DUNKERQUE LNG TERMINAL : TANKS DESIGN

84
DUNKERQUE LNG TERMINAL : TANKS DUNKERQUE LNG TERMINAL : TANKS DESIGN Aix en Provence, 30 May 2012 Louis MARRACCI

Transcript of DUNKERQUE LNG TERMINAL : TANKS DESIGN

Page 1: DUNKERQUE LNG TERMINAL : TANKS DESIGN

DUNKERQUE LNG TERMINAL : TANKS DUNKERQUE LNG TERMINAL : TANKS DESIGN

Aix en Provence, 30 May 2012

Louis MARRACCI

Page 2: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

2Aix en Provence May 30 2012

Page 3: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

3Aix en Provence May 30 2012

Page 4: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksParticipants & main figures

Project participants

� Owner : Dunkerque LNG (65% EDF, 25% Fluxys and10% Total)� Engineer : Sofregaz

Main figures

� investment : 1 billion € (~25% for the tanks)� Site commencement date : 2012� Annual capacity : 13 Gm3 (30% of importation French capacity)

4th LNG import terminal in France

4Aix en Provence May 30 2012

Highest regaseification capacity in France

Page 5: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksProject parts and awaited functionality of the term inal

Project split into 3 parts

� a LNG regasification plant, with a nominal capacity around 13 bcm (billion cubic meter) natural gas per year.

� a Seawater Tunnel (about 5 km long) which brings the warm seawater discharged from Gravelines power station to the LNG vaporizers of the terminal, Gravelines power station to the LNG vaporizers of the terminal,

� three LNG storage tanks of each 190,000 m3 net capacity,

These components ensure the following functionalities:

discontinuous gas supply by methane tanker

Continuous emission on the gas network

Hot water supply

5Aix en Provence May 30 2012

Gas in liquid phasis

Cryogenic temperature

Atmospheric pressure

Gas in vapour phasis

Ambient temperature

Pression ~80 barg

Discharge out of cooled water (to the sea)

Page 6: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksConsortium participants & main figures

Consortium participants� Consortium BYTP / Entrepose (prime contractor) on 40% / 60% basis.� BYTP : concrete structures and carry out the soil improvement� Entrepose : internal tank, process, pre-commissioning.

main figures� working capacity : 190.000 m3 (=75 olympic swimming pools)� Diameter x height : 93m x 50m� Constrution delay : 3,5 ans

Biggest tank in Europe

6Aix en Provence May 30 2012

Page 7: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksDescription of a LNG Storage Tank

LNG Storage Tank consists of one self standing concrete outer tank:

� Within which will be installed:� Mechanical components to store the both liquid and vapor.� Thermal insulation to limit thermal ingress.

� Around which will be installed piping and access structures.

7Aix en Provence May 30 2012

Page 8: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksInternal – Mechanical Components

Inner Tank9%Ni Steel Plates

(Welded Construction)

Vapor Barrier

Sec. Bottom9%Ni Steel Plates

(Welded Construction)

8Aix en Provence May 30 2012

Suspended DeckAlu Plates

(Bolted Construction)

Vapor BarrierCS Steel Plates

(Welded Construction)

Page 9: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanks

Insulation Components

Internal – Insulation Components

Top InsulationFiberglass(Blanket unrolling)

Lateral Insulation #2

Lateral Insulation #1Resilient Blanket(Blanket unrolling)

9Aix en Provence May 30 2012

Lateral Insulation #2Perlite(installation by specialized Contract)

Bottom InsulationCellular Blocks(Bricks Installation with interleaving material between layers)

Page 10: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksExternals

Piping

10Aix en Provence May 30 2012

Structure (Platforms & accesways)

Page 11: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksGeneral Description of the project

Circularprestressed

concretewall

Upperreinforcedconcrete

dome

concreteframed roof

platform

Reinforced

wall

11Aix en Provence May 30 2012

Reinforcedconcrete raft

Page 12: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksGeneral Description of the project

12Aix en Provence May 30 2012

Page 13: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksGeneral Description of the project

�Tanks designed for all possible loading conditions which may occur during – erection, – testing, – commissioning, – operation, – de-commissioning, – maintenance– accidental loading conditions.

