DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060...

16
DYNAMIC MIXED MODE FRACTURE. (U) AUG 80 A S KOBAYASHI. M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND hhEEE9hhh *E9~I

Transcript of DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060...

Page 1: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

DYNAMIC MIXED MODE FRACTURE. (U)AUG 80 A S KOBAYASHI. M RANIA.U N00014-76-C-0060

UNCLASSIFIED TR-39 ML

MEND hhEEE9hhh*E9~I

Page 2: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

p36 IiI

MRRCN l O UhNII', HA

Page 3: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

./V.

- LE- VEL'Office of Naval Research

Contract N00014-76-0060 NR 064-478

Technical Report No. 39

DYNAMIC MIXED MODE FRACTURE

by DTICby E LECTE f

~~AUG 18

A. S. Kobayashi and M. Ramulu A

August 1980

The research reported in this techniical report was made possible through

support extended to the Department of Mechanical Engineering, University 7

of Washington, by the Office of Naval Research under Contract N00014-76-C-

0060 NR 064-478. Reproduction in whole or in part is permitted for any

purpose of the United States Government.

Department of Mechanical Engineering

College of Engineering

University of Washington

This docume~nt has hee apro~Ifor public rolc:s atid LOT ij 9 1 C)Wdistribution is UnnilJ/ L -__''°"o" ,.,__ 1 80 8 21 070

Page 4: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

DYNAMIC MIXED MODE FRACTURE

A. S. Kobayashi and M. Ramulu

Department of Mechanical Engineering, University of Washington

ABSTRACT

A newly developed data reduction process was us(,d t reeva wo te, (48l i I

photoglAstic results and to extract dynamic stress intensity f acto Vs, K.yand KY , associated with curved and branched cracks in fracturing Hlmdajite -

100 piltes. A branching stress intensity factor approximately 5 times thefracture toughness was identified for thi materA.. Moderate to severecrack curvings were associated with a KI'y and KIt rat.io a- low as (.(05, hotwith positive remote stress component, ,

INTRODUCTION

Two dimensional dynamic photoelasticity has been used by Daily and hisassociates [1,2] and by the author and his associatn[3,4] to determine ex-perimentally the dynamic stress intensity factor KT- , surrounding a propa-gating crack and to establish a dynamic fracture toighness, K , versus crackvelocity A, relation which may control dynamic fracture. Thi;Duse of dynamicphotoelasticity in studying dynamic fracture has been eloquently described byJ. W. Dally in his recent article [1]. As noted by Dally, the dat8 reductionprocedure used by most investigators in the past for calculating KIYn, fromthe transient isochromatics surrounding the propagating crack tip, was re-stricted to Mode I crack tip deformation. A theoretical, near-field, staticisochromatics was first equated to the recorded experimental dynamic isochro-matics and the resultant static stress intensity factor of the former wasconsidered the dynamic stress intensity factor of the latter [2,5]. Errorestimates for using a near-field stress to extract the Mode I dynamic stressintensity factor have been made by several investigators [6-8] and in partic-ular, exhaustively by Rossmanith and Irwin [8].

Studies of the static isochromatic patterns under mixed mode loadingconditions, i.e. in the presence of combined KI and K crack ti3 deforma-

tions were made by C. W. Smith [9,10], Gdousto and Th&caris III and morerecently by Dally and Sanford [12,13] and Rossmanith [14]. These mixed modeisochromatics are all characterized by their uns)miietric patterns with re-spect to the straight crack line. It is also interestinJ to note that. theshapes of these static isochromatics are strongly influenced by the higherorder terms, i.e. terms other than KI and K . In particular, the secondorder term of a , commonly referred to as t4e remote stress component, willdistort the symntry of the isochromatics by significant stretchinq and

Page 5: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

shortening of the upper avd luwer loop ;ysiii 114]. or ,i pure modt, I Icrack tip defonation, the isochromatic loo) straddles the crack tip asshows in Figure 1 where a nearly pure shear state of stress is generatedaround branched cracks. The mode II stress intensity factors K 11 , and re-mote stress components oox, associated with these isochroatics re listedin the following Table 1.

FOURTEENTH FRAME FIFTEENTH FRAME448 j Seconds 482 /4 Seconds

(a) INNER BRANCH CRACK

FIFTEENTH FRAME SIXTEENTH FRAME482 ks Seconds 531 us Seconds

(b) OUTER BRANCH CRACK

Fig. 1 Typical Mode II Dynamic Isochromatic Pa'tterns of Arresting BranchedCracks. Homalite-IO0 Single Edge Notched Specimen Under Fixed-GripLoading. Specimien No. B5

Table 1. KII and o for Arrested Branch

Cracks in Fig. 1

(a) Inner Branch Crack

14th Frame 15th frameK 0. 4 MlPa./ 0.44 Mllav/1)o 0.32 MPa -0.04 Mlla

Ac i. i on r or ~ ox

RI6 G:J.AI (b) Outer Branch Crack(DDC TABI}nnxoun-ced 15th frame 16th fraiJ."stif ic ition Y if 0.44 M~la',II 0.1 MlaiA1

