Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz)...

85
doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): Name Company Addres s Phone Email Shiwen He SEU [email protected] Haiming Wang SEU [email protected] Yongming Huang SEU [email protected] Wei Hong SEU [email protected] Luxi Yang SEU [email protected] Jiang Hua ZTE [email protected] Jun Zhang ZTE [email protected] Liguang Li ZTE [email protected] Jun Xu ZTE [email protected] Zhifeng Yuan ZTE [email protected] Bo Sun ZTE [email protected] Ke Yao ZTE [email protected] Kaibo Tian ZTE tian,[email protected] Jianhan Liu Mediatek Inc. [email protected] Frank Hsu Mediatek Inc. [email protected] Shiwen He (SEU)

Transcript of Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz)...

Page 1: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

May 2015

Slide 1

Complete Proposal for IEEE 802.11aj (45 GHz)

Date: 2015-05-19Author(s)/Supporter(s):

Name Company Address Phone Email

Shiwen He SEU [email protected]

Haiming Wang SEU [email protected]

Yongming Huang SEU [email protected]

Wei Hong SEU [email protected]

Luxi Yang SEU [email protected]

Jiang Hua ZTE [email protected]

Jun Zhang ZTE [email protected]

Liguang Li ZTE [email protected]

Jun Xu ZTE [email protected]

Zhifeng Yuan ZTE [email protected]

Bo Sun ZTE [email protected]

Ke Yao ZTE [email protected]

Kaibo Tian ZTE tian,[email protected]

Jianhan Liu Mediatek Inc. [email protected]

Frank Hsu Mediatek Inc. [email protected]

Shiwen He (SEU)

Page 2: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

May 2015

Shiwen He (SEU)Slide 2

Author(s)/Supporter(s):

Name Company Address Phone Email

Xiaoming Peng I2R [email protected]

Pei Liu Huawei/Hisilicon [email protected]

Jiamin Chen Huawei [email protected]

Dejian Li Huawei [email protected]

Yan Li Gigaray [email protected]

Feng Huang Gigaray [email protected]

Xiaohua Jiang Lenovo [email protected]

Weixia Zou BUPT [email protected]

Lan Zhu CESI [email protected]

Page 3: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Proposal overview

• This presentation is part and in support of the complete proposal described in (slides) and (text) that:– Supports data transmission rate up to 15 Gbps– Supplements and extends the 802.11 MAC and is backward compatible

with the IEEE 802.11 standard – Enables both the low power and the high performance devices,

guaranteeing interoperability and communication at gigabit rates – Supports beamforming, enabling robust communication at distance up to

10 meters – Supports advanced power management– Supports coexistence with other 45GHz systems– Supports fast session transfer among 2.4 GHz, 5 GHz and 45 GHz bands

May 2015

Slide 3 Shiwen He (SEU)

Page 4: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Proposal presentation plan

ID Item Type Subclauses from 802.11-10/433r2 Doc#

1 Complete proposal overview Complete proposal (CP) High-level proposal overview Slides:

Text:

2 MAC (Channel Access & QoS)

New Technique (NT)

8, 9.3,9.7,9.9-9.16,-9.19, 9.24-9.31, 9.37

3 MAC (Sync & power saving) NT 10

4 PHY NT All in 21, except 21.3.6, 21.5, 21.7

May 2015

Slide 4 Shiwen He (SEU)

Page 5: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

• To meet the TGaj PAR, FRD, EVM and selection procedure requirements, the following additional supporting documents complement this proposal

• Therefore, this proposal meets all the requirements in the TGaj selection procedure to be classified as a complete proposal

Additional proposal supporting documents

ID Item Doc#

5 PAR, FRD and EVM declaration

6PHY simulation results and

methodology

May 2015

Slide 5 Shiwen He (SEU)

Page 6: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Item This complete proposal Subclause of

Network architecture Infra-BSS, IBSS, PBSS 5.2

Scheduled access Scheduled Service Periods 9.23.6

Contention access EDCA tuned for directional access 9.2

Dynamic allocation of resources

(Re-)allocation of channel time with support to P2P and directionality

9.23.7, 9.23.8, 9.23.9

Power save Non-AP STA and PCP power save 11.2.3

Measurements Amendments to 802.11k to support directionality

11.33

PHY SC and OFDM, with ZCZ preamble 26

Beamforming Unified and flexible beamforming scheme 9.25

Fast session transfer Multi-band operation across 2.4GHz, 5GHz and 45 GHz

11.34

Notable amendments to IEEE 802.11May 2015

Slide 6 Shiwen He (SEU)

