  Group   I   to   the   Fifth   Assessment   Report   of   the   Intergovernmental   Panel   on   Climate   Change  [Stocker,  T.F.,  D.  Qin,  G.-­‐K.  Plattner,  M.  Tignor,  S.K.  Allen,  J.  Boschung,  A.  Nauels,  Y.  Xia,  V.  Bex  and  P.M.  Midgley  (eds.)].  Cambridge  University  Press,  Cambridge,  United  Kingdom  and  New  York,  NY,  USA  

Voronovich,   A.G.   (1985),   Small-­‐slope   approximation   in  wave   scattering   from   rough   surfaces,   Sov.   Phys.   JETP,   Vol.62,  No.1,  pp:65-­‐70.  

Voronovich,   A.G.   (1994),   Small-­‐slope   approximation   for   electromagnetic  wave   scattering   at   a   rough   interface   of   two  dielectric  half-­‐spaces,  Waves  in  Random  Media,  Vol.4,  pp:337-­‐367.  

Voronovich,  A.G.  (1994),  Wave  scattering  from  rough  surfaces,  Springer  Series  on  Wave  Phenomena,  Springer.  

Wagner,   C.   and   J.   Klokocnik,   “The   value   of   oceans   reflections   of   GPS   signals   to   enhance   satellite   altimetry:   data  distribution  and  error  analysis”,  Journal  of  Geodesy,  vol.77,  pp.  128-­‐138,  10.1007/s00190-­‐002-­‐0307-­‐0,  2003.  

Wei,  W.,  K.M.  Larson,  E.E.  Small,  C.  Chew,  and  J.J.  Braun,  Using  GPS  Receivers  to  Measure  Vegetation  Water  Content,  GPS  Solutions,  May  2014,  doi:10.1007/s10291-­‐014-­‐0383-­‐7.  

Wickert,   J.,   G.   Beyerle,   E.   Cardellach,   C.   Förste,   T.   Gruber,   A.   Helm,   M.P.   Hess,   P.   Hoeg,   N.   Jakowski,   M.   Kern,   O.  Montenbruck,  A.  Rius,  M.  Rothacher,  C.K.  Shum,  and  C.  Zuffada,  “GEROS-­‐ISS   -­‐  GNSS  Reflectometry,  Radio  Occultation  and  Scatterometry  onboard  the  International  Space  Station”,  URSI  Commission  F  Microwave  Signatures  2013  Specialist  Symposium  on  Microwave  Remote  Sensing  of   the  Earth,  Oceans,  and  Atmosphere,  Espoo   (Helsinki),   Finland,  October  2013.  

Wickert,  J.  “Space  based  GNSS  atmosphere  sounding:  radio  occultation”,  GfG2  Summer  School,  GFZ  Potsdam,  July  2013.  [Online].  Available  http://www.gfg2.eu/sites/gfg2.eu/files/wickert_radio_occultation.pdf  (last  visited  20/4/2014).  

Wiehl,  M.,  Legrésy,  B.,  and  Dietrich,  R.  (2003).  Potential  of  reflected  GNSS  signals  for  ice  sheet  remote  sensing.  Progress  In  Electromagnetics  Research,  40:177–205.  

Winebrenner,  D.,  L.  Tsang,  B.  Wen,  and  R.  West   (1989),  Sea-­‐ice  characterization  measurements  needed  for  testing  of  microwave  remote  sensing  models,  IEEE  J.  Oceanic  Eng.,  14(2),  149–158,  doi:10.1109/48.16828  

Woo,   T.K.,  Optimum  semi-­‐codeless   carrier  phase   tracking  of   L2,   12th   International   Technical  Meeting  of   the  Satellite  Division  of  the  Institute  of  Navigation,  Nashville,  Tennesee,  September  1999.  

Yu,  Y.  and  Rothrock,  D.  A.   (1999).  Thin   ice  thickness   from  satellite   thermal   imagery.   Journal  of  Geophysical  Research,  101(C11).  

