Dynamical Coevolution Model with Power-Law Strength

13
1 2005 년 년년년년 년년년 년년년년년 Dynamical Coevolution M odel with Power-Law Str ength I. Introduc tion II. Model III. Results IV. Patholog ical region V. Summary Sungmin Lee, Yup Kim Kyung Hee Univ.

description

Dynamical Coevolution Model with Power-Law Strength. I. Introduction II. Model III. Results IV. Pathological region V. Summary. Sungmin Lee, Yup Kim Kyung Hee Univ. Fitness - The fitness of each species is affected by other - PowerPoint PPT Presentation

Transcript of Dynamical Coevolution Model with Power-Law Strength

Page 1: Dynamical Coevolution Model with Power-Law Strength

12005 년 통계물리 워크샵경기대학교

Dynamical Coevolution Model with Power-Law Strength

I. Introduction

II. Model

III. Results

IV. Pathological region

V. Summary

Sungmin Lee, Yup KimKyung Hee Univ.

Page 2: Dynamical Coevolution Model with Power-Law Strength

22005 년 통계물리 워크샵경기대학교

I. Introduction

S.J.Gould (1972)

Instead of a slow, continuous movement, evolution

tends to be characterized by long periods of virtual

standstill ("equilibrium"), "punctuated" by episodes

of very fast development of new forms

The "punctuated equilibrium" theory

The Bak-Sneppen evolution model

0.2 0.30.15

0.40.45

0.7 0.90.35

0.10.55

0.75

0.5 0.80.65

0.60.25

Fitness - The fitness of each species is affected by other species to which it is coupled in the ecosystem.

PBC

P.Bak and K.sneppenPRL 71,4083 (1993)

0.2 0.30.15

0.40.45

0.7 0.90.95

0.47

0.22

0.75

0.5 0.80.65

0.60.25

Lowest fitness

New lowest fitness

Page 3: Dynamical Coevolution Model with Power-Law Strength

32005 년 통계물리 워크샵경기대학교

Snapshot of the stationary state

M.Paczuski, S.Maslov, P.BakPRE 53,414 (1996)

Avalanche - subsequent sequences of mutations through fitness below a certain threshold

Distribution of avalanche

sizes in the critical state

1d 2d

1.07(1) 1.245(10)

Page 4: Dynamical Coevolution Model with Power-Law Strength

42005 년 통계물리 워크샵경기대학교

Summary of previous works

◆ Random Network

◆ Scale-free Network

◆ Mean Field

S.Lee and Y.KimPRE 71, 057102 (2005)

K.Christensen et al.PRL 81, 2380 (1998)

H.Flyvbjerg et al.PRL 71, 4087 (1993)

Page 5: Dynamical Coevolution Model with Power-Law Strength

52005 년 통계물리 워크샵경기대학교

R.Cafiero et al. PRE 60, R1111 (1999) neighbors of the active site are chosen from power-law decreasing function of the distance

d=1

Random Neighbor

Model(MF)

S.Havlin et al. PRL 89, 218701 (2002) To each site of d-dimensional lattice, assign a random connectivity taken from power-law distribution

0.2 0.3 0.11 0.4 0.15 0.47 0.29 0.21 0.8 0.51 0.28 0.5

2 3 1 4 1 8 2 2 1 3 1 5

(degree exponent)

Page 6: Dynamical Coevolution Model with Power-Law Strength

62005 년 통계물리 워크샵경기대학교

II. Model

Choose update size from

the lowest fitness value

- 1d lattice with N sites (PBC)- A random fitness equally distributed

between 0 and 1, is assigned to each site.

0.2 0.3 0.11 0.4 0.45 0.7 0.9 0.01 0.1 0.55 0.75 0.5

0.2 0.3 0.11 0.4 0.15 0.47 0.29 0.21 0.8 0.51 0.28 0.5

reassign new fitness values

Motivation : dynamically changing strength

Page 7: Dynamical Coevolution Model with Power-Law Strength

72005 년 통계물리 워크샵경기대학교

III. Results

Page 8: Dynamical Coevolution Model with Power-Law Strength

82005 년 통계물리 워크샵경기대학교

1D 2D

0.66702(3) 0.328855(4)

cf)

Page 9: Dynamical Coevolution Model with Power-Law Strength

92005 년 통계물리 워크샵경기대학교

Page 10: Dynamical Coevolution Model with Power-Law Strength

102005 년 통계물리 워크샵경기대학교

1D 2D

1.07(1) 1.245(10)

cf)

Page 11: Dynamical Coevolution Model with Power-Law Strength

112005 년 통계물리 워크샵경기대학교

1 10 100 1000 1000010-6

10-5

10-4

10-3

10-2

10-1

100

P(k)~k-2.3

=2

P(k

)

k

1 10 100 100010-6

10-5

10-4

10-3

10-2

10-1

100

P(k)~k-2.55

P(k

)

k

=2.3

1 10 10010-6

10-5

10-4

10-3

10-2

10-1

100

P(k)~k-3.8

P(k

)

k

=3

Page 12: Dynamical Coevolution Model with Power-Law Strength

122005 년 통계물리 워크샵경기대학교

IV. Pathological region

1 10 100 1000 1000010-6

10-5

10-4

10-3

10-2

10-1

100

=1.5

P(k

)

k1 N

all sites are updated!!

ex)

Page 13: Dynamical Coevolution Model with Power-Law Strength

132005 년 통계물리 워크샵경기대학교

V. Summary◆ We study modified BS model with

power-law strength.

◆ We measure the critical fitness, avalanche size distribution and degree distribution.

◆ If the base-structure is two dimension lattice the avalanche exponent approach to .

◆ The property of critical fitness changes at .

(cf. BS on SFN : )◆ The degree exponent is different from the strength exponent unlike Havlin’s network model because updates are locally occurred in our model.