Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février...

61
Documents pour LISA : • LISA Science case • Science Requirement Document LISA-France, LAPP, 1er février 2 Pierre Binétruy /www.lisa-science.org/resources/talks-articles/science

Transcript of Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février...

Page 1: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Documents pour LISA :• LISA Science case• Science Requirement Document

LISA-France, LAPP, 1er février 2007

Pierre Binétruy

http://www.lisa-science.org/resources/talks-articles/science

Page 2: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

LISA Science Case

Goal: present to an educated reader (typically a member of acommittee such as BEPAC) the science case of LISA.

Contributors and editors: John Baker (GSFC), Pete Bender (U. of Colorado), Pierre Binetruy (APC - Paris), Joan Centrella (GSFC), Teviet Creighton (JPL), Jeff Crowder (JPL) , Curt Cutler (JPL), Karsten Danzman (U. of Hannover and A.E.I.), Steve Drasco (JPL) , Lee S. Finn (U. of Pennsylvania), Craig Hogan (U. of Washington), Cole Miller (U. of Maryland), Milos Miloslavljevic (U. of Texas, Austin), Gijs Nelemans (Radboud University Nijmegen), Sterl Phinney (Caltech), Tom Prince (Caltech/JPL), Bonny Schumaker (JPL), Bernard Schutz (A.E.I.), Michele Vallisneri (JPL), Marta Volonteri (Univ. of Michigan) and Karen Willacy (JPL).

Page 3: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

LISA Science Case

Goal: present to an educated reader (typically a member of acommittee such as BEPAC) the science case of LISA.

Contributors and editors: John Baker (GSFC), Pete Bender (U. of Colorado), Pierre Binetruy (APC - Paris), Joan Centrella (GSFC), Teviet Creighton (JPL), Jeff Crowder (JPL) , Curt Cutler (JPL), Karsten Danzman (U. of Hannover and A.E.I.), Steve Drasco (JPL) , Lee S. Finn (U. of Pennsylvania), Craig Hogan (U. of Washington), Cole Miller (U. of Maryland), Milos Miloslavljevic (U. of Texas, Austin), Gijs Nelemans (Radboud University Nijmegen), Sterl Phinney (Caltech), Tom Prince (Caltech/JPL), Bonny Schumaker (JPL), Bernard Schutz (A.E.I.), Michele Vallisneri (JPL), Marta Volonteri (Univ. of Michigan) and Karen Willacy (JPL).

Page 4: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Executive Summary 1. Gravitational Waves: An Overview 2. LISA Mission Overview 3. Black Hole Astrophysics: Massive Black Holes in Galactic Nuclei

4. Black Hole Physics: Confronting General Relativity with Precision

Measurements of Strong Gravity 5. Precision Cosmometry and Cosmology 6. Ultra-compact binaries 7. New Physics and the Early Universe 8. LISA and the Key Questions of Astronomy and Physics

List of contents

Page 5: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Executive Summary 1. Gravitational Waves: An Overview 2. LISA Mission Overview 3. Black Hole Astrophysics: Massive Black Holes in Galactic Nuclei

4. Black Hole Physics: Confronting General Relativity with Precision

Measurements of Strong Gravity 5. Precision Cosmometry and Cosmology 6. Ultra-compact binaries 7. New Physics and the Early Universe 8. LISA and the Key Questions of Astronomy and Physics

Page 6: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Key science questions

•When did the massive black holes in galactic nuclei form, and how did they grow?

•What fraction of proto-galaxies contained massive black holes in their cores, as a function of redshift?

•What are the mass and spin distributions of the supermassive black holes in galactic nuclei?

•What is the role of black hole mergers in early hierarchical structure assembly?

•What are dynamics of stars near massive black holes in galactic nuclei?

Key science questions

•When did the massive black holes in galactic nuclei form, and how did they grow?

•What fraction of proto-galaxies contained massive black holes in their cores, as a function of redshift?

•What are the mass and spin distributions of the supermassive black holes in galactic nuclei?

•What is the role of black hole mergers in early hierarchical structure assembly?

•What are dynamics of stars near massive black holes in galactic nuclei?