Yu,   K.,   C.   Rizos,   and   A.   Dempster,   GNSS-­‐Based   Model-­‐Free   Sea   Surface   Height   Estimation   in   Unknown   Sea   State  Scenarios,  IEEE  Journal  of  Selected  Topics  in  Applied  Earth  Observations  and  Remote  Sensing,  Vol.7,  N.5,  May  2014.  

Zavorotny,   V.   U.,   and   A.   G.  Voronovich   (1999),   Bistatic   Radar   Scattering   From   an   Ocean   Surface   in   the   Small-­‐Slope  Approximation,  Proceedings  of  IEEE  Geoscience  and  Remote  Sensing  Symposium,  1999.  IGARSS  '99,  V.5,  pp:  2419-­‐2421,  doi:10.1109/IGARSS.1999.771529  

Page 81: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 81  of  88  

Zavorotny,   V.   U.,   and   A.   G.  Voronovich   (2000),   Scattering   of   GPS   signals   from   the   ocean  with  wind   remote   sensing  application,  IEEE  Trans.  Geosci.  Remote  Sens.,  38,  951964,  2000.  

Zavorotny,  V.  U.,  and  A.  G.  Voronovich  (2000b),  Bistatic  GPS  signal  reflections  at  various  polarizations  from  rough  land  surface  with  moisture  content,  in  Proceedings  of  IEEE  2000  International  Geoscience  and  Remote  Sensing  Symposium,  IGARSS  2000,  vol.  7,  pp.  2852–2854,  IEEE  Press,  Piscataway,  N.  J.,  doi:10.1109/IGARSS.2000.860269.  

Zavorotny,  V.,  and  C.  Zuffada   (2002),  A  novel   technique   for  characterizing   the   thickness  of   first-­‐year   sea-­‐ice  with   the  GPS  reflected  signal,  Eos  Trans.  AGU,  83(47),  Fall  Meet.  Suppl.,  Abstract  C11A-­‐0980.  

Zavorotny,   V.   U.,   D.   Masters,   A.   Gasiewski,   B.   Bartram,   S.   Katzberg,   P.   Axelrad,   and   R.   Zamora   (2003),   Seasonal  polarimetric   measurements   of   soil   moisture   using   tower-­‐based   GPS   bistatic   radar,   in   Proceedings   of   IEEE   2003  International  Geoscience  and  Remote  Sensing  Symposium,  IGARSS  2003,  vol.  2,  pp.  781–783,  IEEE  Press,  Piscataway,  N.  J.,  doi:10.1109/IGARSS.2003.1293916.  

Zavorotny,  V.,  K.M.  Larson,  J.  Braun,  E.E.  Small,  E.  Gutmann,  and  A.  Bilich,  A  physical  model  of  GPS  multipath  caused  by  land   reflections:   toward   bare   soil   moisture   retrievals,   IEEE   J-­‐STARS,   Vol.   3   (1),   pp.   100-­‐110,  10.1109/JSTARS.2009.2033608,  2010  

Zhurbenko,   V.   Editor   (2011),   Electromagnetic   Waves,   In   Tech,   ISBN:   978-­‐953-­‐307-­‐304-­‐0,   Chapter   10   by:   Ticconi,   F.,  Pulvirenti,  L.,  and  Pierdicca,  N.  

Zwally,  H.  J.,  Yi,  D.,  Kwok,  R.,  and  Zhao,  Y.  (2008).   ICESat  measurements  of  sea  ice  freeboard  and  estimates  of  sea  ice  thickness  in  the  Weddell  Sea.  Journal  of  Geophysical  Research,  113:3227–3246.  

