Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

44
Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008

Transcript of Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Page 1: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Dynamics of vortices on surfaces

Jair Koiller

FGV/RJ and AGIMB

Santiago de Compostela

23 Junio 2008

Page 2: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

OUTLINE (joint work with S.Boatto)

◊ Historical Remarks and backgound

C.C.Lin’s theorems

Ideal hydrodynamics on surfaces

◊ Geometry: Green’s function of Laplace Operator on closed surfaces

◊ Mechanics: dynamics of vortices on surfaces

generalization of C.C.Lin’s theorems

proof of Kimura’s conjecture: vortex dipole describes geodesics

◊ Control: applications in physics, engineering and biologyControl: applications in physics, engineering and biology

◊ Some research suggestions

Vortex pair on a triaxial ellipsoid and Liouville surfaces

Metric symplectic 2-form and expansion of B

Kahler manifolds

USD 106 arXiv: 0802.4313v1

Page 3: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

SUMMARY

Page 4: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Brief History of Vortex Dynamics

Euler (1757) E225 E226 E227

Helmholtz (1858) Wirbelbewegungen

Kirchhoff (1876) Vorlesungen

C.C.(Chia-Chiao) Lin (1941) Lin1 Lin2

Page 6: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.
Page 7: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

From Descartes’ Celestial Vortices to String Theory

sun in the midst of its

own vortex, packed within

a three-dimensional system

of contiguous vortices

Principia Philosophiae (1644)

Kelvin: On vortex Atoms

Witten

Page 8: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

C.C.Lin’s theorems (1941) Lin1 Lin2

Page 9: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Ideal hydrodynamics on surfaces

Page 10: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

In order to get the stream function we must solve Poisson’s equation

=

Vorticity:

“sinews and muscles”

Laplace Beltrami operator on S

Page 11: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

“ vortex patch dynamics”

Statistical mechanics:

Vorticity concentrates

Desingularization:

Core energy trick

Flucher/Gustafsson

Page 12: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Flucher/Gustafsson

Question:

How to geometrize

The core energy

argument to a

curved surface?

Answer: properties

Of Green’s function

Of Laplace-Beltrami

operator

Page 13: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Green function of the

Laplace-Beltrami Operator

References

KateOkikiolu Kate2 Kate3 womeninmath katepageJeanSteiner Jean2 Jean3

Page 14: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Robin’s function

R(so) = lim G(s,so) – 1/2 log d(s,so) s so

Related themes:

Positive mass conjecture (Shoen and Yau)

Yamabe problem

Zeta functions

Reference: Jean Steiner thesis

Page 15: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.
Page 16: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.
Page 17: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.
Page 18: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.
Page 19: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.
Page 20: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.
Page 21: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Robin’s function

Self motion of a vortex: dso/dt = sgrad R(so)

Proof: core energy argument, geometrized!

Motion of a marker particle:

ds/dt = sgrad G(s,so(t)) 1 ½ dof

R(so) = lim G(s,so) – 1/2 log d(s,so) s so

Page 22: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Extension to vortices with mass is straightforward

Vortices on surfaces: generalization of C.C.Lin’s theorems

Page 23: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Under a conformal change of metric …

Proof

(Okikiolu)

Page 24: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

When the total vorticity vanishes: complex structure sufficies

Page 25: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

… zero total vorticity, and surface diffeomorphic to the sphere

Taking advantage of the fact that the Green function on the plane is log z

Page 26: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

… zero total vorticity, and surface diffeomorphic to the sphere

Page 27: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

In more explicit fashion…

Page 28: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Proof of Kimura’s conjecture “a vortex doublet follows a geodesic”

Kimura (1999)

Proof:

If d(s1,s2) = O() then B is O(2)

It is enough to show: T*S <——> S x S center-chord

s–s

( canonical of T*S + perturbation )

NEW!

Page 29: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

This function B seems not been used by

The geometric function theory community.

We call it…

Batman’s function

B(s1,s2) = ½ ( R(s1) + R(s2)) - [ G(s1,s2) – (1/2) log(s1,s2) ]

Page 30: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

SHORT(ALTERNATIVE) PROOF OF KIMURA’s CONJECTURE

Page 31: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Vortex pair on a surface with symmetry axis k

Page 32: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

J seems to be not related to

Clairault.

WHY?