�Miscellaneous numerical models elaborated in order to

13Aix en Provence May 30 2012

�Miscellaneous numerical models elaborated in order to cope with the different loading conditions

Page 14: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

14Aix en Provence May 30 2012

Page 15: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

15Aix en Provence May 30 2012

Page 16: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksGeneral Description of the project

�Design data:–Design pressure: 290 mbarg / -10 mbarg–LNG service temperature : -165°C

Liquid PhasisΘ= -165°C

Vapour Phasis-10 < p < 290 mbarg

H

-165°C–Maximum Design liquid Level : 33.72 m (LNG density : 475 kg/m3)

16Aix en Provence May 30 2012

Θ= -165°Cρ=475 kg/m3

H

Page 17: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksGeneral Description of the project

�Design data:�Pneumatic test pressure: 362.5

mbarg�Hydrostatic Test Level for inner �Hydrostatic Test Level for inner

tank: 19.32 m = 1.25 * maximum load generated by LNG weight at the basis

17Aix en Provence May 30 2012

Page 18: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

18Aix en Provence May 30 2012

Page 19: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

�Geotechnical models�Static models

�Dynamic models�Thermo mechanical models�Overfilling scenario

19Aix en Provence May 30 2012

Page 20: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

�Geotechnical models�Static models

�Dynamic models�Thermo mechanical models�Overfilling scenario

20Aix en Provence May 30 2012

Page 21: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Geotechnical models�Stratigraphy

heterogeneous

liquefiable

21Aix en Provence May 30 2012

Page 22: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Geotechnical models (Terrasol)�Superficial foundation�Sufficient bearing capacity�Settlement calculation�Settlement calculation– axi symmetrical PLAXIS V9 non linear model

22Aix en Provence May 30 2012

Page 23: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Geotechnical models�Settlement calculation

takes into account :– Sequence representative – Sequence representative

of the loading history– differed behavior of

Flanders clays– distinction between the

instantaneous part of settlement and the part occuring 50 years after

23Aix en Provence May 30 2012

occuring 50 years after construction.

Page 24: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Geotechnical models�Settlement calculation: Maximum raft deformation = 5+28=33 cmMaximum differential settlement = 33-16-11 = 6 cm

5 cm 11 cm

16 cm

24Aix en Provence May 30 2012

28 cm

Page 25: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Geotechnical models�Soil improvement

����Vibroflottation :heterogeneous

����Vibroflottation :objective = minimum density

liquefiable

25Aix en Provence May 30 2012

Page 26: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Geotechnical models�Soil improvement

����Vibroflottation :heterogeneous

����Vibroflottation :objective = minimum density

���� stone columns

liquefiable

26Aix en Provence May 30 2012

Page 27: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Geotechnical models�Soil improvement

����Vibroflottation :heterogeneous

����Vibroflottation :objective = minimum density

���� stone columns

liquefiable

27Aix en Provence May 30 2012

�Adequacy of soil improvement: pilot tests

Page 28: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

�Geotechnical models�Static models

�Dynamic models�Thermo mechanical models�Overfilling scenario

28Aix en Provence May 30 2012

Page 29: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

�Geotechnical models�Static models �Dynamic models�Thermo mechanical models�Overfilling scenario

29Aix en Provence May 30 2012

Page 30: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Static models�3D axi-symmetrical model– Tank = axi-symmetrical structure– axi-symmetrical loads : self weight, prestress, LNG weight, service or test – axi-symmetrical loads : self weight, prestress, LNG weight, service or test

gas pressure, temperature, axi-symmetrical construction and service live loads

�axi-symmetrical 3D linear elastic model in plane deformations

30Aix en Provence May 30 2012

Page 31: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Static models�3D axi-symmetrical modelSoil

