E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the...

39
Efficient High Order DG Method for Time-domain Maxwells Equations Christoph Lehrenfeld, Joachim Sch¨ oberl Center for Computational Engineering Sciences (CCES) RWTH Aachen University MAFELAP 2009, June 11, 2009

Transcript of E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the...

Page 1: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

Efficient High Order DG Method for Time-domainMaxwells Equations

Christoph Lehrenfeld, Joachim Schoberl

Center for Computational Engineering Sciences (CCES)RWTH Aachen University

MAFELAP 2009, June 11, 2009

Page 2: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

content

1 spatial discretizationDG formulationdissipative approachnon-dissipative stabilization

2 the complete schemeglobal time-steppingcomputational aspects

3 local time-steppingdefinition of a local time-stepping schemeimplementation aspectsnumerical examples

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 2 / 30

Page 3: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

spatial discretization

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 3 / 30

Page 4: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

Maxwell Equations

in an isotropic, non-conducting medium

ε∂E

∂t= curlH

ν∂H

∂t= −curlE

+ boundary conditions

model problem: wave equation

∂u

∂t= div(v)

∂v

∂t= ∇u

+ boundary conditions

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 4 / 30

Page 5: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

Maxwell Equations

in an isotropic, non-conducting medium

ε∂E

∂t= curlH

ν∂H

∂t= −curlE

+ boundary conditions

model problem: wave equation

∂u

∂t= div(v)

∂v

∂t= ∇u

+ boundary conditions

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 4 / 30

Page 6: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

Discontinuous Galerkin Discretization

We approximate the continuous problem

∂t(u, ξ)Ω = (div(v), ξ)Ω

∂t(v , η)Ω = (∇u, η)Ω + b.c .

with discontinuous uh and vh:

ξ, uh ∈ Uh := v ∈ L2 : v |T ∈ Pk+1(T )η, vh ∈ [Vh]3,Vh := v ∈ L2 : v |T ∈ Pk(T )

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 5 / 30

Page 7: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

Discontinuous Galerkin Discretization

discrete problem (∑

T ):

∂t(uh, ξ)T = (div(vh), ξ)T = −(vh,∇ξ)T + (v∗n , ξ)∂T

∂t(vh, η)T = (∇uh, η)T = (∇uh, η)T + (u∗−uh, ηn)∂T

How to choose the numerical fluxes u∗ and v∗n ?

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 6 / 30

Page 8: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

Discontinuous Galerkin Discretization

discrete problem (∑

T ):

∂t(uh, ξ)T = (div(vh), ξ)T = −(vh,∇ξ)T + (v∗n , ξ)∂T

∂t(vh, η)T = (∇uh, η)T = (∇uh, η)T + (u∗−uh, ηn)∂T

How to choose the numerical fluxes u∗ and v∗n ?

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 6 / 30

Page 9: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

central flux

If we choose

u∗ = uhv∗n = vhn

we get

∂t(uh, ξ)T = −(vh,∇ξ)T + (vhn, ξ)∂T

∂t(vh, η)T = (∇uh, η)T − (

1

2[[uh]], ηn)∂T︸ ︷︷ ︸

(uh,ηn)∂T

with [[uh]] = u+h − u−h

qAAA

q

q

qJJJJ q

q

@

@@ qj+ j−j−j−

⇒ skewsymmetric r.h.s.

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 7 / 30

Page 10: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

properties of the central flux

Writing

Gh(uh, η) = (∇uh, η)T − (1

2[[uh]], ηn)∂T

we get the semi-discrete formulation

∂t

(uh

vh

)=

(−GT

h

Gh

)(uh

vh

)which represents the structure of the continuous problem(−∇ is the adjoint operator to div)

∂t

(uv

)=

(div

)(uv

)spatial discretizations preserving the antisymmetry of the PDE areenergy-conserving

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 8 / 30

Page 11: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

eigenvalue computation with the central flux

Nontrivial nonphysical kernel of Gh ⇒ spurious modes.

