DSP & Digital Filters

25
DSP & Digital Filters Lecture 1 z-Transform DR TANIA STATHAKI READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Transcript of DSP & Digital Filters

DSP & Digital Filters

Lecture 1 z-Transform

DR TANIA STATHAKIREADER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSINGIMPERIAL COLLEGE LONDON

β€’ Recall that in order to describe a continuous-time signal π‘₯(𝑑) in frequency

domain we use:

❑ The Continuous-Time Fourier Transform (or Fourier Transform):

𝑋(πœ”) = ΰΆ±

βˆ’βˆž

∞

π‘₯(𝑑)π‘’βˆ’π‘—πœ”π‘‘π‘‘π‘‘

❑ The Laplace Transform

𝑋 𝑠 = ΰΆ±

βˆ’βˆž

∞

π‘₯(𝑑)π‘’βˆ’π‘ π‘‘π‘‘π‘‘

β€’ The above transforms and their basic properties are considered known in

this course.

β€’ If you have doubts please consult any book on Signals and Systems.

Continuous-time signals

β€’ Consider a discrete-time signal π‘₯(𝑑) sampled every 𝑇 seconds.

π‘₯ 𝑑 = π‘₯0𝛿 𝑑 + π‘₯1𝛿 𝑑 βˆ’ 𝑇 + π‘₯2𝛿 𝑑 βˆ’ 2𝑇 + π‘₯3𝛿 𝑑 βˆ’ 3𝑇 +β‹―

β€’ Recall that in the Laplace domain we have:

β„’ 𝛿 𝑑 = 1β„’ 𝛿 𝑑 βˆ’ 𝑇 = π‘’βˆ’π‘ π‘‡

β€’ Therefore, the Laplace transform of π‘₯ 𝑑 is:

𝑋 𝑠 = π‘₯0 + π‘₯1π‘’βˆ’π‘ π‘‡ + π‘₯2𝑒

βˆ’π‘ 2𝑇 + π‘₯3π‘’βˆ’π‘ 3𝑇 +β‹―

β€’ Now define 𝑧 = 𝑒𝑠𝑇 = 𝑒(𝜎+π‘—πœ”)𝑇 = π‘’πœŽπ‘‡cosπœ”π‘‡ + π‘—π‘’πœŽπ‘‡sinπœ”π‘‡.

β€’ Finally, define

𝑋[𝑧] = π‘₯0 + π‘₯1π‘§βˆ’1 + π‘₯2𝑧

βˆ’2 + π‘₯3π‘§βˆ’3 +β‹―

Discrete-time signals

The z-transform derived from the Laplace transform

β€’ From the Laplace time-shift property, we know that an additional term

𝑧 = 𝑒𝑠𝑇 in the Laplace domain, corresponds to time-advance by 𝑇seconds (𝑇 is the sampling period) of the original function in time.

β€’ Accordingly, π‘§βˆ’1 = π‘’βˆ’π‘ π‘‡ corresponds to a time-delay of one sampling

period.

β€’ As a result, all sampled data (and discrete-time systems) can be

expressed in terms of the variable 𝑧.

β€’ More formally, the unilateral 𝒛 βˆ’ transform of a causal sampled

sequence:

π‘₯ 𝑛 = {π‘₯ 0 , π‘₯ 1 , π‘₯ 2 , π‘₯ 3 , … }

is given by:

𝑋[𝑧] = π‘₯0 + π‘₯1π‘§βˆ’1 + π‘₯2𝑧

βˆ’2 + π‘₯3π‘§βˆ’3 +β‹― = σ𝑛=0

∞ π‘₯[𝑛]π‘§βˆ’π‘›, π‘₯𝑛 = π‘₯[𝑛]

β€’ The bilateral 𝒛 βˆ’transform for any sampled sequence is:

𝑋[𝑧] =

𝑛=βˆ’βˆž

∞

π‘₯[𝑛]π‘§βˆ’π‘›

π’›βˆ’πŸ: the sampling period delay operator

β€’ Find the 𝑧 βˆ’transform of the causal signal 𝛾𝑛𝑒[𝑛], where 𝛾 is a constant.

