Dr.rinasusilowati.histologi

101
Sense organs [email protected]

description

bhb

Transcript of Dr.rinasusilowati.histologi

Page 1: Dr.rinasusilowati.histologi

Sense organs

rina_susilowatiugmacid

rina_susilowatiugmacid 2014 2

rina_susilowatiugmacid 2014 3

Middle ear

1

2 3 4

5 rina_susilowatiugmacid 2014 4

rina_susilowatiugmacid 2014 5

Cochlea

rina_susilowatiugmacid 2014 6

Length 35 mm Radius 1 mm

Distance from Stapes (mm)

Cochlea is a tube

base high frequency

apex low frequency

rina_susilowatiugmacid 2014 7

Coiled tube (25 turns) Length 35 mm Radius 1 mm

Cochlea

rina_susilowatiugmacid 2014 8

Endo- lymph

Perilymph

rina_susilowatiugmacid 2014 9

rina_susilowatiugmacid 2014 10

three rows of outer hair cells received signals from efferent axons ndash actively changing the stiffness of tectorial membrane

single row of inner hair cells actual sensory receptors

rina_susilowatiugmacid 2014 11

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 2: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 2

rina_susilowatiugmacid 2014 3

Middle ear

1

2 3 4

5 rina_susilowatiugmacid 2014 4

rina_susilowatiugmacid 2014 5

Cochlea

rina_susilowatiugmacid 2014 6

Length 35 mm Radius 1 mm

Distance from Stapes (mm)

Cochlea is a tube

base high frequency

apex low frequency

rina_susilowatiugmacid 2014 7

Coiled tube (25 turns) Length 35 mm Radius 1 mm

Cochlea

rina_susilowatiugmacid 2014 8

Endo- lymph

Perilymph

rina_susilowatiugmacid 2014 9

rina_susilowatiugmacid 2014 10

three rows of outer hair cells received signals from efferent axons ndash actively changing the stiffness of tectorial membrane

single row of inner hair cells actual sensory receptors

rina_susilowatiugmacid 2014 11

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 3: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 3

Middle ear

1

2 3 4

5 rina_susilowatiugmacid 2014 4

rina_susilowatiugmacid 2014 5

Cochlea

rina_susilowatiugmacid 2014 6

Length 35 mm Radius 1 mm

Distance from Stapes (mm)

Cochlea is a tube

base high frequency

apex low frequency

rina_susilowatiugmacid 2014 7

Coiled tube (25 turns) Length 35 mm Radius 1 mm

Cochlea

rina_susilowatiugmacid 2014 8

Endo- lymph

Perilymph

rina_susilowatiugmacid 2014 9

rina_susilowatiugmacid 2014 10

three rows of outer hair cells received signals from efferent axons ndash actively changing the stiffness of tectorial membrane

single row of inner hair cells actual sensory receptors

rina_susilowatiugmacid 2014 11

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 4: Dr.rinasusilowati.histologi

Middle ear

1

2 3 4

5 rina_susilowatiugmacid 2014 4

rina_susilowatiugmacid 2014 5

Cochlea

rina_susilowatiugmacid 2014 6

Length 35 mm Radius 1 mm

Distance from Stapes (mm)

Cochlea is a tube

base high frequency

apex low frequency

rina_susilowatiugmacid 2014 7

Coiled tube (25 turns) Length 35 mm Radius 1 mm

Cochlea

rina_susilowatiugmacid 2014 8

Endo- lymph

Perilymph

rina_susilowatiugmacid 2014 9

rina_susilowatiugmacid 2014 10

three rows of outer hair cells received signals from efferent axons ndash actively changing the stiffness of tectorial membrane

single row of inner hair cells actual sensory receptors

rina_susilowatiugmacid 2014 11

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 5: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 5

Cochlea

rina_susilowatiugmacid 2014 6

Length 35 mm Radius 1 mm

Distance from Stapes (mm)

Cochlea is a tube

base high frequency

apex low frequency

rina_susilowatiugmacid 2014 7

Coiled tube (25 turns) Length 35 mm Radius 1 mm

Cochlea

rina_susilowatiugmacid 2014 8

Endo- lymph

Perilymph

rina_susilowatiugmacid 2014 9

rina_susilowatiugmacid 2014 10

three rows of outer hair cells received signals from efferent axons ndash actively changing the stiffness of tectorial membrane

single row of inner hair cells actual sensory receptors

rina_susilowatiugmacid 2014 11

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 6: Dr.rinasusilowati.histologi

Cochlea

rina_susilowatiugmacid 2014 6

Length 35 mm Radius 1 mm

Distance from Stapes (mm)

