DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

29
SWAN Advanced Course 1. General introduction to waves and wave modelling Delft Software Days 28 October 2014, Delft 28 Oct 2014

description

SWAN Advanced Course

Transcript of DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

Page 1: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN Advanced Course1. General introduction to waves and wave modelling

Delft Software Days28 October 2014, Delft

28 Oct 2014

Page 2: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

Introduction

- Waves

- SWAN wave model

- SWAN North Sea

x ySN N c N c N

x yN c ct

28 Oct 2014Delft Software Days 2

Page 3: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

Waves

k=1/L

28 Oct 2014Delft Software Days 3

Page 4: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

Waves

Type of wave Typical period [s] Cause

Tide 5*104 s = 12 hr moon, sun

Tsunami 104 s = 3 hr earthquake

Seiches 103 s = 20 min cold front

Surfbeat 102 s = 2 min wave groups

Swell 15 – 20 s storms far away

Wind waves (“Sea”) 2 – 10 s wind

Capillary waves 0.1 s turbulence in wind

28 Oct 2014Delft Software Days 4

Page 5: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

Waves

Figure courtesy Holthuijsen (TU-Delft)

Wave generation: by windPropagation: shoaling, refraction, reflection, diffraction

Transformation: non linear wave-wave interactionsDissipation: breaking, whitecapping, bottom friction

28 Oct 2014Delft Software Days 5

Page 6: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

Waves

28 Oct 2014Delft Software Days 6

Page 7: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

E(f): variance density spectrum [m2/Hz]

Eenergy(f) : energy density spectrum = * g * E(f)

wave harmonic frequencies waverecord analysis spectrum

1( ) sin 2

N

i i ii

t a f t

In the limit for N

28 Oct 2014Delft Software Days 7

Page 8: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

Waves

HE10 sometimes called ‘swell’Rather: low frequency wave height

Tp = peak period (=1/peak frequency)

28 Oct 2014Delft Software Days 8

Page 9: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

forfor

a p

pb

f ff f

Empirical forms based on fetch-limited observations

2

2 24 exp

242 5

Pierson-Moskowitz spectrum

5( ) 2 exp4

p

p

f

p

f

ffE f g ff

JONSWAP

1 ,pp

fT

Standard values:

From input:

3.3, 0.07, 0.09a b

determined from Hs

Waves

28 Oct 2014Delft Software Days 9

Page 10: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

Waves

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Direction

Swellm =100

wind seam = 4

m[-]

one sideddirectionalspreading

[°]

Type

1 37.5

4 24.9 wind sea

15 14.2

60 7.3

100 5.7 swell

800 2

( , ) ( ) ( , )E f E f D f( , ) cos ( )m

meanD f A f28 Oct 2014Delft Software Days 10

Page 11: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

Waves

28 Oct 2014Delft Software Days 11

Page 12: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN

x y c Ex y

E c E c E St

bathymetry

offshore waves

wind

waterlevel

28 Oct 2014Delft Software Days 12

Page 13: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN

action density (instead of energy density)

propagation refraction

Sin = wind inputSnl = non linear wave-wave interactionsSds = dissipation

Sourceterms

frequencyshift(currents)

28 Oct 2014Delft Software Days 13

Page 14: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN

Sin ( , ) = A + B E( , )

•Linear wave growth: Caveleri and Malanotte-Rizzoli (1981):A = A ( , , w,U*)

•Exponential wave growth

28 Oct 2014Delft Software Days

u

14

Page 15: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN

Sin ( , ) = A + B E( , )•Exponential wave growth:

• Komen et al. (1984), Snyder et al. (1981) [WAM-cycle3]

• Janssen (1989, 1991) [WAM-cycle4]

• Westhuysen (from Yan 1987, but with refitted coefficients D,E,F,H)

*max 0, 0.25 28 cos 1p

a

w h sw

a e

Uc

B

28 Oct 2014Delft Software Days

22* max 0 , cos

phase

aw

w

Uc

B

15

Page 16: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN

2 2* 10DU C UU10 is input to SWAN

310

310 10

1.2875 10 for 7.5 m/s0.8 0.065 10 for 7.5 m/sD

UC

U UWu (1982):

