Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion...

19
Dynamic Structure Factor and Diffusion

Transcript of Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion...

Page 1: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Dynamic Structure Factor and Diffusion

Page 2: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Outline

Dynamic structure factor

Diffusion

Diffusion coefficient

Hydrodynamic radius

Diffusion of rodlike molecules

Concentration effects

Page 3: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Dynamic Structure Factors

g1(τ) ~S(k,τ)=1nP

exp[ik⋅(rm(0)−rn(τ))]n,m=1

nP

S(k,τ) = exp[ik⋅(r1(0) −r1(τ))] + (nP −1)exp[ik⋅(r1(0)−r2(τ))]

single-particlestructure factor

is zero at low concentrations≡S1(k,τ)

Page 4: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Dynamic Structure Factor and Transition Probability

The particle moves from r’ at t = 0 to r at t = with a transition probability of P(r, r’; ).

S1(k,τ) = exp[ik⋅(r1(0)−r1(τ))] = drV∫ exp[ik⋅(r − ′ r )]P(r, ′ r ;τ)

g1(τ) =S1(k,τ)S1(k,0)

S1(k,) is the Fourier transform of P(r, r’; ).

DLS gives S1(k,).

Page 5: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Diffusion of Particles

P(r, ′ r ;t) =(4πDt)−3/2exp−(r − ′ r )2

4Dt

⎝ ⎜ ⎞

⎠ ⎟ transition probability

diffusioncoefficient

Page 6: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Mean Square Displacement

t in log scale

<(r

 – r

´)2>i

n lo

g s

cale

slope = 1

D=(r − ′ r )2

6t

r − ′ r =0

(r − ′ r )2 =6Dtmean squaredisplacement

Page 7: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Diffusion Equation

∂P∂t

=D∇2P =D∂2P∂r2 =D

∂2

∂x2 +∂2

∂y2 +∂2

∂z2⎛

⎝ ⎜ ⎞

⎠ ⎟ P

c(r,t) = P(r, ′ r ;t)c(∫ ′ r ,0)d ′ r concentration

at t = 0, P(r, ′ r ;0)=δ(r − ′ r )

∂c∂t

=D∇2c

Page 8: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Structure Factor by a Diffusing Particle

S1(k,τ) = exp[ik⋅(r − ′ r )]∫ (4πDτ)−3/2exp−(r − ′ r )2

4Dτ

⎝ ⎜ ⎞

⎠ ⎟ dr

=exp(−Dτk2)

g1(τ) =exp(−Γτ)

Γ =Dk2 decay rate

Page 9: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

How to Estimate Diffusion Coefficient

1. Prepare a plot of as a function of k2.

2. If all the points fall on a straight line, the slope gives D.

It can be shown that Γ =Dk2is equivalent to

∂P∂t

=D∇2P

(diffusional)

Page 10: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Stokes-Einstein Equation

Nernst-Einstein Equation

D=kBTζ

Stokes Equation

Stokes-Einstein Equation

ζ =6πηsRS

D=kBT

6πηsRS

Stokes radius

frictioncoefficient

Page 11: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Hydrodynamic Radius

D=kBT

6πηsRHhydrodynamic radius

A suspension of RH has the same diffusion

coefficient as that of a sphere of radius RH.

Page 12: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Hydrodynamic Interactions

The friction a polymer chain of N beads receives from the solvent is much smaller than the total friction N independent beads receive.

The motion of bead 1 causes nearby solvent molecules to move in the same direction, facilitating the motion of bead 2.

Page 13: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Hydrodynamic Radius of a Polymer Chain

1RH

=1

rm−rn

For a Gaussian chain,1RH

=823π

⎛ ⎝

⎞ ⎠

1/2 1bN1/2

polymer chain RH/Rg RH/RF RF/Rg

ideal / theta solvent 0.665 0.271 2.45

real (good solvent) 0.640 0.255 2.51

rodlike 31/2/(ln(L/b)−γ) 1/[2(ln(L/b)−γ)] 3.46

Page 14: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Hydrodynamic Radius of Polymer

PS in o-fluorotoluene -MPS in cyclohexane, 30.5 °C

good solvent theta solvent

Page 15: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Diffusion of Rodlike Molecules

γ ≅0.3D||=

32DG

D⊥ = 34DG

DG =13D||+

23D⊥ =

kBT[ln(L /b)−γ]3πηsL

RH =L /2

ln(L /b) −γ

Page 16: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Concentration Effects

If you trace the red particle, its displacement is smaller because of collision.

The collision spreads the concentration fluctuations more quickly compared with the absence of collisions.

Page 17: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Self-Diffusion Coefficients andMutual Diffusion Coefficients

mutual diffusion coefficients

self-diffusion coefficients

Page 18: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Self-Diffusion Coefficients

ζ =ζ0(1+ζ1c+L )

Ds =

kBTζ

=kBTζ0

(1−ζ1c+L )

DLS cannot measure Ds.

As an alternative, the tracer diffusion coefficient is measured for a ternary solution in which the second solute (matrix) is isorefractive with the solvent.

Page 19: Dynamic Structure Factor and Diffusion. Outline FDynamic structure factor FDiffusion FDiffusion coefficient FHydrodynamic radius FDiffusion of rodlike.

Mutual Diffusion Coefficients

Dm =D0(1+kDc+L ) kD =2A2M−ζ1 −vsp

∇μ=kBT[c−1 +(2A2M−vsp) +L ]∇c

In a good solvent, A2M is sufficiently large

to make kD positive.

specific volume

DLS measures Dm in binary solutions:

kD =2A2M−ζ1 −2vspwith backflow correction