Page 7: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

MAC/PHY proposal overview

• Provides an unified and interoperable MAC/PHY across all mmWave implementations– Scalable across different usages, devices, and platforms– Adjustable to meet different power vs. performance trade-offs

May 2015

Slide 7 Shiwen He (SEU)

Page 8: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

MAC

May 2015

Slide 8 Shiwen He (SEU)

Reference: 1. 11-15/0558r0 - 45GHz channel access and BSS operation

Page 9: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 9

45 GHz BSS Operation

May 2015

Shiwen He (SEU)

Page 10: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Some Requirements for 45 GHz

• User experience for 45 GHz should be in consistence with that of existing 802.11 systems.

• A maximum target PHY transmission rate over Gbps to be met as specified in the FRD.

• Operating usages like video streaming, file transfer, internet access etc.

Slide 10

May 2015

Shiwen He (SEU)

Page 11: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 11

Scope of BSS Operation (1/2)

• Channel Setup

efficiently support 45 GHz channelization

• PCP/AP may select to operate in one of the ten 540 MHz channels or

one of the five 1080 MHz channel when it starts.

• PCP/AP may dynamically change its channel number with

corresponding change in channel bandwidth.

• For a BSS occupying a 1080 MHz bandwidth channel, data transfer can

be through 540 MHz bandwidth or 1080 MHz bandwidth

May 2015

Shiwen He (SEU)

Page 12: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 12

Scope of BSS Operation (2/2)

• OBSS Mitigation

When two BSSs have devices overlapping in service

area, or movement of BSSs to a common service area,

– Smooth translation to co-operative interference mitigations.

– Transparent merging of different BSSs using co-operative

interference mitigations.

May 2015

Shiwen He (SEU)

Page 13: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Channel Operation Solutions

• Requirements– Meet objectives of proposed channel access.– Efficiently fulfills the requirements for co-operative

interference mitigations in densely populated environments.– Efficiently handle OBSS mitigations.

• A general channel operation solution was proposed in next few slides.

Slide 13

NOTE, the details of the general channel operation solution is not yet completed and we call for interested parties to contribute.

May 2015

Shiwen He (SEU)

Page 14: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Proposed solution (2/4) • The primary channel of a 1.08 GHz channel is predefined, e.g.,

Channel 2 is the primary channel within Channel 1 • If a PCP/AP intends to start its BSS in a free 540 MHz channel, it

selects the primary channel as the first option to transmit its beacon/notification frames. If occupied, it selects the secondary channel.

• If both 540 MHz channels are occupied but no PCP/AP operates in this 1.08 GHz channel, a PCP/AP may select either primary or secondary channel to start its BSS.

• If both 540 MHz channels are occupied and there exists at least one PCP/AP operates in this 1.08 GHz channel, a PCP/AP must select the primary channel to start its BSS.

Slide 14

DTINP

BI

Primary or Secondary Channel

May 2015

Shiwen He (SEU)

Page 15: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Proposed solution (2/4)• If a PCP/AP intends to start its BSS in a free 1.08 GHz channel, it

will transmit beacon/notification frames in the primary channel only.

• If no 1.08 GHz channel is free, a PCP/AP select the 1.08 GHz operating channel based on the following priority orders:

1) The secondary channel is free.

2) All the existing PCPs/APs operate in the primary channel only.

3) All the existing PCPs/APs either operate in the primary channel or operate in the secondary channel.

Slide 15

DTINP

BI

Primary Channel

Secondary Channel

May 2015

Shiwen He (SEU)

Page 16: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Proposed solution (3/4)

• Suppose that a PCP/AP 1 operates in a 1.08 GHz Channel, e.g., Channel 1, with transmitting beacon/notification frames in a predefined or selected primary channel only, e.g., Channel 2.− Another PCP/AP 2 that intends to operate in 1.08 GHz channel

must also transmit beacon/notification frames in Channel 2.− Another PCP/AP 3 that intend to operate in 540 GHz channel can

start in Channel 2 only.− Switch to another unoccupied channel

Slide 16

NP540 MHz Channel 2

540 MHz Channel 3

NP

PCP/AP 1 PCP/AP 2

Beacon SP0

@ Channel 1Beacon SP1

@ Channel 1

...NP

PCP/AP 3

Beacon SP2

@ Channel 1

May 2015

Shiwen He (SEU)

Page 17: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Proposed solution (4/4)

• Suppose that PCP/AP 1 operates in a 540 GHz Channel.− Another PCP/AP 2 that intends to operate in 1.08 GHz channel must

transmit beacon/notification frames in the predefined or selected primary channel, e.g., Channel 2.o If PCP/AP 1 was operating in Channel 3, PCP/AP 2 must notify the

PCP/AP 1 to switch its BSS to Channel 2 or at least transmit beacon/notification frames in Channel 2. (How to notify is TBD.)