Cochlea is a tube

base high frequency

apex low frequency

rina_susilowatiugmacid 2014 7

Coiled tube (25 turns) Length 35 mm Radius 1 mm

Cochlea

rina_susilowatiugmacid 2014 8

Endo- lymph

Perilymph

rina_susilowatiugmacid 2014 9

rina_susilowatiugmacid 2014 10

three rows of outer hair cells received signals from efferent axons ndash actively changing the stiffness of tectorial membrane

single row of inner hair cells actual sensory receptors

rina_susilowatiugmacid 2014 11

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 7: Dr.rinasusilowati.histologi

Length 35 mm Radius 1 mm

Distance from Stapes (mm)

Cochlea is a tube

base high frequency

apex low frequency

rina_susilowatiugmacid 2014 7

Coiled tube (25 turns) Length 35 mm Radius 1 mm

Cochlea

rina_susilowatiugmacid 2014 8

Endo- lymph

Perilymph

rina_susilowatiugmacid 2014 9

rina_susilowatiugmacid 2014 10

three rows of outer hair cells received signals from efferent axons ndash actively changing the stiffness of tectorial membrane

single row of inner hair cells actual sensory receptors

rina_susilowatiugmacid 2014 11

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 8: Dr.rinasusilowati.histologi

Coiled tube (25 turns) Length 35 mm Radius 1 mm

Cochlea

rina_susilowatiugmacid 2014 8

Endo- lymph

Perilymph

rina_susilowatiugmacid 2014 9

rina_susilowatiugmacid 2014 10

three rows of outer hair cells received signals from efferent axons ndash actively changing the stiffness of tectorial membrane

single row of inner hair cells actual sensory receptors

rina_susilowatiugmacid 2014 11

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 9: Dr.rinasusilowati.histologi

Endo- lymph

Perilymph

rina_susilowatiugmacid 2014 9

rina_susilowatiugmacid 2014 10

three rows of outer hair cells received signals from efferent axons ndash actively changing the stiffness of tectorial membrane

single row of inner hair cells actual sensory receptors

rina_susilowatiugmacid 2014 11

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 10: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 10

three rows of outer hair cells received signals from efferent axons ndash actively changing the stiffness of tectorial membrane

single row of inner hair cells actual sensory receptors

rina_susilowatiugmacid 2014 11

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 11: Dr.rinasusilowati.histologi

three rows of outer hair cells received signals from efferent axons ndash actively changing the stiffness of tectorial membrane

single row of inner hair cells actual sensory receptors

rina_susilowatiugmacid 2014 11

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 12: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 12

Inner hair cell kinocilium amp stereocilia

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 13: Dr.rinasusilowati.histologi

Hyperpolarization Depolarization

rina_susilowatiugmacid 2014 13

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 14: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 14

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 15: Dr.rinasusilowati.histologi

Spiral ganglion

rina_susilowatiugmacid 2014 15

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 16: Dr.rinasusilowati.histologi

Mid pons

Caudal midbrain

Pons-midbrain junction

Rostral midbrain

Cerebrum

Rostral medulla

Cochlea

Primary auditory cortex

Cochlear nuclei

Inferior colliculus

Superior olive

Nucleus of lateral leminiscus

Medial geniculate nucleus of thalamus

rina_susilowatiugmacid 2014 16

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 17: Dr.rinasusilowati.histologi

Major causes of acquired hearing loss

bull acoustical trauma ndash extremely loud sound

bull infection of the inner ear bull ototoxic drugs

ndash aminoglycoside antibiotics (such as gentamycin and kanamycin)

ndash ethacrynic acid

bull presbyacusis ndash atherosclerotic damage to the especially fine

microvasculature of the inner ear rina_susilowatiugmacid 2014 17

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 18: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 18

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 19: Dr.rinasusilowati.histologi

Cochlear implant Transforms speech and other sounds into electrical energy

stimulates residual nerve fibers and spiral ganglion cells

rina_susilowatiugmacid 2014 19

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 20: Dr.rinasusilowati.histologi

Vision

rina_susilowatiugmacid

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 21: Dr.rinasusilowati.histologi

1

2

3

rina_susilowatiugmacid 2014 21

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 22: Dr.rinasusilowati.histologi

1

2

4

3

5

6

rina_susilowatiugmacid 2014 22

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 23: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 23

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 24: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 24

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 25: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 25

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 26: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 26

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 27: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 27

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 28: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 28

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 29: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 29

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 30: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 30

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 31: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 31

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 32: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 32

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 33: Dr.rinasusilowati.histologi