100 m

97.30

m

Remblais

hydrauliques

Sables denses

Argiles 1

Sables silteux

lâchesSables

moyennement

compactsSables silteux

Remblai structurel– Elastic linear properties– Particular situations :

imposed displacementsapplied to raft (fictive temperature field applied to soil)

31Aix en Provence May 30 2012

Argiles 1

Argiles 2

Argiles 3

� actual settlement profile

Page 32: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Static models�Full 3D model– used for calculations of internal forces under non axi-symmetrical

loads: wind, blast, snow, earthquake, missile and plane impactsloads: wind, blast, snow, earthquake, missile and plane impacts

32Aix en Provence May 30 2012

Page 33: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

�Geotechnical models�Static models

�Dynamic models�Thermo mechanical models�Overfilling scenario

33Aix en Provence May 30 2012

Page 34: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

�Geotechnical models�Static models

�Dynamic models�Thermo mechanical models�Overfilling scenario

34Aix en Provence May 30 2012

Page 35: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models�Seismic loads:– Operating Basis Earthquake (OBE):

no damage no damage restart and safe operation can continue. return period = 475 years. pga : amax = 0.134 g

– Safe Shutdown Earthquake (SSE) :essential fail-safe functions and mechanisms preserved. return period = 5,000 years. pga: amax = 0.30 g

35Aix en Provence May 30 2012

pga: amax = 0.30 g

Page 36: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

SSE surface

0.80 g

Horizontal EQγvertical =2/3 γhoriz

SSE bedrock

OBE OBE

0.30 g

0.13 g

0.30 g

36Aix en Provence May 30 2012

OBE surface

OBE bedrock

Page 37: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D soil model�3D Global “skewer” model �3D Model “ground + raft (shells) + skewer”�3D Model “ground + raft (shells) + skewer”�3D “parasol” model

37Aix en Provence May 30 2012

Page 38: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D soil model (GDS)– Purpose: determination of soil dynamic impedances (stiffness and

damping) of the tank foundationdamping) of the tank foundation– input data : for each layer :

the soil density ρ, Shear wave propagation velocity Vs0 (or shear modulus Gmax)compression wave propagation velocity Vp (or Poisson’s ratio ν)

– Two sets of soil characteristics:underestimated characteristics, without soil treatment increased characteristics, which takes into account soil treatment.

38Aix en Provence May 30 2012

increased characteristics, which takes into account soil treatment.

Page 39: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D soil model�3D Global “skewer” model �3D Model “ground + raft (shells) + skewer”�3D Model “ground + raft (shells) + skewer”�3D “parasol” model

39Aix en Provence May 30 2012

Page 40: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D soil model�3D Global “skewer” model �3D Model “ground + raft (shells) + skewer”�3D Model “ground + raft (shells) + skewer”�3D “parasol” model

40Aix en Provence May 30 2012

Page 41: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D Global “skewer” model – Purpose: determination of the global seismic answer of the

structure, coping with the interactions between inner tank, liquid, structure, coping with the interactions between inner tank, liquid, outer tank, suspended deck, foundation and soil, in a single composite model.– “skewer” model:

multi degree of freedom lumped masses computer code SOFISTIK Version 2010.

– modal spectral analysis, under horizontal and vertical spectra, � global forces, moments and accelerations for each modeled

41Aix en Provence May 30 2012

� global forces, moments and accelerations for each modeled component (inner tank, foundation, outer tank).

Page 42: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D Global “skewer” model

42Aix en Provence May 30 2012

Soil structure interaction

Page 43: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D Global “skewer” model

mi/m

l

mc/

ml

43Aix en Provence May 30 2012

Page 44: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D Global “skewer” model – 8 load configurations studied, combining :

filled / empty tank, filled / empty tank, OBE/ SSE, weak / stiff soil.