Page 33: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Possible explanation

Page 34: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Some research directions

◊ Control: applications in physics and Control: applications in physics and engineeringengineering

◊ Vortex pair on a triaxial ellipsoid

◊ Metric-symplectic 2-form and expansion of B

◊ Kahler manifolds: “vortons”

◊ prize: $ 106

Page 35: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Research direction 1 - triaxial ellipsoid (Castro Urdiales)

◊ Conformal factor for surfaces of revolution (Gauss)

kindergarden

◊ Jacobi geodesics on the ellipsoid (1838)

Jacobi (1838) Vorlesungen Perelomov (2002) Tabachnikov (2002)

◊ Conformal mapping of the ellipsoid to the plane or sphere

Snyder Schering (1858) 1,2,3 Craig (1880) Muller (1991)

“tour-de-force” using sphero-conical coordinates

◊ Liouville surfaces

Kihohara Miller Bolsinov

Page 36: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Jaocobi used confocal quadrics coordinates to separate the

Kinetic energy. We propose using, alternatively,

Sphero-conical coordinates (also works)

Page 37: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Research direction 2: a lemma needed for the vortex pair problem

On Feb 6, 2008 7:12 AM, Jair Koiller <[email protected]> wrote:

Dear Alan,

gretings from Rio, Carnival just ended, and although wet all the time, I took Luisa to same street parties...

I am finishing with Stefanella that vortex paper, we are thinking of the ellipsoid example for a sequel. And for a sequel, we are writing the vortex equation near the diagonal of SxS as a perturbation of the geodesic equations. I would like some help for the following technical point, involving a deformation of the canonical 2-form in T*S (S is 2-dimensional).

cheers,

Jair

Page 38: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

From: [email protected] on behalf of Alan WeinsteinSent: Wed 2/6/2008 1:28 PMTo: Jair KoillerSubject: Re: question on a deformation of the canonical 2-form ...

Dear Jair,

Your construction looks like what I did with Claudio Emmrich in our paper on the geometry of Fedosov's quantization. (You can skip a step in your sequence by using the Poisson tensor to go directly from T* to T, rather than in two steps using Leg and J.) There, we used any connection rather than a metric one to construct the geodesics. But we did not construct the deformation term explicitly; it would be nice to know it, especially along the zero section, since it gives an invariant of the metric,symplectic pair.

This also might be related to John Jacob's thesis. If the deformation term vanishes, the images of the fibres of T* must be lagrangian (to some order in epsilon), which means that the geodesic symmetries are symplectic (up to the same order). This would suggest that the deformation term involves in some explicit way the non-invariance of the symplectic form under geodesic symmetries.

I hope that you can check this out!

Best regards,Alan

Page 39: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

ps in T*S —> us = Leg-1 ps in TS —> vs = J(us) in TS —> (s1 , s2) in

SxS s1 = exp( - vs), s2 = exp(- vs) , J = /2 rotation

Let be the area form of S. Cmpute the pull back to T*S of

= (s1) - (s2), a symplectic form in SxS,

It is of the form ( o + 2 1 + ...)

Easy to show: o = canonical 2-form of T*S

Can you get the deformation term 1 ?Is it always zero? If not, when does it vanish?

Metric-symplectic 2 form

Page 40: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Research direction 3: Batman’s function

From: [email protected] [mailto:[email protected]]Sent: Mon 6/9/2008 11:36 AM

To: Jair KoillerSubject: Rick Schoen

Ola Jair,

   recebeu os arquivos que enviei para voce?Sabado foi tao corrido no congresso...falei brevementetambem com Rick Schoen (Stanford) que disse que esta

interessado nopreprint e me pediu de envia-lo...acho bom nao e'?

   Abracos,

        Stefanella

Page 41: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Batman’s function

Task: Expand B it in TS center-chord

coordinates, will be O(2)

Are there geometric objets appearing?

B(s1,s2) = ½ ( R(s1) + R(s2)) - [ G(s1,s2) – (1/2) log(s1,s2) ]

Page 42: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Research direction 4: Higher dimensional extension

“Vortons” on Kahler manifolds

[ Vortons in 3d/odd dimensions (not very successful)

The vorton method (E.Novikov, not S.Novikov) ]

Alan Weinstein called our attention: everything here makes sense on a compact Kahler manifold, replacing every two dimensional objects by their higher dimensional analogues. In particular, Calabi-Yau manifolds are very fashionable objects nowadays. The Laplace operator can also be replaced by the Paneitz operator Pn .

Is this formulation related to what theoretical physicists are doing? John Baez page

Page 43: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

“Sir Michael Berry proposes that there exists a classical dynamical system, asymmetric with respect to time reversal, the lengths of whose periodic orbits correspond to the rational primes, and whose quantum-mechanical analog has a Hamiltonian with zeros equal to the imaginary parts of the nontrivial zeros of the zeta function. The search for such a dynamical system is one approach to proving the Riemann hypothesis” (Daniel Bump).

http://math.stanford.edu/~bump/

Berry1 Berry2

Page 44: Dynamics of vortices on surfaces Jair Koiller FGV/RJ and AGIMB Santiago de Compostela 23 Junio 2008.

Research 5 (Homework)

Prove Riemann hypothesis .

Idea: use a quantum vortex problem

(no es cachondeo!)

Hilbert-Polya conjecture

Physics/number theory QM/RH RH