Vision the process of seeing

bull Optics of the eye

bull Transduction of light energy into electrical signals

bull Retinal circuitry

bull Information relayed thalamus Visual cortex

rina_susilowatiugmacid 2014 33

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 34: Dr.rinasusilowati.histologi

Wall of the eye

Sclera

Choroid

Retina

1

2

3

rina_susilowatiugmacid 2014 34

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 35: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 35

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 36: Dr.rinasusilowati.histologi

1 Pigment epithelium 2 Photoreceptors outer

segments 3 Outer limiting

membrane 4 Outer nuclear layer 5 Outer plexiform layer 6 Inner nuclear layer 7 Inner plexiform layer 8 Ganglion cell layer 9 Nerve fiber layer 10 Inner limiting membrane

rina_susilowatiugmacid 2014 36

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 37: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 37

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 38: Dr.rinasusilowati.histologi

Two types of photoreceptors

A Rod ndash Periphery of the retina ndash Sensitivity ndash Achromatic

B Cone ndash Fovea ndash Acuity ndash Color vision

rina_susilowatiugmacid 2014 38

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 39: Dr.rinasusilowati.histologi

Rhodopsin Photoreceptor cell membrane

rina_susilowatiugmacid 2014 39

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 40: Dr.rinasusilowati.histologi

Rod

G-protein G D P

PDE

Na+ channel open

Na+

Disc

In the dark Rhodopsin

depolarized

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 40

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 41: Dr.rinasusilowati.histologi

Rod

G-protein G T P

PDE

Na+ channel close

Na+

Disc

Light

hyperpolarized

light

Signaling in photoreceptor cells

rina_susilowatiugmacid 2014 41

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 42: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 42

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 43: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 43

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 44: Dr.rinasusilowati.histologi

Fovea greatest visual acuity

rina_susilowatiugmacid 2014 44

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 45: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 45

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 46: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 46

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 47: Dr.rinasusilowati.histologi

Optic disk

blind spot

rina_susilowatiugmacid 2014 47

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 48: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 48

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 49: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 49

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 50: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 50

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 51: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 51

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 52: Dr.rinasusilowati.histologi

Two other targets of retinal ganglion cell axons

bull Suprachiasmatic nucleus of hypothalamus daynight cycle bull Superior colliculus coordinates head and eye movements

rina_susilowatiugmacid 2014 52

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 53: Dr.rinasusilowati.histologi

How do we smell rina_susilowatiugmacid 2014 53

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 54: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 54

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 55: Dr.rinasusilowati.histologi

Olfactory system

1

2

3

detect odorant (volatile molecules that may interact with specific receptors in the membrane of olfactory cells) rina_susilowatiugmacid 2014 55

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 56: Dr.rinasusilowati.histologi

Respiratory epithelium vs olfactory epithelium

rina_susilowatiugmacid 2014 56

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 57: Dr.rinasusilowati.histologi

N

C

G

The olfactory sensory neurons are bipolar neurons with a single dendrite that terminates in a knob from which 1020 fine cilia originate

rina_susilowatiugmacid 2014 57

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 58: Dr.rinasusilowati.histologi

Axon

Basal cell

Dividing cell

Developing receptor cell

Olfactory knob

Olfactory cilia

Supporting cells

Mature receptor cell

Bowmanrsquos gland

Cribriform plate

Odorants

1

2

5

4

3

6

rina_susilowatiugmacid 2014 58

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 59: Dr.rinasusilowati.histologi

5-a-ANDROST-16-EN-3-ONE urine odor

green bell pepper odor

cherry-almond odor

Odorant molecule

volatile molecules that may interact with specific receptors in the membrane of

olfactory cells

rina_susilowatiugmacid 2014 59

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 60: Dr.rinasusilowati.histologi

Odorant receptor amp signal transduction

Olfactory transduction takes place in the cilia of the olfactory sensory neurons Odorant molecules bind to odorant receptors located in the ciliary membrane thus activating a G protein (Golf) that stimulates adenylyl cyclase (AC) producing an increase in the generation of cAMP from ATP

cAMP directly gates ion channels causing an inward current carried by Na+ and Ca2+ ions Ca2+ entry amplifies the signal by activating a Clndash current These ion fluxes cause a depolarization

rina_susilowatiugmacid 2014 60

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 61: Dr.rinasusilowati.histologi

How many odorant receptors are there

bull Humans have +- 1000 number of odorant receptors

bull a large fraction of them appear to be pseudogenes

bull only between 300 and 400 are functional genes

bull An individual olfactory sensory neuron expresses only one type of odorant receptor gene

rina_susilowatiugmacid 2014 61

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 62: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 62