β€’ By definition:

𝑋[𝑧] =

𝑛=βˆ’βˆž

∞

𝛾𝑛𝑒 𝑛 π‘§βˆ’π‘› =

𝑛=0

∞

π›Ύπ‘›π‘§βˆ’π‘› =

𝑛=0

βˆžπ›Ύ

𝑧

𝑛

= 1 +𝛾

𝑧+

𝛾

𝑧

2

+𝛾

𝑧

3

+β‹―

β€’ We apply the geometric progression formula:

1 + π‘₯ + π‘₯2 + π‘₯3 +β‹― =1

1 βˆ’ π‘₯, π‘₯ < 1

β€’ Therefore,

𝑋[𝑧] =1

1βˆ’π›Ύ

𝑧

, 𝛾

𝑧< 1

=𝑧

π‘§βˆ’π›Ύ, 𝑧 > 𝛾

β€’ We notice that the 𝑧 βˆ’transform exists for certain values of 𝑧. These values

form the so called Region-of-Convergence (ROC) of the transform.

Example: Find the 𝒛 βˆ’transform of 𝒙 𝒏 = πœΈπ’π’–[𝒏]

β€’ Observe that a simple rational equation in 𝑧-domain corresponds to an

infinite sequence of samples in time-domain.

β€’ The figures below depict the signal in time (left) for 𝛾 < 1 and the ROC,

shown with the shaded area, within the 𝑧 βˆ’plane.

Example: Find the 𝒛 βˆ’transform of 𝒙 𝒏 = πœΈπ’π’– 𝒏 cont.

β€’ Consider the causal signal π‘₯ 𝑛 = σ𝑖=1𝐾 𝛾𝑖

𝑛𝑒[𝑛] with 𝑋(𝑧) = σ𝑖=1𝐾 𝑧

π‘§βˆ’π›Ύπ‘–.

β€’ In that case the ROC is the intersection of the ROCs of the individual

terms, i.e., the intersection of the sets 𝑧 > 𝛾𝑖 i.e., ROC: 𝑧 > 𝛾max

β€’ In case that π‘₯ 𝑛 is the impulse response of a system, the transfer function

of the system is the rational function 𝑋(𝑧) = σ𝑖=1𝐾 𝑧

π‘§βˆ’π›Ύπ‘–with poles 𝛾𝑖.

β€’ The above analysis yields the following properties regarding the ROC:

PROPERTY:

If 𝒙 𝒏 is a causal signal, the ROC of its 𝒛 βˆ’transform is 𝒛 > 𝜸𝐦𝐚𝐱

with 𝜸𝐦𝐚𝐱 the maximum magnitude pole of the 𝒛 βˆ’transform.

❑ In the general case of 𝒙 𝒏 being a right-sided signal (RSS) the

ROC is as above but might not include ∞ (think why).

PROPERTY:

No pole can exist in ROC.

Generic form of a causal signal

β€’ The signal π‘₯ 𝑛 = σ𝑖=1𝐾 𝛾𝑖

𝑛𝑒[𝑛] is bounded only if 𝛾𝑖 < 1 βˆ€π‘– or 𝛾max < 1.

β€’ In that case the ROC includes a circle with radius equal to 1. This is known

as the unit circle.

β€’ The above observation yields the following property:

PROPERTY:

If the ROC of 𝑿(𝒛) includes the unit circle in 𝒛 βˆ’plane, then the signal

in time is bounded and its Discrete Time Fourier Transform exists.

β€’ In case that 𝛾𝑛𝑒 𝑛 is part of a causal system’s impulse response, we see

that the condition 𝛾 < 1 must hold. This is because, since limπ‘›β†’βˆž

𝛾 𝑛 = ∞,

for 𝛾 > 1, the system will be unstable in that case.

β€’ Therefore, in causal systems, stability requires that the ROC of the

system’s transfer function includes the unit circle.