− Another PCP/AP 3 that intend to operate in 540 GHz channel may select either Channel 2 or Channel 3 to start if no PCP/AP operates in Channel 1 now; otherwise, it can only start in Channel 2.

− Switch to another unoccupied channel.

• Movement of PCPs/APs is TBD.

Slide 17

NP540 MHz Channel 2

540 MHz Channel 3

NP

PCP/AP 1 PCP/AP 2

Beacon SP0

@ Channel 1Beacon SP1

@ Channel 1

...NP

PCP/AP 3

Beacon SP2

@ Channel 1

May 2015

Shiwen He (SEU)

Page 18: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 18

45 GHz Channel Access

May 2015

Shiwen He (SEU)

Page 19: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 19

Scope of Channel Access

• Channel Access:

• Channel access mechanisms: contention based access,

contention free access

• Dynamic allocations of channel resources.

• Multi-bandwidth: dynamic bandwidth negotiation

May 2015

Shiwen He (SEU)

Page 20: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 20

Channel Access mechanisms

Supports reservation based allocations as well as

contention based allocations

• Allocate SPs for devices so that the quality of service (QoS)

is guaranteed when required.

• Allocate CBAPs for contention based access to cater to

intermittent channel access.

SP1 CBAP2

SP2 CBAP1 SP3

CBAP3 SP41080 MHz

540 MHz

540 MHz

May 2015

Shiwen He (SEU)

Page 21: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 21

Dynamic allocation

Supports dynamic allocate/truncate/extend SPs or CBAPs

• Dynamic allocation of channel resources is employed to allocate

channel time during scheduled allocations.

• A STA truncates an allocation to release the remaining time in the

allocation.

• Dynamic extension of allocation to extend the allocated time in

the current allocation. The additional time can be used to support

variable bit rate traffic, for retransmissions or for other purposes.

May 2015

Shiwen He (SEU)

Page 22: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 22

Dynamic bandwidth operation

• Dynamic bandwidth negotiation:

Dynamic bandwidth operation is needed when multi-

bandwidth is introduced to 45GHz

• Dynamic bandwidth operation is proposed in IEEE 802.11ac,

which allows narrower bandwidth transmission if one or more

secondary channels are sensed busy.

• The RTS/CTS exchange is used to negotiate a potentially

channel width for subsequent transmissions within the current

TXOP.

May 2015

Shiwen He (SEU)

Page 23: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Dynamic Bandwidth Operation for 45 GHz

Dynamic bandwidth operation:

− With dynamic bandwidth subfield set to 1, RTS in duplicate format is transmitted over 1080 MHz channel that is sensed free at the initiator.

− If network allocation vector(NAV) indicates idle at the responder: If clear channel assessment(CCA) on the secondary channel has been

idle for a point coordination function interframe space(PIFS) period prior to the start of the RTS frame, CTS frame in duplicate format is sent over the 1080 MHz channel.

Otherwise, CTS is sent only on the primary 540 MHz channel.

− If NAV indicates busy at the responder, no CTS is responded.

− Initiator transmits data only over channel indicated free by CTS.

Primary 540 channel

DIFS+backoff

Secondary540 channel

dataPIFS

CTS

RTS

RTS

Interference at responder

May 2015

Shiwen He (SEU)Slide 23

Page 24: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Static Bandwidth Operation for 45 GHz

DIFS+backoff

PIFS

DIFS+backoff

PIFSRTS

RTSData

Primary540 channel

Secondary 540 channel

RTS

RTS

CTS

CTS

Interference at responder

Static bandwidth operation :

− With dynamic bandwidth subfield set to 0, RTS in duplicate format is transmitted over 1080 MHz channel that is sensed free at the initiator.

− If NAV indicates free at the responder and CCA on the secondary channel has been idle for a PIFS period prior to the start of the RTS frame , CTS frame in duplicate format is sent over the 1080 MHz channel.

