Dynamic performance analysis of tidal energy converters using

31
© Fraunhofer IWES Dynamic performance analysis of tidal energy converters using acoustic sensors Jochen Bard Head of Marine Energy Systems Fraunhofer Institute for Wind Energy & Energy System Technology IWES Kassel & Bremerhaven, Germany

Transcript of Dynamic performance analysis of tidal energy converters using

Page 1: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Dynamic performance analysis of tidal energy converters using acoustic sensors

Jochen BardHead of Marine Energy SystemsFraunhofer Institute for Wind Energy & Energy System Technology IWESKassel & Bremerhaven, Germany

Page 2: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

EUOEA: European Roadmap

Ocean energy in 20203600 MW installed40000 jobsaround 1% of EU electricityaround 9 bn €uro/a investment

Ocean energy in 2050188000 MW installed470000 jobsaround 15% of EU electricityaround 450 bn €uro/a investment

Page 3: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

60 institutes at 42 locations

> 17 000 employees

2009: 1.4 bn € turn over;with >500 M€. from industry

Fraunhofer Energy Alliance > 1500 employees

Renewable energies Photovoltaics, Solar thermal, concentrating solar plantsBiomass, biogas and bio fuelsFraunhofer Wind Energy Network (6 institutes)

Efficient use of energy Energy in buildings Smart gridsStorage technologies

Fraunhofer-GesellschaftEurope’s largest contractual research organisation

MünchenHolzkirchen

Freiburg

Efringen-Kirchen

FreisingStuttgartPfinztalKarlsruheSaarbrücken

St. Ingbert Kaiserslautern

DarmstadtWürzburgErlangenNürnberg

Ilmenau

Schkopau

Teltow

OberhausenDuisburg

EuskirchenAachen St. AugustinSchmallenberg

Dortmund

PotsdamBerlin

RostockLübeck

Itzehoe

BraunschweigHannover

BremenBremerhaven

Jena

Leipzig

ChemnitzDresden

CottbusMagdeburg

Halle

Fürth

Wachtberg

Ettlingen

Holzen

Page 4: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

IWES: a new Fraunhofer institute, founded in 2009

+ =

Applied Research for Wind Energy and

Energy-System Technology for Renewable Energies

Wind turbine technology: rotor blades, structures, pitch control, …

On- & Offshore-wind energy exploitation

Maritime environment (monitoring, sensors)

Control & System integration

Energy conversion systems

Energy management & Grid operation

Energy supply structures and system analysis

Page 5: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Overview of ocean energy activitiesTechnology developmentSEAFLOW (2003), SEAGEN (2008)Kobold I (2007), Kobold II (2010)Pulse Tidal 1.2 MW Demonstration project (FP7 2009-2012)CORES – Components for Ocean Renewable Energy Systems (FP7 ’08-’10)SDWED – Structural Design of Wave Energy Devices (Dan. Res. Council)Marina Platform – research on multipurpose platforms (FP7 2010-2014)Wave Energy Feasibility Study for the German EEZ (Vattenfall)New concept for measuring currents, waves (WCI) and turbulence

Coordinating ResearchOcean Energy (www.wave-energy.net, 6. RP)ORECCA: Ocean Renewable Energy Conversion Platforms - Coordination ActionInfrastructure Project for offshore Wind and OE - under negotiation

IEA: Implementing Agreement Ocean Energy Systems (www.iea-oceanenergy.org)

IEC TC114, German Mirror committee (DKE, VDE)

Publicity: German Marine Energy Forum, since 2006 International Conference Ocean Energy (ICOE) since 2006

Page 6: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWESSource: Modelling the global ocean tides: modern insights from FES2004, Lyard et al, OcDyn 2006

total tidaldissipation:2.5 TW4%: 800TWh

Page 7: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Examples of tidal current resources

Ireland: 230 TWh/a (theor.) 10 TWh/a (tech.)UK: 31 TWhFrance: 10 TWhNorway: 3 TWh Europe >54 TWhChina: 50 TWhKorea: 100 GW („expected“)USA: 115 TWhCanada: >140 TWh

Source:BMT ARGOSS

Page 8: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

European Wave energy map (source OCEANOR)

a few hundred TWhs

Page 9: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Tides as main drive for currents

example of tidal currentsin the Cook StraightbetweenNorth and South Island of New Zealand

Page 10: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Typical tidal current variations of a semidiurnal tide

353 h ca. 14,7 days

spring tide

neap tide

curr

ents

peed

[m/s

]

Page 11: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Data analysis from tide model: tidal current speed statistics

Frequency histogram

cumulativeprobabilitycurve

Tidal current ellipse

Page 12: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Remote Sensing methods for surface current mapping

„velocity maps“ derived by specialInSAR „Ocean- Processor“

SRTM – data Orkney islandsDLR, Oberpfaffenhofen

TerraSAR:possibility of world widesurface current maps

Other airborn or landbasedremote sensing Radar methodsavailable

Very limited use in tidal current exploitation

Page 13: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Technical aspects of existing tidal turbine concepts