Generic form of a causal signal cont.

β€’ Find the 𝑧 βˆ’transform of the anti-causal signal βˆ’π›Ύπ‘›π‘’[βˆ’π‘› βˆ’ 1], where 𝛾 is a

constant.

β€’ By definition:

𝑋[𝑧] =

𝑛=βˆ’βˆž

∞

βˆ’π›Ύπ‘›π‘’ βˆ’π‘› βˆ’ 1 π‘§βˆ’π‘› =

𝑛=βˆ’βˆž

βˆ’1

βˆ’π›Ύπ‘›π‘§βˆ’π‘› = βˆ’

𝑛=1

∞

π›Ύβˆ’π‘›π‘§π‘› = βˆ’

𝑛=1

βˆžπ‘§

𝛾

𝑛

= βˆ’π‘§

𝛾

𝑛=0

βˆžπ‘§

𝛾

𝑛

= βˆ’π‘§

𝛾1 +

𝑧

𝛾+

𝑧

𝛾

2

+𝑧

𝛾

3

+β‹―

β€’ Therefore,

𝑋[𝑧] = βˆ’π‘§

𝛾

1

1βˆ’π‘§

𝛾

, 𝑧

𝛾< 1

=𝑧

π‘§βˆ’π›Ύ, 𝑧 < 𝛾

β€’ We notice that the 𝑧 βˆ’transform exists for certain values of 𝑧, which consist

the complement of the ROC of the function 𝛾𝑛𝑒[𝑛] with respect to the

𝑧 βˆ’plane.

Example: Find the 𝒛 βˆ’transform of 𝒙 𝒏 = βˆ’πœΈπ’π’–[βˆ’π’ βˆ’ 𝟏]

β€’ Consider the anti-causal signal π‘₯ 𝑛 = σ𝑖=1𝐾 βˆ’π›Ύπ‘–

𝑛𝑒[βˆ’π‘› βˆ’ 1] with

𝑧 βˆ’transform 𝑋(𝑧) = σ𝑖=1𝐾 𝑧

π‘§βˆ’π›Ύπ‘–.

β€’ In that case the ROC is the intersection of the sets 𝑧 < 𝛾𝑖 , i.e., ROC:

𝑧 < 𝛾min

β€’ In case that π‘₯ 𝑛 is the impulse response of a system, the transfer function

of the system is the rational function 𝑋(𝑧) = σ𝑖=1𝐾 𝑧

π‘§βˆ’π›Ύπ‘–with poles 𝛾𝑖.

β€’ The above analysis yield the following property regarding ROCs:

PROPERTY:

If 𝒙 𝒏 is an anti-causal signal, the ROC of its 𝒛 βˆ’transform is 𝒛 <𝛾min with 𝛾min the minimum magnitude pole of the 𝒛 βˆ’transform.

❑ In the general case of 𝒙 𝒏 being a left-sided signal (LSS) the ROC

is as above but might not include 𝟎 (think why).

Generic form of an anti-causal signal

β€’ We proved that the following two functions:

β–ͺ The causal function 𝛾𝑛𝑒 𝑛 and

β–ͺ the anti-causal function βˆ’π›Ύπ‘›π‘’[βˆ’π‘› βˆ’ 1] have:

❖ The same analytical expression for their 𝑧 βˆ’transforms.

❖ Complementary ROCs. More specifically, the union of their ROCS

forms the entire 𝑧 βˆ’plane.

β€’ The above observations verify that the analytical expression alone is not

sufficient to define the 𝑧 βˆ’transform of a signal. The ROC is also required.