− If the secondary channel has been sensed busy at the responder, the initiator will not receive CTS and then it shall invoke the back-off procedure to retransfer the RTS.

May 2015

Shiwen He (SEU)Slide 24

Page 25: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

The Flowchart of Dynamic Bandwidth

Dynamic bandwidth operation for IEEE 802.11aj is illustrated in the flowchart.

Received RTS in duplicate format(dynamic bandwidth = 1)

(preamble scheme adopts the 1080 MHz PHY)

Does NAV indicate free?

Y

Does CCA indicate the secondary channel idle?

N

Y

Donÿ t respond CTS

Respond CTS in duplicate format over the 1080 MHz channel(dynamic bandwidth = 1)(preamble scheme adopts

the 1080 MHz PHY)

N

Respond CTS over the 540 MHz channel

(dynamic bandwidth = 1)(preamble scheme adopts

the 540 MHz PHY)

May 2015

Shiwen He (SEU)Slide 25

Page 26: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

May 2015

Slide 26

Allow STAs that are not targeted by the AP to enter doze state until the end of the TXOP:

− On receipt of a PPDU, the STA determines that the COLOR in the RXVECTOR parameter does not match the COLOR indicated by the AP to which the STA

is associated.

− With the matching COLOR, the RXVECTOR parameter PARTIAL_AID is not equal to 0 nor does it match the STA’s partial AID.

− With the matching partial AID, the RA in the MAC header of the corresponding frame that is received correctly does not match the MAC address of the STA.

− 540 MHz STAs receive a Beacon frame or a Set PCO frame that contains the PCO Phase field equal to 1.

− In a received PSMP frame, the STA finds that the STA_AID field is not its AID nor does the PSMP Group Address ID match its Group Address .

− The STA receives a frame intended for it with the More Data field equal to 0 and the Ack Policy subfield in the QoS Control field is equal to No Ack or sends an acknowledgment if Ack Policy subfield is not equal to No Ack.

TXOP Power Save

Shiwen He (SEU)

Page 27: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Proposed changes Base on Draft P802.11REVmc D4.0, we proposed to add/modify the

following subclauses in the complete proposal of 802.11aj (45GHz)• 9.xx QMG channel access

– 9.xx.1 General– 9.xx.2 Access period within a BI– ......– 9.xx.a CBAP transmission– 9.xx.b SP transmission– 9.xx.c Dynamic bandwidth negotiation– …….

• 10.xx QMG BSS Operation– 10.xx.1 Basic QMG BSS functionality– 10.xx.2 Channel selection methods for a QMG BSS– 10.xx.3 Scanning requirements for QMG STA– ……– 10.xx.a 540/1080MHz QMG BSS operation– 10.xx.b Channel switching methods for a QMG BSS– 10.xx.c Communicating 540/1080MHz BSS coexistence information

Slide 27

May 2015

Shiwen He (SEU)

Page 28: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

PHY

May 2015

Slide 28 Shiwen He (SEU)

Reference:1. 11-15/0701r1 - Physical Channel Encoding for 45Ghz2. 11-14/0716r4 - PHY-SIG-frame-structure-for-ieee-802.11aj (45GHz)3. 11-14/1082r3 - PPDU-format-for-ieee-802.11aj (45GHz)4. 11-15/0705r0 - Control PHY Design for 40-50GHz Millimeter Wave

Communication Systems5. 11-16/0706r0 - Bandwidth and Packet Type Detection Schemes for

40-50GHz Millimeter Wave Communication Systems

Page 29: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Agenda• Channelization• PHY Overview

– PHY general parameters• Common Preamble Preview

– ZCZ sequences– Preamble structure

• Short preamble• CEF

• Coding scheme– LDPC

• Single Carrier modulation– Control MCS– Single carrier MCS set

• OFDM modulation• RF General parameters

Slide 29

May 2015

Shiwen He (SEU)

Page 30: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Channelization

Slide 30

CH 1

CH 1B0 = 1080 MHz

42.66GHz

42.93GHz

B0 = 540 MHz CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 CH 8 CH 9 CH 10

46.44 GHz 47.52GHz 48.06 GHz

42.3 GHz 47.0 GHz 47.2 GHz 48.4 GHz

CH 2 CH 3 CH 4 CH 5

46.17 GHz 47.79 GHz

42.66 0.54( 1) 1 8( ) [GHz]