Page 82: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 82  of  88  

7 ACRONYMS 2-­‐D   Two-­‐Dimensional  

2SCM   Two-­‐Scale  Composite  Model  

³CAT-­‐2   CubeCat-­‐2  

ADCS   Attitude  Determination  and  Control  System  

ADEOS   Advanced  Earth  Observing  Satellite  

AMSR-­‐E   Advanced  Microwave  Scanning  Radiometer  -­‐  Earth  Observing  System  

AOCS   Attitude  and  Orbit  Control  System  

AR   Assessment  Report  

ASCAT   Advanced  SCATterometer  

BOC   Binary  Offset  Carrier  

BPSK   Binari  Phase  Shift  Keying  

C/A   Civil  Available  

CDMA   Code  Division  Multiple  Access  

CDS   Cubesat  stanDard  Specficiations  

cGNSS-­‐R   conventional  GNSS-­‐R  

CHAMP   CHAllenging  Minisatellite  Payload  

CNES   Centre  National  d'Études  Spatiales  

COTS   Commercial  Off-­‐The-­‐Shelf  

CSIC   Consejo  Superior  de  Investigaciones  Cientificas  (Spanish  research  agency)  

CYGNSS   Cyclone  Global  Navigation  Satellite  System  

DBS   Digital  Broadcast  Satellites  

DDM   Delay  Doppler  Map  

Page 83: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 83  of  88  

DM   Delay  Map  

DMR   Delay  Mapping  Receiver  

ECI   Earth  Centered  Inertial  

ECV   Essential  Climate  Variable  

E-­‐GEM   European  GNSS-­‐R  Environment  Monitoring  

EGNOS   European  Geostationary  Navigation  Overlay  System  

ENSO   El  Niño  Southern  Oscillation  

EOL   End  Of  Life  

EPS   Electrical  Power  System  

ERS   European  Remote  Sensing  

ESA   European  Space  Agency  

EUMETSAT   European  Organisation  for  the  Exploitation  of  Meteorological  Satellites  

FDMA   Frequency  Division  Multiple  Access  

GAMBLE   Global  Altimeter  Measurements  by  Leading  Europeans  

GCOS   Global  Climate  Observing  System  

GEROS-­‐ISS   GNSS  REflectometry,  Radio  Occultation  and  Scatterometry  onboard  International  Space  Station  