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 9 / 30

Page 12: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

a dissipative flux

A choice which avoids spurious modes is

u∗ = uh − [[vh · n]]

v∗n = vhn −1

2[[uh]]

we get

∂t(uh, ξ)T = −(vh,∇ξ)T + (vhn − 1

2 [[uh]], ξ)∂T

∂t(vh, η)T = (∇uh, η)T − ( 1

2 [[uh]] + [[vh · n]], ηn)∂T

The difference to the central flux can be written as a sum over all facets:

−∑E

1

2([[uh]], [[ξ]])E + ([[vh · n]], [[η · n]])E

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 10 / 30

Page 13: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

eigenvalue computation with the dissipative flux

Nonphysical damping of high frequencies

+ avoids spurios modes

− is not energy-conserving

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 11 / 30

Page 14: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

problem in the frequency domain

The problem in frenquency domain reads

iωu = divv

iωv = ∇u

and the discretized version reads (with the discrete operator Gh):

iω(u, ξ) = −(Ghξ, v)

iω(v , η) = (Ghu, η)

or0 = (iω)2(u, ξ) + (Ghu,Ghξ) +

∑E

α

h([[u]], [[ξ]])∂T

(Ghu,Ghξ) ≈ (∇u,∇ξ) is an symmetric, positive definite bilinearform⇒ Add an Internior Penalty Term to avoid nontrivial kernel of Gh

(proposed by Warburton/Hesthaven)

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 12 / 30

Page 15: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

problem in the frequency domain

The problem in frenquency domain reads

iωu = divv

iωv = ∇u

and the discretized version reads (with the discrete operator Gh):

iω(u, ξ) = −(Ghξ, v)

iω(v , η) = (Ghu, η)

or0 = (iω)2(u, ξ) + (Ghu,Ghξ) +

∑E

α

h([[u]], [[ξ]])∂T

(Ghu,Ghξ) ≈ (∇u,∇ξ) is an symmetric, positive definite bilinearform⇒ Add an Internior Penalty Term to avoid nontrivial kernel of Gh

(proposed by Warburton/Hesthaven)

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 12 / 30

Page 16: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

non-dissipative stabilization approach

With αh [[u]] = iωvF we get a new unknown living only on the facets.

We introduce this variable analogously on the time domain level

vFh ∈ V F

h := vFh ∈ L2(F) : v |E ∈ Pk(E )

∂t(vF

h , ξF ) = (

α

h[[uh]], ξF ) ∀ξF ∈ V F

h

and get the new non-dissipative spatial discretization(∑

T · · · ,∑

E · · · )

∂t(uh, ξ)T = −(vh,∇ξ)T + (vhn, ξ)∂T − (vF

h , [[ξ]])E

∂t(vh, η)T = (∇uh, η)T − (

1

2[[uh]], ηn)∂T

h

α

∂t(vF

h , ξF )E = ([[uh]], ξF )E

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 13 / 30

Page 17: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

eigenvalue computation with the non-dissipative stabilizedflux

+ the zero eigenvalues vanished+ discretization is still energy-conserving

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 14 / 30

Page 18: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

discretization of Maxwell’s equation

Transfering the ideas of the wave equation to Maxwell’s equation, we get (∑

T · · ·,∑

E · · · )

∂t(εEh, e)T = (Hh, curl e)T + (Hh × n, e)∂T + (HF

h × n, [[e]])E

∂t(νHh, h)T = − (curl Eh, h)T + (

1

2[[Eh]]× n, h)∂T

h

α

∂t(HF

h , hF )E = ([[Eh]]× n, hF )E

where α ∼ p(p + 1)

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 15 / 30

Page 19: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

the complete scheme

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 16 / 30

Page 20: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

global time-stepping

For the investigations of the time-stepping scheme we consider the semi-discreteproblem

∂t

(MεEMνH

)=

(−GT

h HGhE

)To maintain the energy-conserving property of our spatial discretization we use atime-stepping scheme that is also energy-conserving in a discrete sense. Here weuse the symplectic euler / leap frog:

