Dynamic Graphs Compression and Dirchlet-multinomial Entropy · 2019. 2. 7. · Dynamic Graphs...

31
Dynamic Graphs Compression and Dirchlet-multinomial Entropy Wojciech Szpankowski Center for Science of Information, Purdue University Joint work with P. Jacquet, A. Magner, K. Turowski Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

Transcript of Dynamic Graphs Compression and Dirchlet-multinomial Entropy · 2019. 2. 7. · Dynamic Graphs...

  • Dynamic Graphs Compression andDirchlet-multinomial Entropy

    Wojciech Szpankowski

    Center for Science of Information, Purdue University

    Joint work with P. Jacquet, A. Magner, K. Turowski

    ITA, San Diego, 2019

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Talk outline

    1 Introduction: dynamic networks and structural information

    2 Duplication graph models

    Full duplication model: entropy

    Compression algorithms: Arithmetic Encoding

    3 Entropy of Dirichlet-multinomial distribution

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Dynamic networks

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Dynamic networks

    Main idea

    Model complex systems as a set of dynamic (time-evolving) interactingentities in which the spatial structure and patterns of interactions changeover time.

    Some challenges:

    infer underlying dynamic processes and their parameters governingnetwork evolution from sparsely sampled system state,

    infer spatio-temporal properties under assumption of a givenunderlying process, e.g. arrival sequences, clustering coefficient,degree distribution,

    determine minimum number of bits to describe dynamic networks.

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Structural information in random graphs

    For random graphs generated according to a known model the mainstructural quantities are:

    Automorphisms set Aut(G ) – set of permutations ofvertices in which the graph preserves the edge-vertexconnectivity.

    Feasible permutations set Γ(G ) – set of permuta-tions σ of V (G ) such that Pr (Gn = σ(G )) > 0.

    Admissible set Adm(G ) – set of positive-probabilitygraphs which can be obtained from G by applyingσ ∈ Γ(G ).

    Note: |Adm(G )| = |Γ(G)||Aut(G)| .

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Labeled vs. unlabeled graphs

    There are two flavours of duplication graph models:

    1 unlabeled graphs S(Gn) – the vertices contain no additionalinformation,

    2 labeled graphs Gn – the vertices contain information e.g. abouttheir time of arrival.

    Figure: Example unlabeled graph.

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Labeled vs. unlabeled graphs

    There are two flavours of duplication graph models:

    1 unlabeled graphs S(Gn) – the vertices contain no additionalinformation,

    2 labeled graphs Gn – the vertices contain information e.g. abouttheir time of arrival.

    1 2 3 4

    5678

    9

    Figure: Example labeled graph.

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Compression of graphs and structures

    Theorem (Structural entropy for a broad class of graph models)

    If all graphs with a given structure are equiprobable, then

    H(Gn)− H(S(Gn)) = E[log |Γ(Gn)|]− E[log |Aut(Gn)|].

    Proof.

    The theorem follows directly from two simple facts:

    H(Gn) = H(Gn,S(Gn)) = H(S(Gn)) + H(Gn|S(Gn)),

    Pr(Gn = G |S(Gn)) =1

    |Adm(G )|=|Aut(G )||Γ(G )|

    ,

    where H(Gn) = −∑

    G Pr(Gn = G ) log Pr(Gn = G ).

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Previous results

    Erdős-Renyi model G (n, p)

    Graph on n vertices, each pair of nodes receives an edge independently,with probability p.

    H(G ) =(n2

    )h(p), H(S(G )) =

    (n2

    )h(p)− n log n + O(n),

    where h(p) = p log p + (1− p) log(1− p).

    Note:

    |Γ(G )| = n!,

    for ln nn � p � 1−ln nn it is true that |Aut(G )| = 1 whp.

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Previous results

    Preferential Attachment model PA(n,m)

    Start from a single vertex v1 with m self loops.

    At each t from 2 on a new vertex vt joins and makes m independentconnection to the existing nodes with probability:

    Pr[vt connects to vk |Gt−1] =degt−1(vk)

    2m(t − 1).

    H(G ) = mn log n + m(log(2m − 1)− log(m!)− A(m))n + o(n) forexplicitly known constant A(m),

    if m ≥ 3, then H(S(G )) = (m − 1)n log n + O(n log log n).