• drag-/ lift • rotating/oscillating blades • vertical/horizontal axis rotor• axial /cross flow • fixed / variable pitch• one- or multidirectional operation• free stream/ducted/tidal fence• floating/ fix structure• fully submerged/ lifting mechanism• mechanical/hydraulic PTO• fixed/variable speed• …

source.: EMEC

Page 14: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Rotor-lager

Getriebe

Generator

Bremse

dynamic simulationselectrical engineeringtesting/monitoring

630 000 €National fundingmainly for hardware

advanced simulation modelnew pitch systemdrivetrain concepts

700 000 €National fundingPartner: LTI (Pitch)

IWES ocean energy projects under German funding

Page 15: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Control system development through dynamic simulation

Based on a model library and work on load reduction controller for offshore multi megawatt wind turbines

Performance and load simulations

Operational conditions (start, stop, faults)

Implementation in Matlab Simulink

Matlab Simulink interface

Plant examination

Release/trundle

Start up

Load operation

Controlled shutdown

on/off

Stopping

Emergency shutdown

Plant examination

Plant examination

Release/trundle

Release/trundle

Start upStart up

Load operation

Load operation

Controlled shutdownControlled shutdown

on/offon/off

StoppingStopping

Emergency shutdown

Page 16: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Load calculations through dynamic simulation

tower torsion

drive train torsionbending

0 10 20 30 40 50 60 70 80 90 1000

1

2x 10

4

tgi

axix

vrvV

,

,arctan+⋅Ω

−=ψ .

ϑβψα −−=

2,

2, )()( tgiaxix vrvVc +⋅Ω+−=

multibodymodel

Page 17: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Control system development: experimental verification

direct transfer of code into the control hardware

electrical power and control systems in a HIL test

operating conditions reproduced

test of automatic operation

optimisation of control and electrical components

test drive unitDEMOTEC SEAFLOW components

real time

SEAFLOW model

System controland monitoring

grid grid

test drive unitDEMOTEC SEAFLOW components

real time

SEAFLOW model

System controland monitoring

grid grid

M,n P1 P2

GM ASG

I U I UMlim,nlim flim

test drive unitDEMOTEC SEAFLOW components

real time

SEAFLOW model

System controland monitoring

grid grid

test drive unitDEMOTEC SEAFLOW components

real time

SEAFLOW model

System controland monitoring

grid grid

M,n P1 P2

GM ASG

I U I UMlim,nlim flim

Page 18: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

SEAGEN device

1.2 MWTwin rotor

Page 19: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Kobold I & II

„Kobold 1“TurbinePonte diArchimede

Kobold II: 150 kW – device for village electrification in Indonesia (hybrid system)funded by UNIDO

Page 20: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Pulse Stream 1200: 1.2 MW EU-Demonstration project

Pulse Tidal Generation150 kW scaled test

in the Humber

shallowwatertechnology

Page 21: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Turbulence in tidal currents

Saltstraumen sound, 30 km east of Bodø, Norway

Page 22: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Operational results: turbulence!

0

20

40

60

80

100

120

140

160

180

200

220

0 300 600 900 1200

Zeit [s]

Leis

tung

k w

1,0

1,5

2,0

2,5

3,0

Strö

mun

gsge

schw

indi

gkei

t [m

/s]

Leistung [kW]

Strömungsgeschwindigkeit [m/s]

Power Velocity

Pow

er [k

W]

Cur

rent

vel

ocity

[m

/s]

Page 23: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Wave Current Interaction (WCI): dominating fatigue loadModeling and Simulation: different levels of complexity of existing models

simulations under different conditions

investigation of the relevance for tidal energy extraction ongoing

Trough Crest

Page 24: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

1

23

45

6

AB C

DE

Page 25: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

1 2

3 4

5 6

Page 26: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

1 2

3 4

5 6

Page 27: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Rotor power PSD over the entire cycle

Page 28: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Current speed PSD Water depth PSD

Improved measurements and analysis required!

Page 29: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Single acoustic profiler vs multiple sensor array

0

2

4

6

8

10

12

14

16

18

20

1 1.5 2 2.5 3

[]

wat

erde

pth

[m]

current velocity [m/s]

Page 30: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Development of a new concept for the combined measurement of currents, waves and turbulence- based on Nortek’s acoustic devices Aquadop and AWAC

Page 31: Dynamic performance analysis of tidal energy converters using

© Fraunhofer IWES

Summary

Detailed characterisation of sites

Including current profile, waves, turbulence

Detailed monitoring of full scale tidal energy conversion devices (standards)

Improvements on WCI and turbulence models

Calculation of fatigue loads

Improved structural design and control engineering solutions

Cost reduction and improved energy yield