- O. 11, MPd 0.(18 M1

Dlrt sI s ' l

Page 6: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

A

In actual dynamic photoelastic analysis of dynamic fracture, dynamic iso-chromatics surrounding a running crack often exhibits moderate unsymmetrybut such photoelastic patterns were heretofore considered experimental ab-normalities and were ignored by averaging the unsymmetric patterns during thedata reduction process. Careful postnortem inspection of the fracture speci-mens, however, show that the slightly unsynunetric isochromatics are oftenassociated with slightvn curved crack paths which undoubtedly are causedby the small dynamic Kit , coexisting with the dominating dynamic KYn value.This effect is akin to the small but noticeable influence of a smali K, onfatigue crack propagation reported fifteen years ago [15]. The exact flationbetween the amount of crack curving and the dynamic K and possibly otherhigher order terms of the near field stresses associated with the propagatingcrack tip would thus provide a dynamic crack propagation law under mixed-modecrack tip deformation similar to the KID versus A relation under considerationfor Mode I dynamic crack propaqation.

With the ,xelopment of a data reduction procedure for evaluating K11 to-gether with K values, it became possible to investigate experimentaldythe role of mixed mode dynamic near field stresses in dynamic fracture. Theauthors used such procedure to evaluate the stress intensity factors associ-ated with crack branching and crack curving [16]. The purpoe nof this Raperis to use this data reduction procedure to further extract K and K Ifrom the previouly recorded dynamic isochromatics surrounding runnin cracktips of curved and branched cracks.

DATA REDUCTION PROCEDURE

A three parameter, mixed mode, near-field state of stresses surroundinga crack propagating at constant velocity [17,18] was used to derived a rela-

t~on between the Modes I and II dynamic stress intensity factors, K yn andKT and the remote stress component o , and the dynamic isochroiatics.THs relation together with an overdeterhfnistic, least-square method formedthe basiayqf a daOnreduction procedure for extracting the three dynamic para-meters K and K and ax from the recorded dynamic photoelastic patternsurrounding a run!lng craclx Further details of this data reduction proced-ure can be found in Reference [16].

Figure 2 shows two frames out of a 16-frame dynamic photoelastic recordof a curving crack in a notch bend specimen 9.58mm (3/8 inch) thick, 88.9 x400ram (3 1/2 x 15 3/4 inch) Homalite-lO0 beam with a blunt initial crack of6.4mm (7/32 inch) in length and which was impact loaded by a drop weight of1.48 kg (3.25 lbs) [19]. The crack emanated from the blunt saw-cut pre-crack and propagated through much of the height of the beam prior to curvingas it approached the region of impact loading. Further details of the experi-mental setup, crack velocity measurements and dynamic calibration of theHBTlite-lRO material used are found in Reference [19]. Figure 3 shows theK and K yn and (3 x variations obtained from the dynamic photoelasticp~tterns p4Cedinnd immediately after crack curving shown in Fi(ure 2.The negligible KIn with respect to the K W leads to Sleh1oation that theimportant factor' overning the crack curving is not the K component ofthe mixed mode local dynamic state of stress, but rather Ue ') componentwhich heretofore was ignored in past static analyses. The dirtional ta-

3

Page 7: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

bi-lity of the static Mode I crd(.k extension with o xas d dominant factor,however, has been presented recently [20] and thus it is conceivable thatthe second order term, i.e. (o in the dynamic near-field stresses, may alsogovern the crack path of a ra idly propdqatinq crack. Crack CUrvinq aissocia-ted with the large positive va ltivs iii Fiq. 3 tends0 to nfirn th it spvcu-lation. ox

SEVENTH FRAME EIGHTH FRAME175 jL Seconds 185 ± Seconds

Fig. 2 Typical Dynamic Isochroniatics or a Curved Crack. Hoialite-iQO notchbend specimen. Specimen No. I-C042574

IL0.8 3

0.6-

t 0_

UCRACK PATH a

z K

35 40 45 50 55 60PROJECTED CRACK LENGTH (MM)

Fig. 3 Modes I and 11 Dynamic Stress Intensity Factors of the Curved CrackShown in Fig. 2.

01

Page 8: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

Figure 4 shows a slightly slanted crack and the associated Kdyn Kdyn anda in a fracturing, wedge-loaded, double cantilever beam specimin of-4'6mm(98 inch) thick, 76.2 x 152.4m (3 x 6 inch) Homalite-lO( plate. Details ofthis experiqRtdl seh, (tc., can be futrrd in Retiene i I I . %l'nie f luc.u-ations in K and K throu)ut the crack propagation history is noted.Again, the lonsistentiy low K1

' values and the large positive o associatedwith significant crack curving tend to verify the previous findi g regardingthe importance of a in dynamic crack curving. It appears then that a frac-ture dynamic theory omparwe to that of Ref. [20] and in the presence ofsmall but non-negligible K I" may provide insight to dynamic crack curving.

_ . 0.8I

dyn0_K 0.6 K-3

in0.4 1 CRACK PATH -2

0.2 \ -- -

40 60 so0 10O0 120 140PROJECTED CRACK LENGTH (mm)

Fig. 4 Modes I and 11 Dynamic Stress Intensity Factors of a Slanted Crack ina Wedge-Loaded Rectangular Double Cantilever Specimen. Homalite-0Specimen No. L31S-030274.