Page 7: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

1% duty cycle

Characteristic time for BH in AGN to increase their mass by accretion:

t ~ Mc2/ LEdd ~ 4 107 ( / 0.1) yr

~ tuniverse /100 at redshift z ~ 1

efficiency ofradiation production

Expect BH present in galaxies are active 1% of the time

Page 8: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

The coupled evolution of galaxies and their nuclear BH

MB

H in

M

galaxy bulge velocity dispersion ( depth of gravit. Potential well)

Page 9: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Mass density of local BH

BH = 2 to 5 105 M Mpc-3

BH ~ 3.5 105 ( / 0.1)-1 M Mpc-3

Increase in density of BH if total energy in AGN was produced by accretion

Most comes from BH of mass between 108 and 109 M

Supermassive BH growing by accretion? Smaller ones by merger?

Page 10: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Growth and merger history of massive black holes

Merger rate : 1 per year(1010 galaxies seen by HST havefossile evidence of a mergersince z=1 i.e. 1010 years)

Page 11: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

QuickTime™ et undécompresseur Codec YUV420

sont requis pour visionner cette image.

Page 12: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Stellar captures and the dynamics of galactic nuclei

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

EMRI events

e.g. diffusion of stars through 2-body collisions

(S/M2) ~ 10-4

Page 13: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Executive Summary 1. Gravitational Waves: An Overview 2. LISA Mission Overview 3. Black Hole Astrophysics: Massive Black Holes in Galactic Nuclei

4. Black Hole Physics: Confronting General Relativity with Precision

Measurements of Strong Gravity 5. Precision Cosmometry and Cosmology 6. Ultra-compact binaries 7. New Physics and the Early Universe 8. LISA and the Key Questions of Astronomy and Physics

List of contents

Page 14: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Key Science Questions

•Is the strong field gravity correctly described by GR?•Are the massive dark central objects in galaxies really black holes?

Key Science Questions

•Is the strong field gravity correctly described by GR?•Are the massive dark central objects in galaxies really black holes?

Page 15: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

M1 = M2 = 2 105 M , z=5

Page 16: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Merger stage

S/N

Page 17: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

EMRI : precision probes of Kerr spacetimes

Page 18: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Executive Summary 1. Gravitational Waves: An Overview 2. LISA Mission Overview 3. Black Hole Astrophysics: Massive Black Holes in Galactic Nuclei

4. Black Hole Physics: Confronting General Relativity with Precision

Measurements of Strong Gravity 5. Precision Cosmometry and Cosmology 6. Ultra-compact binaries 7. New Physics and the Early Universe 8. LISA and the Key Questions of Astronomy and Physics

List of contents

Page 19: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Key science questions

•What is the nature of dark energy?

•What is the global geometry of the Universe?

•What is the Hubble constant?

Key science questions

•What is the nature of dark energy?

•What is the global geometry of the Universe?

•What is the Hubble constant?

Page 20: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Inspiral phase

Key parameter : chirp mass M = (m1 m2)3/5

(m1 + m2)1/5(z) (1+z)

Page 21: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Inspiral phase

Key parameter : chirp mass M = (m1 m2)3/5

(m1 + m2)1/5(z) (1+z)

Binary system : L = -- M R2 + -- r2 + G ----Mr

1 122

R=r1+r2

r=r1-r2

. .

Defining r = 1/2 r, the relative motion depnds on the mass only through:

^

M = (3 M2)1/5

Page 22: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Inspiral phase

Key parameter : chirp mass M = (m1 m2)3/5

(m1 + m2)1/5(z) (1+z)

Page 23: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Inspiral phase

Key parameter : chirp mass M = (m1 m2)3/5

(m1 + m2)1/5

Amplitude of the gravitational wave:

h(t) = F (angles) cos (t) M(z)5/3 f(t)2/3

dL

Luminosity distance

frequency f(t) = d/2dt

(z) (1+z)

Page 24: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Inspiral phase

Key parameter : chirp mass M = (m1 m2)3/5

(m1 + m2)1/5

Amplitude of the gravitational wave:

h(t) = F (angles) cos (t) M(z)5/3 f(t)2/3

dL

Luminosity distance poorly known in the case of LISA

~ 10 arcmin 1 HzSNR fGW

(z) (1+z)