Summary of previous examples

β€’ Example: Find the 𝑧 βˆ’transform of the two-sided signal:

π‘₯ 𝑛 = 2𝑛𝑒[𝑛] βˆ’ 4𝑛𝑒[βˆ’π‘› βˆ’ 1]

Based on the previous analysis we have:

𝑋 𝑧 =𝑧

π‘§βˆ’2+

𝑧

π‘§βˆ’4, ROC: 𝑧 > 2 ∩ 𝑧 < 4 or ROC: 2 < 𝑧 < 4

β€’ Example: Find the 𝑧 βˆ’transform of the two-sided signal:

π‘₯ 𝑛 = 4𝑛𝑒[𝑛] βˆ’ 2𝑛𝑒[βˆ’π‘› βˆ’ 1]

Based on the previous analysis we have:

𝑋 𝑧 =𝑧

π‘§βˆ’2+

𝑧

π‘§βˆ’4, ROC: 𝑧 > 4 ∩ 𝑧 < 2 or ROC: βˆ…

PROPERTY:

If 𝒙 𝒏 is two-sided signal then the ROC of its 𝒛 βˆ’transform is of the

form:

❑ 𝛾1 < 𝒛 < 𝛾2 with 𝛾1, 𝛾2 poles of the system or

❑ βˆ…

Two-sided signals

β€’ By definition 𝛿 0 = 1 and 𝛿 𝑛 = 0 for 𝑛 β‰  0.

𝑋[𝑧] =

𝑛=βˆ’βˆž

∞

𝛿 𝑛 π‘§βˆ’π‘› = 𝛿 0 π‘§βˆ’0 = 1

β€’ By definition 𝑒 𝑛 = 1 for 𝑛 β‰₯ 0.

𝑋[𝑧] = σ𝑛=βˆ’βˆžβˆž 𝑒 𝑛 π‘§βˆ’π‘› = σ𝑛=0

∞ π‘§βˆ’π‘› =1

1βˆ’1

𝑧

, 1

𝑧< 1

=𝑧

π‘§βˆ’1, 𝑧 > 1

Example: Find the 𝒛 βˆ’transform of 𝜹[𝒏] and 𝒖[𝒏]

β€’ We write cos𝛽𝑛 =1

2𝑒𝑗𝛽𝑛 + π‘’βˆ’π‘—π›½π‘› .

β€’ From previous analysis we showed that:

𝛾𝑛𝑒[𝑛] ⇔𝑧

π‘§βˆ’π›Ύ, 𝑧 > 𝛾

β€’ Hence,

𝑒±𝑗𝛽𝑛𝑒[𝑛] ⇔𝑧

π‘§βˆ’π‘’Β±π‘—π›½, 𝑧 > 𝑒±𝑗𝛽 = 1

β€’ Therefore,

𝑋 𝑧 =1

2

𝑧

π‘§βˆ’π‘’π‘—π›½+

𝑧

π‘§βˆ’π‘’βˆ’π‘—π›½=

𝑧(π‘§βˆ’cos𝛽)

𝑧2βˆ’2𝑧cos𝛽+1, 𝑧 > 1

Example: Find the 𝒛 βˆ’transform of πœπ¨π¬πœ·π’π’–[𝒏]

β€’ Find the 𝑧 βˆ’transform of the signal depicted in the figure.

β€’ By definition:

𝑋 𝑧 = 1 +1

𝑧+1`

𝑧2+1

𝑧3+1

𝑧4=

π‘˜=0

4

π‘§βˆ’1 π‘˜ =1 βˆ’ π‘§βˆ’1 5

1 βˆ’ π‘§βˆ’1=

𝑧

𝑧 βˆ’ 11 βˆ’ π‘§βˆ’5

𝒛 βˆ’transform of 5 impulses

Inverse 𝒛 βˆ’transform

β€’ As with other transforms, inverse 𝑧 βˆ’transform is used to derive π‘₯[𝑛]from 𝑋[𝑧], and is formally defined as:

π‘₯ 𝑛 =1

2πœ‹π‘—ΰΆ»π‘‹[𝑧]π‘§π‘›βˆ’1𝑑𝑧

β€’ Here the symbol Χ― indicates an integration in counter-clockwise

direction around a circle within the ROC and 𝑧 = π‘…π‘’π‘—πœƒ.