47.52 0.54( 9) 9,10

n nf n

n n

42.93 1.08( 1) 1 4( ) [GHz]

47.79 5

n nf n

n

B0 = 540 MHz: B0 = 1080 MHz:

1.08 GHz

1.62 GHz=3*0.54 GHz

May 2015

Shiwen He (SEU)

Page 31: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

PHY Overview

• Unified and interoperable PHY – Common preamble– Common MCS– Common coding

• Different MCS sets for different usages: OFDM and SC– OFDM MCSs for high performance on frequency selective

channels up to 64 QAM– SC modulation for low power/low complexity transceivers

• SC MCS for control signaling (Channel, SNR durability)• SC Low Power MCS set

– Simpler coding and shorter symbol structure to enable low power implementation

May 2015

Slide 31 Shiwen He (SEU)

Page 32: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

PHY Parameters

May 2015

Slide 32 Shiwen He (SEU)

Page 33: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

PHY General parameters• Sampling rate

• SC PHY MCS set Symbol Rate = 440 MHz for 540MHz channel, =880 MHz for 1080MHz channel

• OFDM MCS set Sampling Rate = 660MHz for 540MHz channel, =1320 MHz for 1080 MHz channel• Sampling Rate is Exactly 1.5x the SC symbol rate

• SC block – 256 symbols of which 64 or 32chips GI for 540MHz, 512 symbols of which 128 or 64chips GI for 1080MHz

• OFDM nominal sample rate = 660 MHz for 540 MHz channel, =1320 MHz for 1080MHz channel (1.5 times SC symbol rate)

• Common Packet Structure

May 2015

Slide 33 Shiwen He (SEU)

Page 34: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Preambles

May 2015

Slide 34 Shiwen He (SEU)

Page 35: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 35

Common preamble requirements• Low peak side lobe of periodic auto-correlation and low maximum value of

periodic cross-correlation.

− to accurate the timing synchronization

• Large zero correlation zone of periodic auto-correlation and periodic cross-correlation.

− 11aj maximum multipath delay spread: 100ns

− The time of zero correlation zone should be larger than 100ns to eliminate interference of multipath delay.

• The elements of preamble sequence should belong to finite collection of symbols, and have optimized periodic correlator.

– to simplify receiver processing and reduce the power consumption

• Preamble sequence set should contain several sequences.

– to implement the MIMO technology

May 2015

Shiwen He (SEU)Slide 35

Page 36: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 36

Definition of ZCZ sequence set

• The sequence set is called Zero Correlation Zone (ZCZ)

sequence set when the following formula is satisfied:

where, denotes the periodic correlation between and , denotes the

energy of the sequence, denotes the ZCZ length, denotes the number of

ZCZ sequences.

1 2, , , QZ Z Z

,

, 0,

, 1, ,0, 1 ,

0, 0 ,i jZ Z

E n i j

C n i j Qn Z i j

n Z i j

iZ jZ,i jCZ Z E

Z Q

May 2015

Shiwen He (SEU)Slide 36

Page 37: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Generator of ZCZ sequence set

Decom

position of colum

ns

Kronecker product

Kronecker product

...

......

...

......

......

. . .

. . .

......

......

...

...

...

...

...

Matrix

multiplication

Matrix

multiplication

May 2015

Shiwen He (SEU)Slide 37

Page 38: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 38

Generation parameters of .

• Finite collection of symbols:

• Initial mutually orthogonal aperiodic sequence sets:

• DFT matrix:

• Coefficient matrix:

256,4,56Z

= 1, , 1,j j M

(0)

1 1 1 1

1 1

1 1 1 1

1 1

j j

j j

A

4

1 1 1 1

1 1

1 1 1 1

1 1

j jF

j j

1 1

1

1 1

1

j j

j j j

j j

j j j

W

May 2015

Shiwen He (SEU)Slide 38

Page 39: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission Slide 39

Generation parameters of .