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Talk outline

    1 Introduction: dynamic networks and structural information

    2 Duplication graph models

    Full duplication model: entropy

    Compression algorithms: Arithmetic Encoding

    3 Entropy of Dirichlet-multinomial distribution

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Duplication models

    Basic duplication (vertex-copying) model DD(n, p,G0)

    1 Start from an arbitrary (fixed) G0 on n0 vertices,2 In each step t = 1, . . . , n:

    1 add a new vertex vt to a graph,2 pick any vertex u from all previous vertices at random (uniformly),3 attach vt to all vertices connected to u (independently, withprobability p).

    There are many variants of this model: e.g. connecting vt to u, addingedges from vt to other vertices of G , or removing some edges.

    We consider first the boundary case p = 1.

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Example

    u1 u2 u3 u4

    u5u6

    v1v2

    v3

    Figure: Example graph growth in the full duplication model

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Example

    u1 u2 u3 u4

    u5u6v1

    v2

    v3

    Figure: Example graph growth in the full duplication model

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Example

    u1 u2 u3 u4

    u5u6v1v2

    v3

    Figure: Example graph growth in the full duplication model

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Example

    u1 u2 u3 u4

    u5u6v1v2

    v3

    Figure: Example graph growth in the full duplication model

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Talk outline

    1 Introduction: dynamic networks and structural information

    2 Duplication graph models

    Full duplication model: entropy

    Compression algorithms: Arithmetic Encoding

    3 Entropy of Dirichlet-multinomial distribution

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Basic notions

    Ancestor

    Ancestor of v ∈ V (Gn) is u ∈ V (G0), from v was ultimately copied.

    Orbit

    Orbit is a group of vertices in Gn with the same ancestor.

    u1 (u1) u2 (u2) u3 (u3) u4 (u4)

    u5 (u5)u6 (u6)v1 (u2)v2 (u1)

    v3 (u2)

    Figure: Example graph generated from the full duplication model

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Ball-and-urn model

    Polya urn model

    Let each of n0 urns contain one ball: Ci,0 = 1 for i = 1, . . . , n0.

    In each step, pick an urn proportionally to the number of balls in it andadd one ball to it.

    The distribution of (Ci,n)n0i=1 is also known in the literature as

    the Dirichlet-multinomial distribution DM(n, (1, . . . , 1)).

    This distribution has also very well known marginal distribution undername beta-binomial distribution BBin(n, 1, n0 − 1):

    Pr(Ci,n = (k + 1)) = (n0 − 1)(n

    k

    )Γ(k + 1)Γ(n − k + n0 − 1)

    Γ(n + n0)

    where Γ(a) is Euler gamma function.

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Graph structure and ball-and-urn model

    (Ci,n)n0i=1 is the number of vertices that have ui as the ancestors, and

    H(S(Gn)) = H((Ci,n)n0i=1) =

    n0∑i=1

    E[logCi,n] = n0E[logC1,n].

    u1 (u1) u2 (u2) u3 (u3) u4 (u4)

    u5 (u5)u6 (u6)v1 (u2)v2 (u1)

    v3 (u2)

    (a) Graph

    C1,n 2C2,n 3C3,n 1C4,n 1C5,n 1C6,n 1

    (b) Representation

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Automorphisms and ball-and-urn model

    Automorphism:We can always swap vertices within one orbit, never between orbits,therefore:

    E[log |Aut(Gn)|] =n0∑i=1

    E [logCi,n!] = n0E [logC1,n!] .

    Feasible Permutations Γ(G ):We can always swap vertices if (i) both are in G0 or (ii) if both are notin G0 and (iii) start Gn0 by selecting one node in each orbit. Thus:

    E[log |Γ(Gn)|] = log n0! + log n! + n0E[logC1,n].

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Solution

    Finally, we get

    E[log |Aut(Gn)|] = n log n − nHn0 log e +3n02

    log n + O(1),

    E[log |Γ(Gn)|] = n log n − n log e +2n0 + 1

    2log n + O(1),

    H(S(Gn)) = (n0 − 1) log n + O(1),

    H(Gn) = n(Hn0 − 1) log e +n0 − 1

    2log n + O(1).

    Note: H(Gn) = Θ(n), H(S(Gn)) = Θ(log n) – fairly unique for well-known random graph models!

    Graph Compression: arithmetic encoding.