Figure 5 shows two dynamic photoelastic patterns of a branched crackin a single edge-notched 9.5mm (3/8 inch) thick, 254 x 254mm (10 x 10 inch)Homalite-lO0 plate subjected to fixed grip loading condition. Other branchedcracks from this same specimen were shown in Fi(I. I and the expv rimental ov,-tails of this test can be tound in Reference [?] A, %ho)wn ii li(l. 1), withiiithe 49 micro-second interval, the propagating crack turned about 741) and ar-rested. The %Rd Mode srcss intensit factors prior to this severe crackkinking were K. " =O K. " = 0.41 MPa nd 0.18 MPa. After crackkinking at whilh time the rack arrested, K T 8 .34 MPavi,, K H 0.08 MPavmand ao = 1.4 MPa. This severe crack curvihg, 1'e. crack kihling can alsooccur u nder the more traditional high KII1 state of stress.

5L

,I-

. . . . . .. . . . . .. . .. . .. , , . . . . ". .. . i m l l . . . . . . . " " - ; . . - l l l ] m li li i m r i . . . . . . . . . . ". ,-i.. . .

Page 9: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

- 41k

FIFTEENTH FRAME482 . Seconds

SIXTEENTH FRAME

531 k" Seconds

Fig. 5 Dynamic Isochromatics Prior To and After Crack Kinking. Homalite-lO0Single Edge Notched Specimen Under Fixed Grip Loading. Specimen No.B5

The above three sets of data are obviously not sufficient tq establish adynamic crack curving criterion. Quantitative correlation of Ksyn KO vn and

Y with the degree of crack curving as well as the possible dependen oncAck velocity are lacking at this time.

CRACK BRANCHING

FOURTH FRAME FFTH FRAME SEVENTH FRAME

102 ,u Seconds 134 u Seconds 212 K Seconds

Fig. 6 Typical Crack Branching Dynamic Photoelastic Pdtterns Holiialite-1(0OSingle Edge Notched Specimen (Fixed Grip Loading) Specimen No. B8.

6i

Page 10: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

rA

Figure 6 shows three frames out of a 16-frame dynamic photoelastic recordof a crack propagating and branching in a 3.2mm (1/8 inch) thick, 254 x 254mm(10 x 10 inch) Homalite-QO0 plate loaded under fixed grip tension. Detailsof the experiment can be found in Reference [22].

Figure 7 shows the Kdyn and Kdyn Sq; two branches of the cracks shown inFigure 6. By extrapal.ting the'1 KI associated with tw8 y ranch cracks,an after-branchng KY = 1.2 Pa vii (10.90 psivTn.) and Kl,' 0.45 MPa vi(410 psi /Tji) are obtained. The branching stress 9lensity factor, i.e. im-mediately prior to branching, is estimated to be Kt 2.03 MPa vrim (1850psi /Tn).

U, Ut

3.0- 7 '-RIGHT BRANCH CRACK -

254,.. - LEFT BRANCH CRACK- --

2 2.5-S .254mm

ul - 0.216 fm

2.0 -ug -0.20om

U dyfl

1.0-I-

z K0

,i 1.0 I , I ,

0 20 40 60 so 100 120CRACK LErNOTM.o (mam)

Fig. 7 Modes I and 11 Dynamic Stress Intensity Factors ot the BranchedCracks Shown in Fig. 6.

dy 05 dyn

Kr = 1.02 MPa A (920 psi /-n) and K Y = -0.2 MPa A/ (180 psi vin) are ob-t~ine .._ The extrapolated dynamic strell in~i~sty factors prior to branching(1 50 psi -) and K 0

The average brnhinq and Dy amtr- r,n(hin ,tr,, itr,,y fa(cred

the above 8o ant se of for tch %imil(,xio rs.d r.porlin Reference [15p yield the followin: [h

aydK'~ 0 ~ vi 92 s Vi)an ~ -. ~af 18 s vT)ar b

Page 11: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

Branchiny Ky 2. 03 Mi AII 850 Ps i i n)

Kdyn*1II @

After Branching K 1.0 MPa (950 psi /n)

Kdyn = 0.2 MPa vi (180 psi i-)

2- ==-0-o0 j-2254 Mm--.

u u.0. 152m m

t K1

z 1.0U)

z A0 - dyn

120 140 160 0 200 220 240CRACK LENGTH,a (mm)

Fig. 8 Model I and II Dynamic Stress Intensity Factors ot a branched Crackin a Homalite-lO0 Single Edge Notched Specimen Under Fixed GripLoading. Specimen No. B9.

dynThe above branching Kd data is ig1tical to that quoted in Reference

[1]. The ratio of before over after K . of 2.03/1.0 " 2.0 is consistentwith the postulate that crack branching occurs to dissipate fracture energyalong two propagating cracks buS ,s higher than the expected 2 value. It isalso interesting to note tha, K which is prior to crack branching regainsa small magnitude immediately ater crack branching and is consistent withthe static results of Reference [23].

DISCUSSIONS

The above dynamic photoelastic data on crack curving and crack branchingshould be considered as preliminary since the data is not sufficient in quan-tity for establishing a dynamic crack curving or a crack branching criteria.Evaluation of the accumulated dynamic photoelastic experiments usinq Lhe newlydeveloped data reduction procedure is continuing and the new crack (urvinqJand crack branching dynamic photoelastic experiments are planned.