• Finite collection of symbols:

• Initial mutually orthogonal aperiodic sequence sets:

• DFT matrix:

• Coefficient matrix:

= 1, , 1,j j M

4

1 1 1 1

1 1

1 1 1 1

1 1

j jF

j j

512,4,112Z

(0)

1, 1 1, 1 1, 1 1, 1

1, 1 1, 1 1, 1 1, 1

1, 1 1, 1 1, 1 1, 1

1, 1 1, 1 1, 1 1, 1

A

1

1

1

j j j

j j j j

j j j

j j j

W

May 2015

Shiwen He (SEU)Slide 39

Page 40: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Preambles

May 2015

Slide 40 Shiwen He (SEU)

Page 41: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

LDPC Coding

May 2015

Slide 41 Shiwen He (SEU)

Page 42: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

LDPC Code Set Overview

• Four codes of common codeword length of 672, 2016• Cyclic shifted identity (CSI) construction • Submatrix size 42, 126• Excellent coding gain on realistic channels• Construction supports high throughput

implementation• Single construction supports code rates of 1/2, 5/8, 3/4,

and 13/16

May 2015

Slide 42 Shiwen He (SEU)

Page 43: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

LDPC Code Set Implementation

• Low complexity / low latency encoding– Shared terms in systematic product calculation across all codes– Back substitution for parity calculation

• High throughput / low power decoding– Layer decoding

• Each code matrix H has 4 layers with a single set element per column• 4 clock cycles per decoder iteration

– Fully parallel belief propagation decoding• Code set super-position matrix has single CSI value per location which

minimizes decoder multiplexing and routing• 1 clock cycle per decoder iteration

May 2015

Slide 43 Shiwen He (SEU)

Page 44: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

LDPC MatricesMay 2015

-1 0 -1 0 -1 0 -1 0 0 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 34 -1 12 -1 36 18 0 -1 -1 -1 -1 -1 -1 8 -1 0 -1 0 -1 0 -1 -1 13 0 -1 -1 -1 -1 -1-1 16 40 -1 32 -1 22 -1 -1 -1 19 0 -1 -1 -1 -1-1 20 -1 22 -1 2 -1 28 32 -1 -1 21 0 -1 -1 -130 -1 18 -1 -1 14 -1 30 -1 37 -1 -1 31 0 -1 -140 -1 12 -1 38 -1 6 -1 -1 -1 26 -1 -1 13 0 -1-1 24 -1 20 10 -1 2 -1 -1 -1 -1 18 -1 -1 5 0

-1 0 -1 0 0 0 0 0 0 -1 0 -1 -1 -1 -1 -1

0 -1 0 -1 32 -1 22 -1 18 0 19 0 -1 -1 -1 -1

8 16 40 34 -1 12 -1 36 32 -1 -1 21 0 -1 -1 -1

30 20 18 22 38 -1 6 -1 -1 13 -1 -1 31 0 -1 -1

-1 24 -1 20 -1 2 -1 28 16 37 -1 -1 -1 13 0 -1

40 -1 12 -1 10 14 2 30 -1 19 -1 -1 -1 -1 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1

8 16 40 34 32 12 22 36 18 13 19 0 -1 0 -1 -1

30 20 18 22 38 2 6 28 32 37 26 21 31 -1 0 -1

40 24 12 20 10 14 2 30 16 19 34 18 -1 13 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1

30 20 18 22 38 2 6 28 32 37 26 21 34 -1 0 -1

40 24 12 20 10 14 2 30 16 19 34 18 8 13 5 0

Shiwen He (SEU)Slide 44

Page 45: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

SC MCS 0: Control MCS

May 2015

Slide 45 Shiwen He (SEU)

Page 46: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Control MCS

• Very low SNR modem to allow pre-beamforming link• Control MCS based on SC modulation ~11 Mbps• π/2 13/7/4 Bark spreading sequence• Spreading mitigates long channels• A-MPDU aggregation is not allowed using Control

MCS• Maximum length is limited to 1024 bytes

May 2015

Slide 46 Shiwen He (SEU)

Page 47: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Single Carrier Parameters

May 2015

Slide 47 Shiwen He (SEU)

Page 48: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

SC Modulation

• For 540MHz channel width• 256 chips per symbol• GI with 64 or 32 chips• Pi/2 rotation applied to all modulations•

• To reduce PAPR for BPSK• To enable GMSK equivalent modulation

May 2015

Slide 48 Shiwen He (SEU)

Page 49: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

SC Modulation

• For 1080MHz channel width• 512 chips per symbol• GI with 128 or 64 chips• Pi/2 rotation applied to all modulations

• • To reduce PAPR for BPSK• To enable GMSK equivalent modulation

May 2015

Slide 49 Shiwen He (SEU)

Page 50: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

OFDM Parameters

May 2015

Slide 50 Shiwen He (SEU)