Hn+1 = Hn+M−1ν Gh(E n

h ) Hn+ 12 = Hn− 1

2 +M−1ν Gh(E n

h )

E n+1 = E n−M−1ε GT

h (Hn+1h ) E n+1 = E n −M−1

ε GTh (H

n+ 12

h )

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 17 / 30

Page 21: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

numerical exampleAs an example of the opportunities of a higher order discretization, we will look atthe error of the smallest resonance frequencies (eigenvalues) for a cube vacuumresonator with side length 1mm and PEC boundary conditions.

6 elements

p-refinement

1e-08

1e-06

0.0001

0.01

1

500 1000 2000 4000 8000 16000

rela

tive

erro

r

#unknowns

relative error of resonant frequencies

Mode 1Mode 2Mode 3Mode 4Mode 5Mode 6Mode 7Mode 8

exp(-n^1/3)

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 18 / 30

Page 22: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

computational aspects

From point of view of implementation we have

full polynomials of degree k + 1 for Eh

full polynomials of degree k and additional facet unknowns for Hh

block-diagonal mass matrices

For further optimization we

don’t assemble global matrices Gh or −GTh

but implement the operations M−1ν Gh(E k

h ) and −M−1ε GT

h (Hkh )

The complexity of elementwise operations is dominated by

evaluating gradients

evaluating trace terms

For both we use non-standard techniques on tetrahedra elements leading to fastcomputations.

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 19 / 30

Page 23: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

local time-stepping

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 22 / 30

Page 24: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

For explicit schemes the stability limit of the global time step is limited by thematerial parameters, the mesh size and the polynomial order.

global time step depends (more or less) on the smallest element.

Idea of local time-stepping:

use different step sizes for different elements

So the global time step is only limited by the size of the largest elements.

For a local time-stepping scheme the mesh elements are divided in differentclasses representing different time steps:

Class 0 is the class with the largest time step

...

Class N is the class with the smallest time step

So we need an algorithm making the different classes compatible.We use only classes such that time steps of smaller classes are a certain multipleinteger of a larger class.

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 23 / 30

Page 25: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

recursive leap frog

One possible algorithm proposed by Montseny et al. (2008) is the recursiveleap-frog method which is based on the time integration method leap frog or asymplectic euler :

1 ComputeH(0,∆t)

2 ComputeE(0,∆t)

with the recursively defined functions

ComputeH(N,∆t): ComputeE(N,∆t):

UpdateH(N,∆t) UpdateE(N,∆t)ComputeH(N+1, 1

3 ∆t) ComputeE(N+1, 13 ∆t)

ComputeE(N+1, 13 ∆t) ComputeH(N+1, 1

3 ∆t)ComputeH(N+1, 1

3 ∆t) ComputeE(N+1, 13 ∆t)

where UpdateH and UpdateE are the actual computation and updates.

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 24 / 30

Page 26: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

recursive leap frog example

tn− 12

H0

E0

tn

H1

tn− 16 E1

class 0: ComputeH(0,∆t)

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 25 / 30

Page 27: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

recursive leap frog example

tn− 12

H0

E0

tn

H1

tn− 16 E1

class 0: ComputeH(0,∆t) → UpdateH(0,∆t)

tn+ 12

6

1

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 25 / 30

Page 28: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

recursive leap frog example

tn− 12

H0

E0

tn

H1

tn− 16 E1

tn+ 12

6

1

class 0: ComputeH(0,∆t) → ComputeH(1, 13 ∆t)

class 1: ComputeH(1, 13 ∆t) → UpdateH(1, 1

3 ∆t)

tn+ 16

62

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 25 / 30

Page 29: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

recursive leap frog example

tn− 12

H0

E0

tn

H1

tn− 16 E1

tn+ 12

6

1

tn+ 16

62

class 0: ComputeH(0,∆t) → ComputeE(1, 13 ∆t)

class 1: ComputeE(1, 13 ∆t) → UpdateE(1, 1

3 ∆t)

tn+ 13

63

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 25 / 30

Page 30: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

recursive leap frog example

tn− 12

H0

E0

tn

H1

tn− 16 E1

tn+ 12

6

1

tn+ 16

62

tn+ 13

63

class 0: ComputeH(0,∆t) → ComputeH(1, 13 ∆t)

class 1: ComputeH(1, 13 ∆t) → UpdateH(1, 1

3 ∆t)