Page 25: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

z = 1 , m1 = 105 M, m2 = 6.105 M

(arcminutes)

dL/dL

5%

Holz & Hughes

Page 26: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Using the electromagnetic counterpart

Allows both a measure of the direction and of the redshift

Holz and HughesdL/dL

0.5%

Page 27: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

3000 supernovae

100 SMBH sources

Page 28: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Executive Summary 1. Gravitational Waves: An Overview 2. LISA Mission Overview 3. Black Hole Astrophysics: Massive Black Holes in Galactic Nuclei

4. Black Hole Physics: Confronting General Relativity with Precision

Measurements of Strong Gravity 5. Precision Cosmometry and Cosmology 6. Ultra-compact binaries 7. New Physics and the Early Universe 8. LISA and the Key Questions of Astronomy and Physics

Page 29: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Key science questions

•Is general relativity the correct theory of gravitation?

•Is there a large population of ultra-compact binaries in the Galaxy?

•How did compact binaries form and what is the outcome of a common-envelope phase?

•What is the nature of the fundamental physical interactions in compact binaries?

•How are the compact binaries distributed in the Galaxy and what does that tell us about the formation and evolution of the Galaxy?

Key science questions

•Is general relativity the correct theory of gravitation?

•Is there a large population of ultra-compact binaries in the Galaxy?

•How did compact binaries form and what is the outcome of a common-envelope phase?

•What is the nature of the fundamental physical interactions in compact binaries?

•How are the compact binaries distributed in the Galaxy and what does that tell us about the formation and evolution of the Galaxy?

Page 30: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

AM CVn systems

Ultra-compactX-ray sources

Neutron star binaries

resolved WD binaries

average WD binary bkgd

S/N = 5

S/N = 1

NS

WD

Page 31: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Several thousands WD binaries individually detected (d< 100 kpc)

Several millions unresolved form a background.

Period less than 20 minutes

Page 32: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Verification binaries

Page 33: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Studying the astrophysics of compact binaries using LISA

• physics of tidal interaction• physics of mass-tranfer stability

• double WD mergers• neutron star and BH binaries• millisecond X-ray pulsars

Page 34: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Executive Summary 1. Gravitational Waves: An Overview 2. LISA Mission Overview 3. Black Hole Astrophysics: Massive Black Holes in Galactic Nuclei

4. Black Hole Physics: Confronting General Relativity with Precision

Measurements of Strong Gravity 5. Precision Cosmometry and Cosmology 6. Ultra-compact binaries 7. New Physics and the Early Universe 8. LISA and the Key Questions of Astronomy and Physics

Page 35: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Key science questions

•Is there a first-order phase transition at or beyond TeV energies?

•Are there extra dimensions at the submillimeter scale?

•Do stable superstrings exist, and can they be blown up to form cosmic strings?

•What was the quantum state of the Universe at or before the Big Bang?

•How did inflation end?

•Were there violent events in the early Universe that left no relic trace in conventional particles and fields?

Key science questions

•Is there a first-order phase transition at or beyond TeV energies?

•Are there extra dimensions at the submillimeter scale?

•Do stable superstrings exist, and can they be blown up to form cosmic strings?

•What was the quantum state of the Universe at or before the Big Bang?

•How did inflation end?

•Were there violent events in the early Universe that left no relic trace in conventional particles and fields?

Page 36: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Gravitons of frequency f* produced at temperature T* are observed at a redshifted frequency

f = 1.65 10-7 Hz --- ( ----- ) ( ---- )1 T*

1GeV

g*

100

1/6

At production * = H*-1 (or f* = H*/ )

Horizon lengthWavelength

Page 37: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

for =1GW = --- --------

d GW

d logfc

1 , c = 3H0/(8GN)

Gravitons produced at the electroweak phase transition would be observed in the LISA window.

Page 38: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

But are gravitons produced in sufficient numbers at the electroweak phase transition?

If the transition is first order,nucleation of true vacuum bubblesinside the false vacuum

Collision of bubbles and turbulence production of gravitational waves

Page 39: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .
Page 40: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

1. Understand the formation of massive black holes 1.1. Search for a population of seed black holes at early epochs. 1.2. Search for remnants of the first (Pop III) stars through observation of intermediate mass

black hole captures, also at later epochs.