28 Oct 2014Delft Software Days

2 30.55 2.97 1.49 10DC U U

10 , 31.5m/sref refU U U U

Zijlema et al. (CE 2012):

16

Page 17: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN

2 2* 10DU C UU10 is input to SWAN

28 Oct 2014Delft Software Days 17

Page 18: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN

1p

dsPM

k sCk s

, ,wcapkS Ek

52.36 10 , 0, 4dsC p

Whitecapping is represented by pulse-based model of Hasselmann(1974), reformulated in terms of wave number (for applicability in finite-water depth) by Komen et al. (1984):

with

Tunable coefficients:

• Komen et al. (1984, WAM-cycle3) :

• Janssen (1992, WAM-cycle4):54.10 10 , 0.5, 4dsC p

28 Oct 2014Delft Software Days 18

Page 19: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN

q or p =4 (tuned)n variable, to be set with .

If =0 -> n=1 -> was default until 2013If =1 -> n=2 -> more dissipation for larger k so

more energy at lower frequencies (larger T)‘Rogers’, default since 2013

( , ) ( , )qn

wc dsPM

k sS C Esk tots k EKomen et al. (1984):

1p

dsPM

k sCk s

, ,wcapkS Ek

28 Oct 2014Delft Software Days 19

Page 20: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

Saturation-based whitecapping

( , ) ( , )qn

Komen dsPM

k sS C Esk

3( ) ( )gB k c k E

tots k E,

1 12 2

/ 2( )( , ) ( , )

p

Break dsr

B kS C g k EB

,

, ( , ) ( ) 1 ( )wc SB br Break br non breakS f S f S

121 1 ( )( ) tanh 10 1

2 2brr

B kfB

*up fc

Saturation based whitecapping by Van der Westhuysen et al. (2007),related to nonlinear hydrodynamics within wave groups :

Komen et al. (1984):

Adjusted by Van der Westhuysen (2007):

28 Oct 2014Delft Software Days 20

Page 21: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN

28 Oct 2014Delft Software Days 21

Page 22: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN

2

2 2, ,sinhbot bottomS C E

g kd

2 3

2 3

0.038 m s (swell)0.067 m s (fully-developed sea)bottomC

Bottom friction ‘Jonswap formulation’

now defaultwas default (till 2013)

28 Oct 2014Delft Software Days 22

Page 23: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN North Sea

SWAN North Sea within FEWS

28 Oct 2014Delft Software Days 23

Page 24: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN North Sea

Grid 1 (DCSM)RectangularArea:1500 km x 1700 kmCell size:3.6 km x 3.6 km

Grid 2 (ZUNO)CurvilinearArea:770 km x 750 kmCell size:200 m - 2 km x200 m - 2 km

28 Oct 2014Delft Software Days 24

Page 25: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN North Sea

In FEWS every 6 hour: SWAN-DCSM and SWAN-ZUNOResults in FEWS

Spectral wave boundary conditions for SWAN-DCSM:WAM model by ECMWF (30 freq x 24 dir) 0:00 6:00 12:00 18:00…

dt = 6 hrWind (equal for SWAN-ZUNO and SWAN-DCSM):HIRLAM11-v7.2 model 0:00 6:00 12:00 18:00…

dt = 1hrWaterlevels:WAQUA DCSMv6 (rectangular) 0:00 6:00 12:00 18:00…

dt = 1hrCurrents (SWAN-ZUNO only):WAQUA DCSMv6 0:00 6:00 12:00 18:00…

dt = 1hrBathymetry:based on WAQUA DCSMv6 and ZUNOv4

28 Oct 2014Delft Software Days 25

Page 26: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN North Sea

ca.5 km

2013:MV2

28 Oct 2014Delft Software Days 26

Page 27: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN North Sea

SWAN validation based on operational runs Nov 2012 – April 2013

28 Oct 2014Delft Software Days 27

Page 28: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN North Sea

Komen; delta=0(presently inSWAN North Sea)

Westhuysen

Komen; delta=1(present default inSWAN)

Observation

- - SWAN ZUNOSWAN DCSM

28 Oct 2014Delft Software Days 28

Page 29: DSD-INT - SWAN Advanced Course - 01 - General introduction to waves and wave modelling

SWAN North Sea

28 Oct 2014Delft Software Days 29