Page 51: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

OFDM Modulation

May 2015

Slide 51 Shiwen He (SEU)

Page 52: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

General RF parameters

May 2015

Slide 52 Shiwen He (SEU)

Page 53: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

RF General Parameters

• Transmit EVM for all PHYs• Unified mask for all PHYs• Tx RF Delay• Operating Temperature range• Center Frequency leakage• Transmit Ramp up/down• Center Frequency Tolerance

– ±20 ppm• Symbol Clock Tolerance

– ±20ppm locked

May 2015

Slide 53 Shiwen He (SEU)

Page 54: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Simulation Analysis

May 2015

Slide 54 Shiwen He (SEU)

Page 55: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (1/14)

1.1. Performance simulations of single carrier (SC)

1.1.1. SC-SISO

Simulation Environment

Tx=1 Rx=1Frame Length=4096

byteSynchronization:

IdealIQ Imbalance: 0db, 0°

PHY=SCFrame

Number=2000PA Nonlinearity: Ideal

AWGN/11aj ChannelChannel

Estimation: IdealSampling Offset 0 PPM

BW=540MHzMMSE

EqualizationCarrier Frequency

Offset=0Hz

MCS Index MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7

ModulationCode Rate

BPSK 1/2

QPSK1/2

QPSK3/4

16QAM1/2

16QAM3/4

64QAM5/8

64QAM3/4

64QAM13/16

May 2015

Shiwen He (SEU)Slide 55

Page 56: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (2/14)

Conclusion: In SC-SISO mode, the performance in 11aj fading channel is much lower than that in AWGN channel due to the lack of diversity. When PER = 10-1, the performance deterioration of high-order MCS is about 10dB, so we need to consider using analog beamforming.

AWGN channel 11aj channel

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1910

-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

SNR

ER

R R

AT

E

SC Tx:1 Rx:1 Nss:1 L:4096 byte CH:AWGN Sim:Ideal

BERPER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

-2 2 6 10 14 18 22 26 30 3410

-7

10-6

10-5

10-4

10-3

10-2

10-1

100

SC Tx:1 Rx:1 Nss:1 l:4096 byte CH:11aj Sim:Idea

SNRE

RR

RA

TE

BERPER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

May 2015

Shiwen He (SEU)Slide 56

Page 57: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (3/14)

1.1.2. SC 4 ×4 11aj channel

Simulation Environment

Tx=4 Rx=4Frame

Length=4096byteSynchronization: Ideal IQ Imbalance: 0db, 0°

PHY=SCFrame

Number=2000PA Nonlinearity: Ideal

11aj ChannelChannel

Estimation: IdealSampling Offset 0 PPM

BW=540MHzMMSE

EqualizationCarrier Frequency

Offset=0Hz

MCS Index MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7

ModulationCode Rate

BPSK 1/2

QPSK1/2

QPSK3/4

16QAM1/2

16QAM3/4

64QAM5/8

64QAM3/4

64QAM13/16

May 2015

Shiwen He (SEU)Slide 57

Page 58: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (4/14)

CSD mode, Nss=1 CSD mode, Nss=2

-9 -7 -5 -3 -1 1 3 5 7 9 11 13 1510

-4

10-3

10-2

10-1

100 SC CSD Tx:4 Rx:4 Nss:1 L:4096 byte CH:11aj Sim:Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

-6 -4 -2 0 2 4 6 8 10 12 14 16 18 2010

-4

10-3

10-2

10-1

100 SC CSD Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Ideal

SNR

PE

R

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

When PER = 10-1, the SNR coverage of 8 MCSs is [-6dB, 14dB]

When PER = 10-1, the SNR coverage of 8 MCSs is [-2dB, 19dB]

May 2015

Shiwen He (SEU)Slide 58

Page 59: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (5/14)

When PER = 10-1, the SNR coverage of 8 MCSs is [-1dB,24dB]

When PER = 10-1, the SNR coverage of 8 MCSs is [2dB,32dB]

-3 -1 1 3 5 7 9 11 13 15 17 19 21 23 2510

-4

10-3

10-2

10-1

100 SC CSD Tx:4 Rx:4 Nss:3 L:4096 byte CH:11aj Sim:Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 3410

-4

10-3

10-2

10-1

100 SC CSD Tx:4 Rx:4 Nss:4 L:4096 byte CH:11aj Sim:Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

CSD mode, Nss=3 CSD mode, Nss=4

May 2015

Shiwen He (SEU)Slide 59

Page 60: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (6/14)