P,

Page 12: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

ACK'I0WLE DGEMEIT

The results of this investigation were obtained in a research contractfunded by the Office of Naval Research under Contract N00014-76-C-0060 NR064-478. The authors wish to acknowledge the support and encouragement ofDr. N. R. Perrone of ONR durinq the course of this investigation.

REFERENCES

[I] Dally, J. W., "Dynamic Photoelastic Studies of Fracture", ExperimentalMechanics, Vol. 19, No. 10, October 1979, pp. 349-367.

[2] Kobayashi, T. and Dally, J. W., "The Relation Between Crack Velocityand Stress Intensity Factor in Birefrinqent Polymers", Fast Fractureand Crack Arrest, (edited by G. T. 11ahn and 'I. F. Kanninen), ASTI STP627m 1977, pp. 257-273.

[3] Bradley, W. B. and Kobayashi, A. S., "An Investigation of PropagatingCrack by Dynamic Photoelasticity", Experimental Mechanics, Vol. 10,No. 3, 1970, pp. 103-113.

[4] Bradley, W.- B. and Kobayashi, A. S., "Fracture Mechanics - A Photo-elastic Investigation", Engineering Fracture Mechanics, Vol. 3, 1971,pp. 317-332.

[5] Irwin, G. R., "Discussion of the Dynamic Stress Distribution SurroundingA Running Crack - A Photoelastic Analysis", Proc. of SESA, Vol. 16, No.1, 1958, pp. 93-96.

[6] Kobayashi, A. S., Wade, B. G. and Bradley, W. B., "Fracture Dynamics ofHomalite-QO0", Deformation and Fracture of High Polymers, (edited byH. H. Kausch, J. A. Hassell and R. I. Jafee), Plenum Press, New York,1973, pp. 487-500.

[7] Irwin, G. R., Dally, J. W., Kobayashi, T., Fourney, W. L., Ktheridge,Mi. J., and Rossmanith, H. P., "On the Determination of the (-K relation-ships for Birefringent Polymers", Experimental Mechanics, Vol. 19, No.4, 1979, pp. 121-128.

[8] Rossmanith, H. P. and Irwin, G. P., "Analysis of Dynamic IsochromaticCrack-Tip Stress Patterns", University of Maryland Report, 1979.

[9] Smith, D. G. and Smith, C. 14., "Photoelastic Detenmination of !IixedMode Stress Intensity Factors", Engineering Fracture Mechanics, Vol. 4,No. 2, 1972, pp. 357-366.

[10] Smith, C. W., Jolles, M. and Peters, '4. H., "Stress Intensities forCrack Emnanatino from Pin-loded 1lol ,s", Flaw ,rnwth and Frac(:ture, ASTMSTP 631, 1977, pp. 190-201.

Page 13: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

[11]. Gdoutos, E. E., and Theocaris, P. S., A Photoelastic Determination ofMixed-Mode Stress Intensity Factors", Experimental Mechanics, Vol. 18,March 1978, pp. 87-96.

[12] Dally, J. W. and Sanford, R. J., "Classification of Stress-IntensityFactors from Isochromatic Fringe Patterns", Experimental Mechanics,Vol. 18, No. 12, Dec. 1978, pp. 441-448.

[13] Sanford, R. J. and Dally, J. W., "A General Method for Determining Mixed-Mode Stress Intensity Factors from Isochromatic Fringe Patterns", En-gineering Fracture Mechanics, Vol. 11, 1979, pp. 621-633.

[14] Rossmanith, H. P., "Analysis of Mixed-Mode Isochromatic Crack-TipFringe Patterns", Acta Mechanics, Vol. 34, 1979, pp. 1-38.

[15] lida, S. and Kobayashi, A. S., "Crack Propagation Rate in 7075-T6 PlatesUnder Cyclic Tensile and Transverse Shear Loading", J. of Basic Engin-eering, Trans. of ASME, Vol. 91, Series D (4), Dec. 1964, pp. 764-769.

[16] Kobayashi, A. S. and Ramulu, M., "Dynamic Stress Intensity Factors forUnsynnetric Dyninic Isochroma ti cs", to be published in lxperinlntltilMechanics.

[17] Freund, L. B., "Dynamic Crack Propagation", The Mechanics of Fracture,Vol. 19, edited by F. Erdogan, ASME, 1976, pp. 105-134.

[18] Freund, L. B., "The Mechanics of Dynamic Shear Crack Propagation",Journal of Geophysical Research, Vol. 84, No. 35, 1978, pp. 2199-2209.

[19] Kobayashi, A. S. and Chan, C. F., !'A Dynamic Photoelastic Analysis ofDynamic-tear-test Specimen", Experimental Mechanics, Vol. 16, No. 5,May 1976, pp. 176-181.

[20] Streit, R. amd Finnie, I, "An Experimental Investigation of Crack-pathDirectional Stability", Experimental Mechanics, Vol. 20, No. 1, January1980, pp. 17-23.

[21] Kobayashi, A. S., Mall, S. amd Lee, M. H., "Fracture Dynamics of Wedge-Loaded Double Cantilever Beam Specimen", Cracks and Fracture, ASTM STP,601, June 1976, pp. 274-290.