GLONASS   Global'naya  Navigatsionnaya  Sputnikovaya  Sistema  

GNSS   Global  Navigation  Satellite  System  

GNSS-­‐MR   GNSS  Multipath-­‐Reflectometry  

GNSS-­‐R   Global  Navigation  Satellite  System  Reflectometry  

GODAE   Global  Ocean  Data  Assimilation  Experiment  

GOLD-­‐RTR   GPS  Open-­‐Loop  Differential  Real-­‐Time  Receiver  

GPS   Global  Positioning  System  

Page 84: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 84  of  88  

HDD   Hard  Disk  Device  

HW   HardWare  

ICD   Interface  Control  Document  

ICE   Institut  de  Ciencies  de  l'Espai  

ICF   Interferometric  Complex  Field  

IEEC   Institut  d'Estudis  Espacials  de  Catalunya  

IEM   Integral  Equation  Method  

iGNSS-­‐R   Interferometric  GNSS-­‐R  

IORD   Integrated  Operational  Requirements  Document  

IPCC   Intergovernmental  Panel  on  Climate  Change  

IPT   Interferometric  Pattern  Technique  

I/Q   In  phase  /  Quadrature  

IRNSS   Indian  Regional  Navigation  Satellite  System  

ISS   International  Space  Station  

KA   Kirchhoff  Approximation  

kbps   Kilo-­‐bit  per  second  

KGO   Kirchhoff  Geometrical  Optics  

KPO   Kirchhoff  Physical  Optics  

LEO   Low  Earth  Orbiter  

LHCP   Left-­‐Hand  Circular  Polarization  

MB   Meba  Byte  

MCU   Microcontroller  Unit  

MEO   Medium  Earth  Orbiter  

Page 85: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 85  of  88  

MODIS   MOderate  Range  Imaging  Spectoradiometer  

MSS   Mean  Square  Slopes  

N/A   Not  Available  

NASA   National  Aeronautics  and  Space  Administration  

NDVI   Normalized  Difference  Vegetation  Index  

NDWI   Normalized  Difference  Water  Index  

NIR   Near  InfraRed  

NMRI   Normalized  Microwave  Reflection  Index  

NOAA   National  Oceanic  and  Atmospheric  Administration  

NSCAT   NASA  Scatterometer  

NWP   Numerical  Weather  Prediction  

OBC   On  Board  Computer  

OSTST   Ocean  Surface  Topography  Science  Team  

OVWST   Ocean  Vector  Wind  Science  Team  

PARIS   PAssive  Reflectometric  and  Interferometric  System  

PARIS-­‐IOD   PARIS  In  Orbit  Demonstrator  

PDF   Probability  Density  Function  

PIR/A   PARIS  Interferometric  Receiver/Airborne  version  

PolInSAR   Polarimetric  Interferometric  SAR  

POPI   POlarimetric  Phase  Interferometry  

PRN   Pseudo-­‐Random  Noise  

PYCARO   P(Y)  C/A  ReflectOmeter  

QZSS   Quasi-­‐Zenith  Satellite  System  

Page 86: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 86  of  88  

RF   Radio  Frequency  

rGNSS-­‐R   reconstructed  GNSS-­‐R  (or  semi-­‐codeless)  

RHCP   Right-­‐Hand  Circular  Polarization  

RMS   Root  Mean  Square  

RO   Radi-­‐Occultation  

SAR   Synthetic  Aperture  Radar  

SAVI   Soil-­‐Adjusted  Vegetation  Index  

SCA   Snow  Cover  Area  

SIR-­‐C   Spaceborne  Imaging  Radar  

SMAP   Soil  Moisture  Active-­‐Passive  mission  

SMC   Soil  Moisture  Content  

SMI   Soil  Moisture  Index  

SMOS   Soil  Moisture  Ocean  Salinity  mission  

SNR   Signal-­‐to-­‐Noise  Ratio  

SPIR   Software  PARIS  Interferometric  Receiver  

SPM   Small  Perturbation  Method  

SSA   Small  Slope  Approximation  

SSM/I   Special  Sensor  Microwave/Imager  

SSMIS   Special  Sensor  Microwave  Imager  Sounder  

SSS   Sea  Surface  Salinity  

SSTL   Surrey  Satellite  Technology  Ltd.  

SW   SoftWare  

SWE   Snow  Water  Equivalence  

Page 87: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 87  of  88  

SWOT   Surface  Water  Ocean  Topography  

TBC   To  Be  Confirmed  

TC   Tropical  Cyclone  

TT&C   Telemetry  Tracking  and  Command  

UAV   Unmanned  Aerial  Vehicle  

UHF   Ultra  High  Frequency  

UK-­‐DMC   United  Kingdom  Disaster  Monitoring  Constellation  

UK-­‐TDS1   United  Kingdom  Technology  Demonstration  Satellite  1  

UPC   Universitat  Politècnica  de  Catalunya  

VHF   Very  High  Frequency  

VIS   Visible  

WAAS   Wide  Area  Augmentation  System  

WAF   Woodward  Ambiguity  Function  

WMO   World  Meteorological  Organization  

 

 

   

Page 88: Earth Observation with GNSS Reflections · 2016. 1. 21. · Leila Guerriero (TOV-DICII), review of Sections 5.4 and 5.5 Nazzareno Pierdicca (DIET), review of Sections 5.4 and 5.5

 

 

Earth Observation with GNSS Reflections  

 

 

         

E-­‐GEM  PROJECT  REFERENCE:  607126  

www.e-­‐gem.eu  

E-­‐GEM-­‐CSC-­‐TEC-­‐TNO01  13–Jan-­‐2015  Version:  35  

 88  of  88  

 

 

 

 

 

 

 

 

 

 

 

 

End  of  Document