β€’ Such contour integral is difficult to evaluate (but could be done using

Cauchy’s residue theorem), therefore we often use other techniques to

obtain the inverse 𝑧 βˆ’transform.

β€’ One such technique is to use a 𝑧 βˆ’transform pairs Table shown in the

last two slides with partial fraction expansion.

Inverse 𝒛 βˆ’transform: Proof

Proof:

1

2πœ‹π‘—ΰΆ»π‘‹[𝑧]π‘§π‘›βˆ’1𝑑𝑧 =

1

2πœ‹π‘—ΰΆ»

π‘š=βˆ’βˆž

∞

π‘₯[π‘š]π‘§βˆ’π‘š π‘§π‘›βˆ’1𝑑𝑧

= Οƒπ‘š=βˆ’βˆžβˆž π‘₯[π‘š]

1

2πœ‹π‘—Χ― π‘§π‘›βˆ’π‘šβˆ’1𝑑𝑧 = Οƒπ‘š=βˆ’βˆž

∞ π‘₯[π‘š] 𝛿 𝑛 βˆ’π‘š = π‘₯[𝑛]

❑ For the above we used the Cauchy’s theorem:

1

2πœ‹π‘—Χ― π‘§π‘˜βˆ’1𝑑𝑧 = 𝛿 π‘˜ for 𝑧 = π‘…π‘’π‘—πœƒ anti-clockwise.

𝑑𝑧

π‘‘πœƒ= π‘—π‘…π‘’π‘—πœƒ β‡’

1

2πœ‹π‘—Χ― π‘§π‘˜βˆ’1𝑑𝑧 =

1

2πœ‹π‘—πœƒ=02πœ‹

π‘…π‘˜βˆ’1𝑒𝑗(π‘˜βˆ’1)πœƒ π‘—π‘…π‘’π‘—πœƒπ‘‘πœƒ =

π‘…π‘˜

2πœ‹πœƒ=02πœ‹

π‘’π‘—π‘˜πœƒ π‘‘πœƒ = π‘…π‘˜ 𝛿 π‘˜

[ π‘…π‘˜

2πœ‹πœƒ=02πœ‹

π‘’π‘—π‘˜πœƒ π‘‘πœƒ = ቐ0 π‘˜ β‰  0

π‘…π‘˜

2πœ‹2πœ‹ = π‘…π‘˜ π‘˜ = 0

]

Find the inverse 𝒛 βˆ’transform in the case of real unique poles

β€’ Find the inverse 𝑧 βˆ’transform of 𝑋 𝑧 =8π‘§βˆ’19

(π‘§βˆ’2)(π‘βˆ’3)

Solution

𝑋[𝑧]

𝑧=

8𝑧 βˆ’ 19

𝑧(𝑧 βˆ’ 2)(𝑍 βˆ’ 3)=(βˆ’

196)

𝑧+

3/2

𝑧 βˆ’ 2+

5/3

𝑧 βˆ’ 3

𝑋 𝑧 = βˆ’19

6+

3

2

𝑧

π‘§βˆ’2+

5

3

𝑧

π‘§βˆ’3

By using the simple transforms that we derived previously we get:

π‘₯ 𝑛 = βˆ’19

6𝛿[𝑛] +

3

22𝑛 +

5

33𝑛 𝑒[𝑛]

Find the inverse 𝒛 βˆ’transform in the case of real repeated poles

β€’ Find the inverse 𝑧 βˆ’transform of 𝑋 𝑧 =𝑧(2𝑧2βˆ’11𝑧+12)

(π‘§βˆ’1)(π‘§βˆ’2)3

Solution

𝑋[𝑧]

𝑧=

(2𝑧2βˆ’11𝑧+12)

(π‘§βˆ’1)(π‘§βˆ’2)3=

π‘˜

π‘§βˆ’1+

π‘Ž0

(π‘§βˆ’2)3+

π‘Ž1

(π‘§βˆ’2)2+

π‘Ž2

(π‘§βˆ’2)