[22] Kobayashi, A. S., Wade, B. G., Bradley, W. B. and Chiu, S. T., "CrackBranching in Homalite-100 Sheets", Engineering Fracture Mechanics, Vol.6, 1974, pp. 81-92.

[23] Kalthoff, J. F., "On the Propagation Direction of Bifurcated Cracks",Dynamic Crack Propagation (edited by G. C. Sih), Noordhoff Internation-al Leyden, 1973, pp. 449-458.

Page 14: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

Poor I J(2oo.., j co24A01:6

Olos .8 3.0.1 6.00000. . hu..6±.o. D.C. 20375 CO. fl(o'.

D.P7

tasa0090 ot h. Navy - Act- Cod. 8400 (Cn'.

Arlngono. fiogials, 22217 8410 Cb4 soNvloe~i Cmod.c "0 DirectorAtte. Code 474 (2) *A630 J .70 0 per.~001 .Tyoo8v1Si

Code 471 MAAO washing.. D.C. ZO350 Dai W. Ta1lor Novel Shi

Coda 200 6300 3000 o. 0"908 0000.80. 8.01d0 20084otCato

Di3ctr0 Attn: Cod. 042

attic009ia os h 60 strategi Systems0 Project Office1

00. ft Dupe.l ""atoo 0.0 0of the "0 172

10.06"b ft.. David W. Taylor Naval Ship Research D.613 . *C. 20376 173

Boston. Wa.f.ehus000. 02210 .00070110. Maryland 21602 100

Dirctr to Cod* 2740 novel a10ys com0a.s". 1844

oficeooor 28. 0.300008 0068007''s 012.I2lot

081.oW801 0oh281 3.06103000. 1).C. 20361 190

v0.006 0ffic. £0000 C44. 3302 (A40070 .08 80000000.0) 1901

536 Sou.th C1.0k Street 8.V1 Weapons Centel 604 (T.06.00.1 Library) 1901

16loqo.hin Wk..600 60. 0.. .W12001 93353 3 (800 .o ) 1960Attu: Cod. 6 062 14

Director 4520 Idea1 410 000.1089800 Cente0.06

abbec .Of "Val o....00,b 84001otr. Pennylvania 18074 .10oo.i 70..00.

Now York 4000, 00f1ce C.odb1AS Offce 1At 4000 100007000 ma0..010 No000l Uneter 1.14 02 st0

712 groodway - lob 71000 Novel Civil Engineering Laboratory Cod. 604' Neort, Rhod Isan 102.1

New Yook. Nam, Tort 10003 Code L31 Am r .ri.

DI Co ort 0000-, C.lifoo.Io 93041 U.9. 1,M]. Academy 5*kv*1 Soor- 0.0300 Cotter

0ffce8f0-0. emr0 Novel Surface Weaons Cente 4000301. Maryland 21402 001g.-. 2.600000

30 " GossStrut ilvr prig, aryand2"1 at.: Cod. .04

W00.. ~itural. 91106 Attn: Code 8-10 200 1S 0.11 0000.t

G-402 110.0.801.. Vioglni. 22332 10.o12000Newe1 3.0s.06 Lab6oratory (61 9-82 100 Techic. 0ieco (8t.0 0 0..9.) Mo .. d8010170

Cc"o 2627 kt C"00R~mr n avlpat o.Iladl lSiyr

Mahioton. D.C. 203705hh~ol0000 041 Vllejo, California 96792

Novel 00e. S7.0000 center 141X14 07.ohair.1 Library..).. 703040t 060

Defese .0. oo.t.i0 Cntel (122 San D1.30. C.11OoOnis 92132 U-16V Psgrdat cho

C-odhs Virginia 30314 000 S Systam Cotd Cod. OjG412.od1..10113.02214Supervisor of Shipbu0idin 0.700000.0 of the "00 Hot~ Colif~.. 03960

U.S. 3avy 00040.0000. D.C. 20342

3.000 Newpo .Ne 0011Vigini 23607 1100 Coda 0585.bOoloo0 0. 00i~~o

0..0007000 0o06DliOO by00.po oo 322 Crescent Beach Road. 01.0, Coo.U~. hp 0.oorch sod D-.,aam..t 1t.r.00. Division 323 1008 Island. Now York 11542

Cnte 8ov.1 L-..00 Laboratory 031

Part To" th. V10ginia 23709 Orlando, 71.008. 32804At0M; Dr. i. Palmer, Cod* 177 Commdig Offi.. (2)

0.1. A o .Ch00 Officet.0 000 1.2211gas.00 Triang1e Park, SC 27709

Kr00 8 . 2. Kurt0.,. C10-16-27

474:N7:716:1.b78.474-619

AM (COn't.) Air Por. (Can't,)

W.00001100 Arsenal Chief Applied 8006n.0 Group S7-b1

000.0,11.0. New York 12189 500186-7.t000000 41: for.e Us01110..OAIZ K(C00 PR atrco o OhrTcn

"o: Director of Re.000006 Dayto0, Ohi0 65433 Coi11abortoOO

U.S. Army0.1.. .aeral and 010 161.0c Cie. Civil Engineering Breach 30000. Foundatio Un04000iversities

00000006 Cen0.0 81.11. Research Division lost0m000 00000006irt Divisono

Net0o. o.. busect.8 02172 41r Fore Wasps" Laboratory - ~I4 8*.30. D.C. 20350 Dr. J. TII.o Od..