44Aix en Provence May 30 2012

Page 45: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D soil model�3D Global “skewer” model �3D Model “ground + raft (shells) + skewer”�3D Model “ground + raft (shells) + skewer”�3D “parasol” model

45Aix en Provence May 30 2012

Page 46: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D soil model�3D Global “skewer” model �3D Model “ground + raft (shells) + skewer”�3D Model “ground + raft (shells) + skewer”�3D “parasol” model

46Aix en Provence May 30 2012

Page 47: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D Model “ground + raft (shells) + skewer”

47Aix en Provence May 30 2012

raft

Page 48: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D Model “ground + raft (shells) + skewer”– Purpose: zoom of the lower part of skewer model �correct

determination of seismic loads in the foundation raft, which cannot determination of seismic loads in the foundation raft, which cannot be done from the skewer model (raft not perfectly rigid)– obtained by introducing into SASSI time history soil model the

skewer model and a model of the raft, made up of shell elements, with their real thicknesses in the central part and rigid ones for the external circular ring located under the wall. – Skewer connected by rigid connections to the external ring of the

raft.

48Aix en Provence May 30 2012

raft.

Page 49: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D Model “ground + raft (shells) + skewer”

49Aix en Provence May 30 2012

Page 50: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D soil model�3D Global “skewer” model �3D Model “ground + raft (shells) + skewer”�3D Model “ground + raft (shells) + skewer”�3D “parasol” model

50Aix en Provence May 30 2012

Page 51: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D soil model�3D Global “skewer” model �3D Model “ground + raft (shells) + skewer”�3D Model “ground + raft (shells) + skewer”�3D “parasol” model

51Aix en Provence May 30 2012

Page 52: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D “parasol” model

Dome & platform

52Aix en Provence May 30 2012

Page 53: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D “parasol” model – Purpose: zoom of the upper part of skewer model �correct

determination of seismic loads in the dome and the platformdetermination of seismic loads in the dome and the platform– gathers elements from the skewer model and elements of the

general 3D model.

53Aix en Provence May 30 2012

Page 54: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D “parasol” model

54Aix en Provence May 30 2012

Page 55: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D Model “ground + raft (shells) + skewer”– Time history analysis ���� Inertial forces

55Aix en Provence May 30 2012

Page 56: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D Model “ground + raft (shells) + skewer”– Time history analysis ���� Inertial forces

56Aix en Provence May 30 2012

Page 57: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Dynamic models : 4 models�3D Model “ground + raft (shells) + skewer”– Time history analysis ���� Inertial forces

57Aix en Provence May 30 2012

Page 58: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

�Geotechnical models�Static models

�Dynamic models�Thermo mechanical models�Overfilling scenario

58Aix en Provence May 30 2012

Page 59: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

�Geotechnical models�Static models

�Dynamic models�Thermo mechanical models�Overfilling scenario

59Aix en Provence May 30 2012

Page 60: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Thermo mechanical models�Purpose :

consequences of an consequences of an important leakage in the inner metallic tank.

�entirety of the LNG transferred in the concrete outer tank.

�prestressed concrete

60Aix en Provence May 30 2012

�prestressed concrete wall in direct contact with LNG at -165°C and bears the hydrostatic pressure.

Page 61: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Thermo mechanical models (ADDL)�ANSYS code�2 phases: �2 phases: – A thermal calculation, which determines

temperature distribution. – a mechanical calculation, which

integrates temperature distribution and mechanical loads.

�Purpose: check of the tightness of the

61Aix en Provence May 30 2012

�Purpose: check of the tightness of the outer wall : minimum compression zone of 100 mm in concrete section

Page 62: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Thermo mechanical models�Thermal model:

– 2D axi-symmetrical– Non linear calculation: – Non linear calculation:

thermal properties depend on temperature

62Aix en Provence May 30 2012

Page 63: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Thermo mechanical models�Thermal model:

– 2 analyses: Service Service configuration:

• LNG containedby inner tank;

• efficient insulation

63Aix en Provence May 30 2012

Page 64: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Thermo mechanical models�Thermal model:

– 2 analyses: AccidentalAccidentalscenario ;