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 63: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 63

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 64: Dr.rinasusilowati.histologi

Olfactory receptor cells

Axons of olfactory receptor cells

Glomerulus

Mitral cell

Tufted cells

Each olfactory receptors have specific odorant detection receptors The axons of olfactory cells that have the same kind of receptors are connected to the neurons of olfactory bulb in the same synaptic complex called glomerulus

rina_susilowatiugmacid 2014 64

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 65: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 65

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 66: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 66

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 67: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 67

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 68: Dr.rinasusilowati.histologi

bull limited to the cavity of the mouth papillae of the tongue soft palate oropharynx and epiglottis

Taste system

rina_susilowatiugmacid 2014 68

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 69: Dr.rinasusilowati.histologi

Circumvallate papillae

Foliate papillae

Fungiform papillae

NaCl gt HCl gt Sucrose gt Quinine

Quinine gt HCl gt NaCl gt Sucrose

Sucrose gt NaCl gt HCl gt Quinine

rina_susilowatiugmacid 2014 69

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 70: Dr.rinasusilowati.histologi

Tongue

rina_susilowatiugmacid 2014 70

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 71: Dr.rinasusilowati.histologi

Circumvallate papillae

rina_susilowatiugmacid 2014 71

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 72: Dr.rinasusilowati.histologi

Taste bud

Circumvallate papillae

rina_susilowatiugmacid 2014 72

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 73: Dr.rinasusilowati.histologi

T

Taste bud

rina_susilowatiugmacid 2014 73

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 74: Dr.rinasusilowati.histologi

P

rina_susilowatiugmacid 2014 74

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 75: Dr.rinasusilowati.histologi

Taste pore

Microvilli Taste cells

Basal cell Synapse Axons

Taste bud Substances in solution enter the pore of the taste bud and come in contact with the specific receptors in the microvilli of the taste cells

rina_susilowatiugmacid 2014 75

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 76: Dr.rinasusilowati.histologi

Cation channel

Na+

Salt

Acids (sour)

open a sensitive cation channel depolarization of the receptor

rina_susilowatiugmacid 2014 76

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 77: Dr.rinasusilowati.histologi

Bitter or sweet or monosodium glutamate molecule

bind specific receptor coupled to G protein in the microvilli of taste cells The activated signal transduction will open ion channels in the plasma membrane depolarization of the receptor rina_susilowatiugmacid 2014 77

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 78: Dr.rinasusilowati.histologi

Depolarization of the receptor trigger the release of

neurotransmitter in the basal part of the cell that will bind to

specific receptors in the postsynaptic neurons

rina_susilowatiugmacid 2014 78

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 79: Dr.rinasusilowati.histologi

Circumvallate papillae

Foliate papillae

Fungiform papillae

cranial nerve X

cranial nerve IX

cranial nerve VII

Different cranial nerves will convey the taste stimuli from different part of the mouth cavity

rina_susilowatiugmacid 2014 79

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 80: Dr.rinasusilowati.histologi

Ventral posterior medial nucleus of thalamus

Nucleus of solitary tract

Tongue Larynx rina_susilowatiugmacid 2014 80

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 81: Dr.rinasusilowati.histologi

Insula and frontal cortex

Hypothalamus

Amygdala

Taste buds (anterior two third of the tongue)

Taste buds (posterior one third of the tongue)

Taste buds (Epiglottis)

Solitary nucleus of brainstem

Ventral posterior medial nucleus of

thalamus

Cranial nerve X

Cranial nerve IX

Cranial nerve VII

rina_susilowatiugmacid 2014 81

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 82: Dr.rinasusilowati.histologi

Receptors of the skin

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 83: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 83

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 84: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 84

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 85: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 85

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 86: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 86

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 87: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 87

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 88: Dr.rinasusilowati.histologi

Receptor type

Anatomical characteristics

Associated axonsa (and diameters)

Axonal conduction velocities

Location Function Rate of adaptation

Threshold of activation

Free nerve endings

Minimally specialized nerve endings

C Aδ 2ndash20 ms All skin Pain temperature crude touch

Slow High

Meissners corpuscles

Encapsulated between dermal papillae

Aβ 6ndash12 μm Principally glabrous skin

Touch pressure (dynamic)

Rapid Low

Pacinian corpuscles

Encapsulated onionlike covering

Aβ 6ndash12 μm Subcutaneous tissue interosseous membranes viscera

Deep pressure vibration (dynamic)

Rapid Low

Merkels disks Encapsulated associated with peptide- releasing cells

Aβ All skin hair follicles

Touch pressure (static)