2. Trace the growth and merger history of massive black holes and their host galaxies 2.1. Determine the relative importance of different black hole growth mechanisms as a function

of redshift. 2.2. Determine the merger history of two black holes before the era of the earliest known

quasars (z ~ 6). 2.3. Determine the merger history of two black holes at later epochs (z < 6).

3. Explore stellar populations and dynamics in galactic nuclei 3.1. Characterize the immediate environment of MBHs in z < 1 galactic nuclei from EMRI

capture signals. 3.2. Study intermediate-mass black holes from their capture signals. 3.3. Improve our understanding of stars and gas in the vicinity of Galactic black holes using

coordinated gravitational and electromagnetic observations.

Science objectives

Page 41: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4. Survey compact stellar-mass binaries and study the structure of the Galaxy 4.1. Elucidate the formation and evolution of Galactic stellar-mass binaries: constrain the

diffuse extragalactic foreground. 4.2. Determine the spatial distribution of stellar mass binaries in the Milky Way and

environs. 4.3. Improve our understanding of white dwarfs, their masses, and their interactions in

binaries and enable combined gravitational and electromagnetic observations.

5. Confront General Relativity with observations 5.1. Detect gravitational waves directly and measure their properties precisely. 5.2. Test whether the central massive objects in galactic nuclei are the black holes of

general relativity. 5.3. Make precision tests of dynamical strong-field gravity.

6. Probe new physics and cosmology with gravitational waves 6.1. Study cosmic expansion history, geometry and dark energy using precise

gravitationally calibrated distances in cases where redshifts are measured. 6.2. Measure the spectrum of, or set bounds on, cosmological backgrounds. 6.3. Search for burst events from cosmic string cusps.

7. Search for unforeseen sources of gravitational waves

Page 42: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.1 Understand the formation and growth of massive black holes 4.2 Trace the birth and evolution of galaxies 4.3 Explore stellar populations and their dynamics in galactic nuclei 4.4 Survey compact stellar-mass binaries and study the morphology of the Galaxy 4.5 Confront general relativity with observations 4.6 Probe the early universe 4.7 Search for new phenomena

Science objectives proposed

Page 43: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.1 Understand the formation of massive black holes 4.2 Trace the growth and merger history of massive black holes and their co-evolution with galaxies4.3 Explore stellar populations and their dynamics in galactic nuclei 4.4 Survey compact stellar-mass binaries and study the structure of the Galaxy 4.5 Confront general relativity with observations 4.6 Probe the early universe 4.7 Search for new phenomena

New science objectives

Page 44: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.1 Understand the formation of massive black holes

4.1.1. Search for the earliest massive black holes and elucidate their formation mechanism 4.1.2. Search for the remnants of the first (Pop III) star formation through observation of intermediate-mass black hole capture

Page 45: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.2 Trace the growth and merger history of massive black holes and their co-evolution with galaxies 4.2.1. Determine the relative importance of different growth mechanisms as a function of redshift 4.2.2 Determine the merger history of small black holes (MBHs ~104 to 3 105 M) in the era of formation of the first galaxies(6<z<30) 4.2.3 Determine the merger history of black holes (MBH's 3~105 to 107 M) in established galaxies (z<6)

Page 46: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.3 Explore stellar populations and their dynamics in galactic nuclei

4.3.1 Characterize the immediate environment of MBHs in z<1 galactic nuclei from EMRI capture signals (was 4.2.1) 4.3.2 Study intermediate-mass black holes, and gather evidence about Pop III star formation, from IMRI capture signals

Page 47: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.3 Explore stellar populations and dynamics in galactic nuclei

4.3.1 Characterize the immediate environment of MBHs in z<1 galactic nuclei from EMRI capture signals 4.3.2 Study intermediate-mass black holes from their capture signals4.3.3 Improve our understanding of stars and gas in the vicinity of massive black holes using coordinated gravitational and electromagnetic observations

Page 48: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.4 Survey compact stellar-mass binaries and study the morphology of the Galaxy