• LNG in annularspace;

• insulationunefficientexcept raft / corner protection

64Aix en Provence May 30 2012

protection• 6 levels of outer

tank filling

Page 65: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Thermo mechanical models�Thermal model: results:– 31 m leakage

65Aix en Provence May 30 2012

Page 66: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Thermo mechanical models�Mechanical model:

– 2D axi-symmetrical– Non linear calculation:– Non linear calculation:

fck(θ), E(θ)fp(θ), Ep(θ)fy(θ), Es(θ)Plasticity / cracking of concreteReinforcement = equivalent steel

66Aix en Provence May 30 2012

densitiesSteel plasticity

– P=290 mbarg

Page 67: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural problematics and models

�Thermo mechanical models�Mechanical model: results

– check of the tightness of the outer wall : minimum the outer wall : minimum compression zone of 100 mm in concrete section – Governs horizontal and

vertical prestress

67Aix en Provence May 30 2012

Page 68: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

�Geotechnical models�Static models

�Dynamic models�Thermo mechanical models�Overfilling scenario

68Aix en Provence May 30 2012

Page 69: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�General description �Design data�Structural problematics and models

�Geotechnical models�Static models

�Dynamic models�Thermo mechanical models�Overfilling scenario

69Aix en Provence May 30 2012

Page 70: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksStructural design

�Overfilling scenario�accidental overfilling of the tank�LNG flow =14000 m3/h during 30 minutes�LNG overflows the inner tank and progressively invades �LNG overflows the inner tank and progressively invades

the annular gap between inner and outer tank, filled with perlite.

�internal gas pressure increases quickly following partial evaporation of the LNG in contact with the warmer elements of the annular gap.

�Frangibility : damage of the roof under the corresponding

70Aix en Provence May 30 2012

�Frangibility : damage of the roof under the corresponding over pressure will occur in the first place enabling the over pressure to be dissipated and the containment of LNG still being ensured by the outer concrete wall and raft.