β–ͺ We use the so called covering method to find π‘˜ and π‘Ž0

π‘˜ = ΰΈ­(2𝑧2 βˆ’ 11𝑧 + 12)

(𝑧 βˆ’ 1)(𝑧 βˆ’ 2)3𝑧=1

= βˆ’3

π‘Ž0 = ΰΈ­(2𝑧2 βˆ’ 11𝑧 + 12)

(𝑧 βˆ’ 1)(𝑧 βˆ’ 2)3𝑧=2

= βˆ’2

The shaded areas above indicate that they are excluded from the entire

function when the specific value of 𝑧 is applied.

Find the inverse 𝒛 βˆ’transform in the case of real repeated poles cont.

β€’ Find the inverse 𝑧 βˆ’transform of 𝑋 𝑧 =𝑧(2𝑧2βˆ’11𝑧+12)

(π‘§βˆ’1)(π‘§βˆ’2)3

Solution

𝑋[𝑧]

𝑧=

(2𝑧2βˆ’11𝑧+12)

(π‘§βˆ’1)(π‘§βˆ’2)3=

βˆ’3

π‘§βˆ’1+

βˆ’2

(π‘§βˆ’2)3+

π‘Ž1

(π‘§βˆ’2)2+

π‘Ž2

(π‘§βˆ’2)

β–ͺ To find π‘Ž2 we multiply both sides of the above equation with 𝑧 and let

𝑧 β†’ ∞.

0 = βˆ’3 βˆ’ 0 + 0 + π‘Ž2 β‡’ π‘Ž2 = 3

β–ͺ To find π‘Ž1 let 𝑧 β†’ 0.

12

8= 3 +

1

4+

π‘Ž1

4βˆ’

3

2β‡’ π‘Ž1 = βˆ’1

𝑋[𝑧]

𝑧=

(2𝑧2βˆ’11𝑧+12)

(π‘§βˆ’1)(π‘§βˆ’2)3=

βˆ’3

π‘§βˆ’1βˆ’

2

π‘§βˆ’2 3 βˆ’1

(π‘§βˆ’2)2+

3

(π‘§βˆ’2)β‡’

𝑋 𝑧 =βˆ’3𝑧

π‘§βˆ’1βˆ’

2𝑧

π‘§βˆ’2 3 βˆ’π‘§

(π‘§βˆ’2)2+

3𝑧

(π‘§βˆ’2)

Find the inverse 𝒛 βˆ’transform in the case of real repeated poles cont.

𝑋 𝑧 =βˆ’3𝑧

π‘§βˆ’1βˆ’

2𝑧

π‘§βˆ’2 3 βˆ’π‘§

(π‘§βˆ’2)2+

3𝑧

(π‘§βˆ’2)

β€’ We use the following properties:

β–ͺ 𝛾𝑛𝑒[𝑛] ⇔𝑧

π‘§βˆ’π›Ύ

β–ͺ𝑛(π‘›βˆ’1)(π‘›βˆ’2)…(π‘›βˆ’π‘š+1)

π›Ύπ‘šπ‘š!𝛾𝑛𝑒 𝑛 ⇔

𝑧

(π‘§βˆ’π›Ύ)π‘š+1

[βˆ’2𝑧

π‘§βˆ’2 3 = (βˆ’2)𝑧

π‘§βˆ’2 2+1 ⇔ (βˆ’2)𝑛(π‘›βˆ’1)

222!𝛾𝑛𝑒 𝑛 = βˆ’2

𝑛(π‘›βˆ’1)

8βˆ™ 2𝑛𝑒[𝑛]

β€’ Therefore,

π‘₯ 𝑛 = [βˆ’3 βˆ™ 1𝑛 βˆ’ 2𝑛(π‘›βˆ’1)

8βˆ™ 2𝑛 βˆ’

𝑛

2βˆ™ 2𝑛 + 3 βˆ™ 2𝑛]𝑒[𝑛]

= βˆ’ 3 +1

4𝑛2 + 𝑛 βˆ’ 12 2𝑛 𝑒[𝑛]