64

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 25 / 30

Page 31: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

recursive leap frog example

tn− 12

H0

E0

tn

H1

tn− 16 E1

tn+ 12

6

1

tn+ 16

62

tn+ 13

63

64

class 0: ComputeE(0,∆t) → UpdateE(0, 13 ∆t)

6

5

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 25 / 30

Page 32: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

recursive leap frog example

tn− 12

H0

E0

tn

H1

tn− 16 E1

tn+ 12

6

1

tn+ 16

62

tn+ 13

63

64

6

5

class 0: ComputeE(0,∆t) → ComputeE(1, 13 ∆t)

class 1: ComputeE(1, 13 ∆t) → UpdateE(1, 1

3 ∆t)

tn+ 23

6

6

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 25 / 30

Page 33: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

recursive leap frog example

tn− 12

H0

E0

tn

H1

tn− 16 E1

tn+ 12

6

1

tn+ 16

62

tn+ 13

63

64

6

5

tn+ 23

6

6

class 0: ComputeE(0,∆t) → ComputeH(1, 13 ∆t)

class 1: ComputeH(1, 13 ∆t) → UpdateH(1, 1

3 ∆t)

tn+ 56

67

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 25 / 30

Page 34: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

recursive leap frog example

tn− 12

H0

E0

tn

H1

tn− 16 E1

tn+ 12

6

1

tn+ 16

62

tn+ 13

63

64

6

5

tn+ 23

6

6

tn+ 56

67

class 0: ComputeE(0,∆t) → ComputeE(1, 13 ∆t)

class 1: ComputeE(1, 13 ∆t) → UpdateE(1, 1

3 ∆t)

tn+168

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 25 / 30

Page 35: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

implementation of a local time-stepping scheme

The implementation of a local time-stepping scheme for a DG method isstraight-forward:

The loop over all elements gets replaced by a loop over all elements of theactual class.

The loop over all facets gets replaced by a loop over all facets of the actualclass. (some facets may be in two classes)

So a code which features local time-stepping needs

1 local time step estimates for every element

2 a subroutine dividing elements and facets into several classes

3 an estimate for the global time step

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 26 / 30

Page 36: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

3 An estimate for the global time step can be obtained with a few steps of apower iteration for the matrix A of(

Eh

Hh

)k+1

= A ·(

Eh

Hh

)k

2 A subroutine dividing elements and facets into several classes is also easy toimplement

1 Good estimates for the maximum local time step are not so easy to get

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 27 / 30

Page 37: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

one example for the local time-stepping scheme

The Algorithm divides the elements and facets into 7 classes:total 0 1 2 3 4 5 6

elements 1467 131 341 305 260 227 155 48facets 3264 351 790 745 653 553 386 128

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 28 / 30

Page 38: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

Order 4max time step elements each (large) step facets each (large) step

w/o lts 4.10526 · 10−9 1467 3264w lts 2.18564 · 10−6 101963 258960factor 532.399 69.50 79.3382

⇒ Speedup ≈ 7with just rough estimates for the local time step(∆tlocal ∼ h + one smoothing step)

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 29 / 30

Page 39: E cient High Order DG Method for Time-domain Maxwells ... · spatial discretizations preserving the antisymmetry of the PDE are energy-conserving Christoph Lehrenfeld, Joachim Sch

Thank you for your attention!

Christoph Lehrenfeld, Joachim Schoberl (RWTH) Efficient High Ord. DGTD M. for Maxw. Equations MAFELAP 2009, June 11, 2009 30 / 30