4.4.1 Elucidate the evolutionary history of galactic and extragalactic stellar-mass binaries (was 5.4.2) 4.4.2 Determine the spatial distribution of stellar mass binaries in the Milky Way, satellite galaxies and globular clusters 4.4.3 Improve our understanding of white dwarfs, their masses, and their interactions in binaries using coordinated gravitational and electromagnetic observations (was A&A 5.b)

Page 49: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.4 Survey compact stellar-mass binaries and study the structure of the Galaxy

4.4.1 Elucidate the formation and evolution of Galactic stellar-mass binaries; constrain the diffuse extragalactic background 4.4.2 Determine the spatial distribution of stellar mass binaries in the Milky Way and environs. 4.4.3 Improve our understanding of white dwarfs, their masses, and their interactions in binaries using coordinated gravitational and electromagnetic observations

Page 50: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.5 Confront general relativity with observations

4.5.1 Detect gravitational waves directly and explore their properties 4.5.2 Make precision tests of strong-field gravity 4.5.3 Verify that the central massive objects in galactic nuclei are Kerr black holes (was 4.2.2)

Page 51: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.5 Confront general relativity with observations

4.5.1 Detect gravitational waves directly and measuretheir properties precisely 4.5.2. Test to high accuracy whether the central massive objects in galactic nuclei are the black holes of general relativity4.5.3 Make precision tests of dynamical strong-field gravity

Page 52: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.6 Probe the early universe

4.6.1 Enable studies of the expansion history of the universe using precise gravitationally calibrated distances to objects where a host galaxy has been identified (was A&A5a and P&C3a) 4.6.2 Detect or set bounds on cosmological backgrounds

4.7 Search for new phenomena

Page 53: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4.6 Probe the early universe

4.6.1 Precisely measure gravitationally calibrated luminosity distances for precision cosmology when redshifts can be determined4.6.2 Detect or set bounds on cosmological backgrounds

4.7 Search for new phenomena

Page 54: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Science requirement document

Page 55: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Changes of Quantitative Requirements between SRD v3 and ScRD v4i

Page 56: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Page 57: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Intermediate frequency requirements

No substantial differences between 0.1 and 50 mHz

Page 58: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

Low frequency requirements

v3: Lowest frequency requirement is 0.03 mHz v4i: Lowest frequency requirement is 0.1 mHz

0.03 mHz v3: 2.6 x 10-16 Hz-1/2 v4i: Goal at 3 x 10-16 Hz-1/2

0.1 mHz v3: 3.9 x 10-17 Hz-1/2 v4i: 3.9 x 10-17 Hz-1/2

Strain sensitivity

Page 59: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

High frequency requirements

v3: Highest frequency requirement is 1 Hz v4i: Highest frequency requirement is 0.05 Hz

50 mHz v3: No requirement v4i: 6.5 x 10-20 Hz-1/2

100 mHz v3: 7.5 x 10-20 Hz-1/2

v4i: 8 x 10-20 Hz-1/2 (calculation needed; discovery potential)

1 Hz v3: 7.5 x 10-19 Hz-1/2 v4i: Goal : 1.5 x 10-18 Hz-1/2

Page 60: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

4) Arm Configuration v3: 3 arm configuration required v4i: No requirement, rather a goal of 6 links

5) Mission Lifetime Unchanged: Both have 5 year requirement

6) Data Availability v3: 4 days uninterrupted around merger time w/ 2 weeks noticev4i: 4 days uninterrupted around merger time w/ 2 weeks notice

7) Minimum Requirements Unchanged

Other Requirements

Page 61: Documents pour LISA : LISA Science case Science Requirement Document LISA-France, LAPP, 1er février 2007 Pierre Binétruy .

0.03 mHz

0.1 mHz

0.5 mHz

1.0 mHz

5 mHz

10 mHz

50 mHz

100 mHz

1 Hz

v3 2.6 (4)

3.9 (3)

4.3 (2)

3.0 (1)

1.1 1.3 None 7.5 7.5 (1)

v4i None 3.9 (3)

None 3.2 (1)

1.1 1.3 6.5 None None

Summary Table of Strain Sensitivity (units of 10-20 Hz-1/2 & e.g. 2.6(4) = 2.6 x 104)