4I609000a.. N.0 800000 87117 5.160007 of Cong0e00 345 Eazl .. tin, 5,1.0d ... 1

.8. AMY7 Missile toss.aorh sod Sience .. d Technology Divisono Austin. Texas 70712

Do0.10pm000 Center A1r Force Office of 0cien0if1c Unearthb Was60ngton. D.C. 20540 700.0..lO80100

Rad000- Scientific 0f.0000010 3011o 110~ 70ir Fae0000Pofso 31. mk-

Centel 80061.3000, D.C. 20332 00000000 101100.2 200010000~t of 1.03001087

Chi.f. 00.Or . 00 Sect0: Ac.;FAhoolex Divisono Doi00a.0 No. ler Agenc D1v1sion 00 Engin.e01ng

1.8.00. Arsenal. 1166.0 30809 Wash0ngt0n. D.C. 20303 .0d Applied 5.1-..o

Depa0tment of .060 410 Poor. Alt0o ,0780 700080., Califoo. 91109

rot 0010010. V1rg1.1a 22060 800030.00. 1101000i 1132 S0f pecialist for 000001. Applied S.1 .. c.

Other QOV4XM~t Activities3GU 0M. Th.ont$ Geore0.300St.

am6. 000.00 00 31893ointoo D.C. 20052

30000,.I 1.0.00.0100.04 Up... ~ ~~~080Ro 30040000 .. 231Po.0 1 0060

480.01spaceo 16108 t~ Va*stn D..C.0 020301poO00.00Clf 01 ,01.0o 10.1

5matte. V1rgi.10 2365 Pedestal Aviaties Agency

AsMdati0et01tio sod 080000100 Comis Natio.01 4004007 of Srlmod be.0.1 t8 00601. 00310000 eate1.3

"C00isco 4d1001000000 0o0 Ad0000.8 Qu.otir, Virginia 22.3 81 0 law .2& 06 1000.1 So06.1.7. Ca11ifornia 96720

Research 0.8 1.06.001087 3h1p 3.11 Researh Csimiof..o 6 1 8u.1

Wash103000. D.C. 20546 D1000000 0.0.... Res.arch 2101 10000100000 Professor A,0.0.107 I

j~J341Technical Li60.0y Atlas Xr.. D 8. 5.71. 0001 o i .i.. ri.3

Noo. 1128 1o0 r. M .... l 68061

88'0460-70000000 Air T0000 base The 700n030 No.01001 001000* PoerndsOloo Prof ..... 1. 5.. 0038g.30Dayton. 0610 45133 00.80 ... D.C. 20301 8.31000130000.00 8000100ecio Columbla University

(75R) 3.06103000 D.C. 20330 Dep rt en o o f 80 v 1006 10027 ,

Went00, NOW 3.00.7 07801 P. 0. M.' 147

Of.00. 40010000 .1-00700 L69 082

= ,:,.0300.,DC. 20230 Profesor 1. J. S6,40.06

P.-0- -71v -A- State University

O070rreent of 7900100000 Colo- o P..01. o 80

Page 15: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

474oNP76;1ob

76e47"419 '.7'.,8?716.1.6

flt3j1r jtl (Can't.) Ufl~vljj3iU (Coo't) 710476-41

1,0000000 J. Klasoao Prof- -o- G. C. M. Sib Ih1!SUASi38 (Cn

Psoecni ofstitutof Hod xoooooo ofig Universit Pr fofeor P. G. Prof-, a1.10000 . W. Liu0

Aset-RsaelsSolid Mehnc as1,0001.7 of 81800*OIA ato00 OofvChet ,RSO.333 Ja tre Behk-.6 Pennsylvani 13015 vapartwet of Aeospace Ift510000108 De.partsf* io1 ~g0.Brooklyn. now lack 11201 and 00.6.010 an Metallurgy

Profesor Albert S. Kobayashi 38.80009011 Nanstoooo 5 Syras., o- Yook 13210

PTOf...oV 1. A. S06.9007 University7 of Washingon .C DekOo_ ,S.Bda?ecco AM University Depatnes of Mechanical Intleaoolo Si it* of SIllnoi Teofchnic R&. 8Od800Departasea of Civil Bagl10..10 Beattie. Sobington 98105 0.10010 ofnuol "I.ooo 06 - 0000

Prof aso. Daniel Frederick 0060.. U12.1001 61#01 pe.o anrDieib

Unvriyof Virgliictt nvriyfieat 51.0 So1000011 ftofoO.-t 8Of0 GoSd00iO

Research Labora0t4 ore for the Department of Engineering Mechan1cs Soiwotsjat of Berkeley..0000 oalf~r Ac 472O001OoOcl

30810000108 Sci.0o.0 cad Blaksburg Virginia 24061 kr0 ofcivil1 aio*0088.kcsy C.IOO c942

ApplieOd Science. Soboo, 2111005. 41803 Po .. r1 .RvChottesvo~ille, Yogiaols 22901 Professor A. C. tr~ogo Lehigho Uiers.ity11