Page 71: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanks

Cuve PrimaireAcier 9%NiContient le liquide en opération normale

Cuve ExterneContient le liquide en cas de fuite de l’enceinte primaire

Overfilling scenario

Barrière VapeurAcier carboneContient la vapeur en opération normale

Fond SecondaireAcier 9%NiContient le liquide en cas de fuite mineure

primaireProtège l’ouvrage des scénarii accidentels

71Aix en Provence May 30 2012

Plafond SuspenduAluminiumSupporte l’isolation supérieure

Page 72: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanks

Cuve PrimaireAcier 9%NiContient le liquide en opération normale

Cuve ExterneContient le liquide en cas de fuite de l’enceinte primaire

Overfilling scenario

Barrière VapeurAcier carboneContient la vapeur en opération normale

Fond SecondaireAcier 9%NiContient le liquide en cas de fuite mineure

primaireProtège l’ouvrage des scénarii accidentels

72Aix en Provence May 30 2012

Plafond SuspenduAluminiumSupporte l’isolation supérieure

Page 73: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanks

Cuve PrimaireAcier 9%NiContient le liquide en opération normale

Cuve ExterneContient le liquide en cas de fuite de l’enceinte primaire

Overfilling scenario

Barrière VapeurAcier carboneContient la vapeur en opération normale

Fond SecondaireAcier 9%NiContient le liquide en cas de fuite mineure

primaireProtège l’ouvrage des scénarii accidentels

73Aix en Provence May 30 2012

Plafond SuspenduAluminiumSupporte l’isolation supérieure

Page 74: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanks

Cuve PrimaireAcier 9%NiContient le liquide en opération normale

Cuve ExterneContient le liquide en cas de fuite de l’enceinte primaire

Overfilling scenario

Barrière VapeurAcier carboneContient la vapeur en opération normale

Fond SecondaireAcier 9%NiContient le liquide en cas de fuite mineure

primaireProtège l’ouvrage des scénarii accidentels

74Aix en Provence May 30 2012

Plafond SuspenduAluminiumSupporte l’isolation supérieure

Page 75: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanks

Cuve PrimaireAcier 9%NiContient le liquide en opération normale

Cuve ExterneContient le liquide en cas de fuite de l’enceinte primaire

Overfilling scenario•t=0: start of overflow

Barrière VapeurAcier carboneContient la vapeur en opération normale

Fond SecondaireAcier 9%NiContient le liquide en cas de fuite mineure

primaireProtège l’ouvrage des scénarii accidentels

75Aix en Provence May 30 2012

Plafond SuspenduAluminiumSupporte l’isolation supérieure

Page 76: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanks

Cuve PrimaireAcier 9%NiContient le liquide en opération normale

Cuve ExterneContient le liquide en cas de fuite de l’enceinte primaire

Overfilling scenario• t=0: start of overflow

Barrière VapeurAcier carboneContient la vapeur en opération normale

Fond SecondaireAcier 9%NiContient le liquide en cas de fuite mineure

primaireProtège l’ouvrage des scénarii accidentels

• t=0 to t=40 s : � total evaporation of LNG � Vaporization flow =

76Aix en Provence May 30 2012

Plafond SuspenduAluminiumSupporte l’isolation supérieure

� Vaporization flow = overfilling flow� Gas pressure increases � 757 mbarg= dome total cracking

Page 77: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksOverfilling scenario

�Dome cracking pressure

�P2=757 mbarg � weld failure�Tension redistributed in rebars

77Aix en Provence May 30 2012

�Tension redistributed in rebars�Rebar plastification; large rebar deformation�Separation dome / rafter

Page 78: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksOverfilling scenario

�Dome cracking pressure

�P2=757 mbarg � weld failure�Tension redistributed in rebars

78Aix en Provence May 30 2012

�Tension redistributed in rebars�Rebar plastification; large rebar deformation�Separation dome / rafter�Cracking of dome

Page 79: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksOverfilling scenario

�t=0 to t=40 s :� Cracking of dome in front of

rafters � gas flow �overpressure evacuated

�t > 40 s : less

critical phases

overpressure evacuated

79Aix en Provence May 30 2012

Page 80: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksOverfilling scenario

�Dome frangibility�integrity of outer concrete

wall and raft ensured during the accident. the accident.

�3D axisymmetrical used with modifications:– dome : totally cracked; section

of the dome = section of passive reinforcement– sliding and uplift at the

80Aix en Provence May 30 2012

– sliding and uplift at the interface between raft and soil– Hinge between dome and

gusset at 620 mbarg

Page 81: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksOverfilling scenario

�Dome frangibility�elasto plastic calculations�1st set: dome cracking pressure – initial stage :– initial stage :

LNG at maximum level in the inner tank design gas pressure of 290 mbarg.

– Accidental overpressure applied till 757 mbarg

�2nd set: end of the overfilling scenario:maximum LNG level in the annular gap; dome, completely cracked, suppressed in the model.

81Aix en Provence May 30 2012

dome, completely cracked, suppressed in the model. pressure = atmospheric pressure.

�integrity of wall and raft during overfilling scenario demonstrated.

Page 82: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksOther situations

�Construction phases�Accidental situations

�Cold spot�Cold spot�fire hazard, �LNG leakage on the dome

�Platform study

82Aix en Provence May 30 2012

Page 83: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksConclusion

�Various situations � Different models; mostspecific :�geotechnical context (compressible and liquefiable soil, �geotechnical context (compressible and liquefiable soil,

conception of soil improvement),

�seismic behaviour (interactions between inner tank, liquid, outer tank, suspended deck, foundation and soil)

�accidental scenarios (major leakage, overfilling).

�Partnership with Entrepose

83Aix en Provence May 30 2012

Page 84: DUNKERQUE LNG TERMINAL : TANKS DESIGN

Dunkerque LNG tanksConclusion

THANK YOU !

84Aix en Provence May 30 2012

YOU !