Find the inverse 𝒛 βˆ’transform in the case of complex poles

β€’ Find the inverse 𝑧 βˆ’transform of 𝑋 𝑧 =2𝑧(3𝑧+17)

(π‘§βˆ’1)(𝑧2βˆ’6𝑧+25)

Solution

𝑋 𝑧 =2𝑧(3𝑧 + 17)

(𝑧 βˆ’ 1)(𝑧 βˆ’ 3 βˆ’ 𝑗4)(𝑧 βˆ’ 3 + 𝑗4)

𝑋[𝑧]

𝑧=

(2𝑧2βˆ’11𝑧+12)

(π‘§βˆ’1)(π‘§βˆ’2)3=

π‘˜

π‘§βˆ’1+

π‘Ž0

(π‘§βˆ’2)3+

π‘Ž1

(π‘§βˆ’2)2+

π‘Ž2

(π‘§βˆ’2)

Whenever we encounter a complex pole we need to use a special partial

fraction method called quadratic factors method.

𝑋[𝑧]

𝑧=

2(3𝑧+17)

(π‘§βˆ’1)(𝑧2βˆ’6𝑧+25)=

2

π‘§βˆ’1+

𝐴𝑧+𝐡

𝑧2βˆ’6𝑧+25

We multiply both sides with 𝑧 and let 𝑧 β†’ ∞:

0 = 2 + 𝐴 β‡’ 𝐴 = βˆ’2

Therefore,

2(3𝑧+17)

(π‘§βˆ’1)(𝑧2βˆ’6𝑧+25)=

2

π‘§βˆ’1+

βˆ’2𝑧+𝐡

𝑧2βˆ’6𝑧+25

Find the inverse 𝒛 βˆ’transform in the case of complex poles cont.

2(3𝑧+17)

(π‘§βˆ’1)(𝑧2βˆ’6𝑧+25)=

2

π‘§βˆ’1+

βˆ’2𝑧+𝐡

𝑧2βˆ’6𝑧+25

To find 𝐡 we let 𝑧 = 0:

βˆ’34

25= βˆ’2 +

𝐡

25β‡’ 𝐡 = 16

𝑋[𝑧]

𝑧=

2

π‘§βˆ’1+

βˆ’2𝑧+16

𝑧2βˆ’6𝑧+25β‡’ 𝑋 𝑧 =

2𝑧

π‘§βˆ’1+

𝑧(βˆ’2𝑧+16)

𝑧2βˆ’6𝑧+25

β€’ We use the following property:

π‘Ÿ 𝛾 𝑛 cos 𝛽𝑛 + πœƒ 𝑒[𝑛] ⇔𝑧(𝐴𝑧+𝐡)

𝑧2+2π‘Žπ‘§+ 𝛾 2 with 𝐴 = βˆ’2, 𝐡 = 16, π‘Ž = βˆ’3, 𝛾 = 5.

π‘Ÿ =𝐴2 𝛾 2+𝐡2βˆ’2π΄π‘Žπ΅

𝛾 2βˆ’π‘Ž2=

4βˆ™25+256βˆ’2βˆ™(βˆ’2)βˆ™(βˆ’3)βˆ™16

25βˆ’9= 3.2, 𝛽 = cosβˆ’1

βˆ’π‘Ž

𝛾= 0.927π‘Ÿπ‘Žπ‘‘,

πœƒ = tanβˆ’1π΄π‘Žβˆ’π΅

𝐴 𝛾 2βˆ’π‘Ž2= βˆ’2.246π‘Ÿπ‘Žπ‘‘.

Therefore, π‘₯ 𝑛 = [2 + 3.2 cos 0.927𝑛 βˆ’ 2.246 ]𝑒[𝑛]

𝒛 βˆ’transform Table

No. 𝒙[𝒏] 𝑿[𝒛]

𝒛 βˆ’transform Table

No. 𝒙[𝒏] 𝑿[𝒛]