Profeelor a. 0. Will""0 Dpartu.oO of Aerospace aod o.,o17o .100* o 18 81fooOoA'1010cl=Ok College. of Technology OMcaic.l. Scienes OepO00coO of Aplied Mecohanics of meth01c'Seporcus t of mechaoical Ingleasries Prigg.oo San 100007 08540 L. Jell. California 92037 1. .6.. Peosaylvco. 18015

Potd. 0., York 13676 FofocoL 1 c loco I ±1 M. A. Bank Professor0 F. A. Cooocroll

Si.8.1.05. 011cPrtof-o 01.1 Le 0tofao. taeUnvrst of * ot 0100070 0 Took at

Trans AbM 0..00 Divisono of Engineering Me0canic S~c 0of Icboo cof Inedicplnr 1.10i

Aerospace floglOrtDSo 5.9.00000 Stanford, California 94305 Aeospa9ce 8.81000010 Divisi00ofn o~dO~I~O 080

College $Carlo=. Taxas 77843 ftfoco£6.0mr0.qicoo.0000 o ry g~roodOhcolflldoPrvrot Profo Albert 1. Kingc. sto o , .0.8 Took L6214

D.P0.00-. of Aeospce cod Detroit.* kiohleco 48202 D.1 000co1 of Applied UDobcoio Universiotyh .. 0

Mechanica 40100..r72 o Stanford. California0 96305 Depat.. Oof mchnialSat07-

Sob-o. Afizona 85721 Dr. V.00.0000±07 .od 0000h00100Wanesat niesiy108ee1 J . c17- Phodlb. .~oyOi 19104

Caswiga-colo Unierit kmrot Mih. a 48.0 ftloy pocoon Ulooil 60201 an Pofessor 8. . 50l..

Departun f6 Cii Pococ loc ~t. iini 6.5211 Unversity of MaroyladSc0hoo0ley Parkol~ Profcao 5. A. Soosy Aerospace Zogiveg0108 Oeortnout0

D.9.000.o of Civil Salex. Us oursol0 of California 1.110ag. Fork. Maryland 20742

Dr.000nald of tioo~ 1..~ne 6.8.100. 6020100± 90026s ofMcaisProfesooro J .. ph A. ClarkS.Pc.ooo1 of foalcocrog Analysi e nels aiori 02 Catho1ic University Of An.0t"

Cicinti hi 421rfessor Sort Pofy, i 8006104100. S.C. 20064

Tos School of Civil and

?61.ladelpbia, 00.0.71,005 19104

474:N0? 7 16la 106P76 ~78u74-19 70.474'-6 19

Uolvoo.gi100 (Co,'01 101000010100 (C.o-0) Industry a.d Rschro institutes (Coo't) lnd,.cry7 -ld ROeooorh (0ttoo Coort

ft. Berna 5. Sotdoof Dr. Jacono C. S. Yang Si. A. C. J00400 Do. Rolbro E. Ducons.

University of California University of Maryland Casoidge Acousticlo Associate. Pacific& TtchnologYschool of fts Inseriss Department of Mecanicl Oof±0.0ing 54 Slodge Aveono 1000.400 P.O, 00. 140

cod Applied Sci.n0e Colleg Paok, Maryland 20742 Cabidge, Masschusetts 02140 De1 Mar, Califorojo 9201'.10 .1seOO California 90024

Poofooooo T. T. Chang Si. 0. fodico Dr. M. F. lam in.0

Profoor le.se Fried Dowvooowt of Akoon rsogooc 070.0400 Corpoation 1ot.11. Colranbu Labooooorio.

so:0t0. University 5.9.000.00 of Civil bbmcoloIA Electric base Division 505 King A--toDepc0rtana of Nsc16.0cs Akron. Ohio 44325 G00ton. Coocoooo 06340 C.-bu. Ohio '.3201Seaton. Masschusetts 022150

Poofessor Char1.. W. Sort Si. J2. 0. Do.~o r. A. A. MoOchrajO

Professor 0. Krmp1 001v000107 of Okishonc J. 0. 1onbcooriag 1.... Ach ico D..d.1.. A ... ooo Inc

. la.1.rfPoLytnj 100010000 Sch001 of Aerospace, I400bool.. 3831 Wool. Driv. Spoiohl0±o R....rch Roodtiioo. of i-in anlO018od Nuclear 0051.001 Baltimore, Maryland 21215 15110 Frederick Rood

--rco~ing 3.Mecanc Worsen, Skaic... 73019 Woodbine, Maryland 21797

Troy. 8.8 Took L2181 koot News Shipbuilding a0dProf scor b~ty. M. At0±0? DrSy Dock Comp..y Dr. Jones W. June*

Dr. Jack I. p1.400 0600810 10001000t. of Technology iborory Swanson Service Corporat ion

001,000107 of Delaware Scho01 of 1041000018g cod N.poot 0.-., Virginia 23607 P.O. Son 5415

osp.000000 of Mechanicl co £00005000 Mec6an1c0 Roningo bech. California 92646mag1.0001.6 aod the center foo Atlanta. Geo0810 30332 Dr. 8. F. Snatch