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Talk outline

    1 Introduction: dynamic networks and structural information

    2 Duplication graph models

    Full duplication model: entropy

    Compression algorithms: Arithmetic Encoding

    3 Entropy of Dirichlet-multinomial distribution

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Arithmetic coding

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Talk outline

    1 Introduction: dynamic networks and structural information

    2 Duplication graph models

    Full duplication model: entropy

    Compression algorithms: Arithmetic Encoding

    3 Entropy of Dirichlet-multinomial distribution

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Dirichlet-multinomial distribution

    Dirichlet-multinomial distribution is multinomial distribution wiht param-eters distributed as Dirichlet distribution.

    Definition (Probability mass function for DM(n, ᾱ))

    Let X̄ ∼ DM(n, ᾱ) for ᾱ = (α1, . . . , αm), where αi > 0 for i = 1, . . . ,m.Then for a value x = (x1, . . . , xm), xi ∈ {0, 1, . . . , n} such that∑m

    k=1 xi = n, it holds that:

    Pr(X̄ = x̄) =∫

    [0,1]mPr(p̄)Pr(X̄ = x̄ |p̄) dp̄

    =

    ∫[0,1]m

    Γ(α0)∑mk=1 Γ(αk)

    m∏k=1

    pαk−1i

    (n

    x1 . . . xk

    ) m∏k=1

    pxki dp̄

    =Γ(n + 1)Γ (α0)

    Γ (n + α0)

    m∏k=1

    Γ (xk + αk)

    Γ(xk + 1)Γ (αk)=

    nB(n, α0)∏k : xk>0

    xkB(xk , αk)

    where Γ(x) is the Euler gamma function and α0 =∑m

    k=1 αk .

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Beta-binomial distribution

    Definition (Probability mass function for BBin(n, α, β))

    Let X ∼ BBin(n, α, β) for α, β > 0.Then for a value x ∈ {0, 1, . . . , n} it holds that:

    Pr(X = x) =∫ 10π(α, β, p)Pr(X = x |p) dp

    =

    ∫ 10

    pα−1(1− p)β−1

    B(α, β)

    (n

    x

    )px(1− p)n−x dp.

    Beta-binomial distribution is both a special case of Dirichlet-multinomialdistribution for m = 2 – and a marginal distribution for DM(n, ᾱ).

    Entropy was analyzed by Cheraghchi, 2017 (but non asymptotic expres-sion).

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Entropy of Dirichlet-multinomial distribution

    The entropy of Dirichlet-multinomial distribution can be expressed as

    H(X̄ ) = −E log Pr(X̄ )= log Γ (n + α0)− log Γ (n + 1)− log Γ (α0)

    +m∑

    k=1

    log Γ (αk) +m∑

    k=1

    E log Γ(Xk + 1)

    −m∑

    k=1

    E log Γ (Xk + αk)

    where Xk ∼ BBin (n, αk , α0 − αk).

    Thus we only need to compute E log Γ (X + t) for some t and X ∼BBin (n, α1, α2).

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Main Result: Asymptotic Formula for Entropy

    Theorem

    If X̄ ∼ DM(n, ᾱ), then

    H(X̄ ) = (m − 1) log n − log Γ (α0)

    +m∑

    k=1

    log Γ (αk) + log em∑

    k=1

    (αk − 1)(ψ(αk)− ψ(α0))

    +

    dmin{αi}e−1∑s=1

    esn−s + O

    (polylog(n)nmin{αi}

    )where es are explicitly computable.

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • ExampleExample

    Let ᾱ = (3, 4, 5). Then, from Theorem 4 we have

    H(X̄ ) = 2 log n +(

    955939240

    log e + 5 + 2 log 3− log(11!))

    + n−112 log e − n−2 147718

    log e + O(

    polylog(n)n3

    ).

    Table: Exact values and approximations for the entropy

    n exact value approximation absolute error

    100 11.29480883 11.29392204 8.8 · 10−4

    500 15.81065166 15.81064409 7.5 · 10−6

    1000 17.79368785 17.79368690 9.5 · 10−7

    5000 22.42380687 22.42380686 7.7 · 10−9

    10000 24.42207918 24.42207918 9.6 · 10−10

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy

  • Roadmap

    Taylor’s theorem

    Central moments estimation+ Stirling approximation

    Euler integrals

    Kummer solutions

    Wojciech Szpankowski Dynamic Graphs Compression and Dirchlet-multinomial Entropy