Slow Low

Ruffinis corpuscles

Encapsulated oriented along stretch lines

Aβ 6ndash12 μm All skin Stretching of skin

Slow Low

Muscle spindles Highly specialized

Ia and II Muscles Muscle length Both slow and rapid

Low

Golgi tendon organs

Highly specialized

Ib Tendons Muscle tension Slow Low

Joint receptors Minimally specialized

mdash Joints Joint position Rapid Low

rina_susilowatiugmacid 2014 88

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 89: Dr.rinasusilowati.histologi

A receptive field is the area of skin over which the application of a stimulus excites a primary afferent fiber

rina_susilowatiugmacid 2014 89

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 90: Dr.rinasusilowati.histologi

wwwunmceduphysiologyMannmann5html

rina_susilowatiugmacid 2014 90

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 91: Dr.rinasusilowati.histologi

Cartoon of the homunculus constructed on the basis of such mapping Note that the amount of somatic sensory cortex devoted to the hands and face is much larger than the relative amount of body surface in these regions

rina_susilowatiugmacid 2014 91

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 92: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 92

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 93: Dr.rinasusilowati.histologi

Substances Released Following Tissue Damage

Substance

Source

Potassium Damaged cells

Serotonin Platelets

Bradykinin Plasma

Histamine Mast cells

Prostaglandins Damaged cells

Leukotrienes Damaged cells

Substance P Primary afferent fibers

Source Modified from Fields 1987

rina_susilowatiugmacid 2014 93

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 94: Dr.rinasusilowati.histologi

The skin serves many functions bull as protection from injury and dehydration bull as a radiation surface and regulator in temperature

maintenance bull in secretion of chemical substances such as

pheromones that function as attractants or repellents

bull as camouflage due to coloration in some species bull in reception of mechanical thermal and to some

extent chemical stimulation

rina_susilowatiugmacid 2014 94

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 95: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 95

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 96: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 96

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 97: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 97

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 98: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 98

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 99: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 99

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 100: Dr.rinasusilowati.histologi

rina_susilowatiugmacid 2014 100

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU
Page 101: Dr.rinasusilowati.histologi

THANK YOU

rina_susilowatiugmacid 2014 101

angrianahimran11yahoocom

  • Sense organs
  • Slide Number 2
  • Slide Number 3
  • Slide Number 4
  • Slide Number 5
  • Slide Number 6
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Major causes of acquired hearing loss
  • Slide Number 18
  • Cochlear implant
  • Vision
  • Slide Number 21
  • Slide Number 22
  • Slide Number 23
  • Slide Number 24
  • Slide Number 25
  • Slide Number 26
  • Slide Number 27
  • Slide Number 28
  • Slide Number 29
  • Slide Number 30
  • Slide Number 31
  • Slide Number 32
  • Visionthe process of seeing
  • Slide Number 34
  • Slide Number 35
  • Slide Number 36
  • Slide Number 37
  • Two types of photoreceptors
  • Slide Number 39
  • Signaling in photoreceptor cells
  • Signaling in photoreceptor cells
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • Slide Number 45
  • Slide Number 46
  • Slide Number 47
  • Slide Number 48
  • Slide Number 49
  • Slide Number 50
  • Slide Number 51
  • Two other targets of retinal ganglion cell axons
  • Slide Number 53
  • Slide Number 54
  • Slide Number 55
  • Respiratory epithelium vs olfactory epithelium
  • Slide Number 57
  • Slide Number 58
  • Slide Number 59
  • Odorant receptor amp signal transduction
  • How many odorant receptors are there
  • Slide Number 62
  • Slide Number 63
  • Slide Number 64
  • Slide Number 65
  • Slide Number 66
  • Slide Number 67
  • Taste system
  • Slide Number 69
  • Tongue
  • Slide Number 71
  • Slide Number 72
  • Slide Number 73
  • Slide Number 74
  • Slide Number 75
  • Slide Number 76
  • Slide Number 77
  • Slide Number 78
  • Slide Number 79
  • Slide Number 80
  • Slide Number 81
  • Receptors of the skin
  • Slide Number 83
  • Slide Number 84
  • Slide Number 85
  • Slide Number 86
  • Slide Number 87
  • Slide Number 88
  • Slide Number 89
  • Slide Number 90
  • Slide Number 91
  • Slide Number 92
  • Slide Number 93
  • The skin serves many functions
  • Slide Number 95
  • Slide Number 96
  • Slide Number 97
  • Slide Number 98
  • Slide Number 99
  • Slide Number 100
  • THANK YOU