* Cooilo Materials0 Mconnel Soniga. Corpooation Dr. Ro6er0 1. 34.6.11

Newrks, Do=,os. 19711 Profeso Gr0.00 P06. . Carey 53,01 801.0 £venue Applieod Scie0nc0 and TechntologyUniversity of Taxes at Au.01, 30.04.40.. Beach. Ca14f0rn4a 92667 3.1A4 Nort6 Torey Pines Court

ft. J. Duf fy D~.000480- of Aros.pce Oggo..015 $.it. 220

I- nt ;vo.ty W~ Ogi-10g Mechanics Dr. 4. W. hArsion L. Iol1. California 92037

Division . of 1o10 .0 Austin. Tossis 78712 509.06800 a &*searh 1000fto08P00.14s.00. fode Island 02912 8500 Culebra Road Sr, Kevin 160.00

So.aaI Vaa Sa. Anto8nio0.4, Texa. 782"0 8.01ng-s 4060. le-cn C-.o

Dr. .2. 1. Sandia. 7810051 of 1111"I1. Advanced Reactor.D- n

Ca " Cco.g1.-.11 University 1090000000 of Theoretical a0d So. 2. C. 5.8.'0 P. 0. so. 158

kPo,0coot of Mahobo.1. b1.00010g- AppieOd Mecanis.0uth0f 8 I088 8...6 Institute M.d,.0. Poono1--a~ 11663

910006ogg86. Pennylvania 15213 006000. 11118010 61801 8500 Colbta RoodS.. Antonio, To... 7825'.

Si . 8.Taocdc Industry ad RlefaCok 100010,1.0SioSo...* 001vers10y Research roundatic, Dr. N8. L. 8.00.

tp~m0 of 30I 00 Ach60010 Dr. Mores. 30660 Vaidlingeo A0000400..

D~it.oo of Inass go. Tok Raw Toot 10022or. Z. gamble. sac0000 corporationunivert0y of Pennsylvania Bur110gt00. Massachusetts 01803 Dr. T. L. fGe.

'"Bentos of Metal1urgy and Lockheed missile. a~d space Co..y

8.10,4.. Sc1ence Axgentu nat10na1 Laboratory 5251 Mosove0 St0ee0Cal1l"*0 of 10080108 cod Li160ar7 50010 1090000001een Palo Alt. .Caifornia 96304

Oppllod 8.1.00 9700 Iooobh C.0 40800

Philadelphia. Pennsylvania L104 Anoc,1111-.01 60440 Mr0. Willies 1479.06.

Laure., 8.rl..d 20410

Page 16: DYNAMIC (U) KOBAYASHI. M RANIA.U UNCLASSIFIED ML … · 2014. 9. 27. · M RANIA.U N00014-76-C-0060 UNCLASSIFIED TR-39 ML MEND *E9~I hhEEE9hhh. p3 6 IiI MRRCN l O UhNII', HA./V.-LE-

UNCLASSIFIED- EcuRi?' .LA%%PrIATIIN OF 10.I A. PAI;F (When flI*t P,io-,0

Nl All INS;i'"14l I li)N!,

REPORT DOCUMENTATION PAGE _I____ __,__-I_ I __ING. _____

I. REPORT NUMULP "2. GOVT ACCESSION NO. 3. RE T . rALO6 NUMBER

TR No. 39 4F 7 TR-39

4. TITLE (and Subitle) S. TYPE OF REPORT & PERIOD COVERED

. InterimDY NAM IC M IX ED M OD E FR ACTU R E $

/ . .. AS J ,M '-g -E -_ NUM BR

/ _ __ _ __ _ _ __ _ __ _ _ __ _ __ _ _ 39ATNOR(a) . CONTRACT OR GRANT NUMBER(e)

N00l14-76-C-006G 01.. S. obayashi - M. ulu _' NR 064-478.- PERFOhMINO ORGANIZATION NAME AND ADDRESS W0. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

University of WashingtonDepartment of Mechanical Engineering

II. ONTRLLIN OF1C N.AMEAND ADDRESS/f Ag 87

Office of Naval Research 13. NUMBER Of PAGES

Arlington, Virginia 10

14. MONITORING AGENCY NAME & ADDRESS(II dlfftorwl Irom Contlrollng OIlIeo) 15. SECURITY CLASS. (ot thie repotf)

/, % ,Unclassified

150. DECL ASSIICATION/DOWNGRADINGSCHEDULE

I6 DISTRIBUTION STATEMENT (of ts R,. ptbo,,e) ved

Unlimited for pubic nelr-n"I and scl: iidistiribution is unlim,.ted.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It dilloremn from Report)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on revere aide If necessary and Identify by block number)

Fracture Mechanics Fracture DynamicsCrack Propagation Dynamic PhotoelasticityCrack Arrest Dynamic Finite Element AnalysisCrack Branching

20. ABSTRACT (Contlnue on reverse *de If necessary and Idenrlfy by block number)

A newly developed data reduction process was used to reevaluate dynamic;photoelastic results and to extract dynamic stress intensity factors ,.and associated with curved and branched cracks in fracturing Homa' te-100 -p'tes. A branching stress intensity factor approximately 5 times the-fracture toughness was identified for t mater al. Moderate to severeyhf Ayn

crack curvings were associated with a Kj),.- and D ratio as low as 0.05, but

with positive remoste stress component, X)/

DD , , 1473 EDITION OF I NOV GS IS OSOI I I-1/114 0102-011 06o-. I UNCLASqIFIRD

"SO._j l "ll I I.LA131It1' 11f"i lr THiII lArr IShon f l* a 0l0 Ad