STBC mode, Nss=1 STBC mode, Nss=2

-8 -6 -4 -2 0 2 4 6 8 10 12 1410

-4

10-3

10-2

10-1

100

SC STBC Tx:4 Rx:4 Nss:1 L:4096 byte CH:11aj Sim:Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

-6 -4 -2 0 2 4 6 8 10 12 14 16 1810

-4

10-3

10-2

10-1

100 SC STBC Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

When PER = 10-1, the SNR coverage of 8 MCSs is [-6dB,13dB]

When PER = 10-1, the SNR coverage of 8 MCSs is [-2dB,18dB]

May 2015

Shiwen He (SEU)Slide 60

Page 61: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (7/14)

Conclusion:

When SC system is in CSD mode, the demand of SNR increases gradually with the increase of Nss.

When SNR is in [-6dB, 32dB], we can select Nss and MCS to achieve the optimal system throughput.

When Nss is 1 or 2, STBC mode can achieve a performance gain compared to CSD mode and its slope of PER is higher than CSD.

May 2015

Shiwen He (SEU)Slide 61

Page 62: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (8/14)

1.2. Performance simulations of OFDM

1.2.1. OFDM 1 ×1 AWGN

Simulation Environment

Tx=1 Rx=1Frame

Length=4096byteSynchronization:

IdealIQ Imbalance: 0db, 0°

PHY=OFDMFrame

Number=2000PA Nonlinearity: Ideal

AWGN/11aj channelChannel

Estimation: IdealSampling Offset 0 PPM

BW=540MHzMMSE

EqualizationCarrier Frequency

Offset=0Hz

MCS Index MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7

ModulationCode Rate

BPSK 1/2

QPSK1/2

QPSK3/4

16QAM1/2

16QAM3/4

64QAM5/8

64QAM3/4

64QAM13/16

May 2015

Shiwen He (SEU)Slide 62

Page 63: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (9/14)

Conclusion: In OFDM-SISO mode, the performance in 11aj fading channel is much lower than that in AWGN channel due to the lack of diversity. When PER = 10-1, the performance deterioration of high-order MCS is about 6dB, so we need to consider using MIMO to increase diversity.

AWGN Channel 11aj Channel

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1810

-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

SNR

ER

R R

AT

E

OFDM Tx:1 Rx:1 Nss:1 L:4096 byte CH:AWGN Sim:Ideal

BERPER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

-4 0 4 8 12 16 20 24 2810

-7

10-6

10-5

10-4

10-3

10-2

10-1

100 OFDM Tx:1 Rx:1 Nss:1 L:4096 byte CH:11aj Sim:Idea

SNR

ER

R R

AT

E

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

BERPER

May 2015

Shiwen He (SEU)Slide 63

Page 64: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (10/14)

1.2.2. OFDM 4 ×4 11aj channel

Simulation Environment

Tx=4 Rx=4Frame

Length=4096byteSynchronization: Ideal IQ Imbalance: 0db, 0°

PHY=OFDMFrame

Number=2000PA Nonlinearity: Ideal

11aj ChannelChannel

Estimation: IdealSampling Offset 0 PPM

BW=540MHzMMSE

EqualizationCarrier Frequency

Offset=0Hz

MCS Index MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7

ModulationCode Rate

BPSK 1/2

QPSK1/2

QPSK3/4

16QAM1/2

16QAM3/4

64QAM5/8

64QAM3/4

64QAM13/16

May 2015

Shiwen He (SEU)Slide 64

Page 65: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (11/14)

CSD mode, Nss=1 CSD mode, Nss=2

When PER = 10-1, the SNR coverage of 8 MCSs is [-7dB, 12dB]

When PER = 10-1, the SNR coverage of 8 MCSs is [-3dB, 17dB]

OFDM CSD Tx:4 Rx:4 Nss:1 L:4096 byte CH:11aj Sim:Ideal

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 1510

-4

10-3

10-2

10-1

100

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

-6 -4 -2 0 2 4 6 8 10 12 14 16 18 2010

-4

10-3

10-2

10-1

100 OFDM CSD Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

May 2015

Shiwen He (SEU)Slide 65

Page 66: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (12/14)

CSD mode, Nss=3 CSD mode, Nss=4

When PER = 10-1, the SNR coverage of 8 MCSs is [-1dB,22dB]

When PER = 10-1, the SNR coverage of 8 MCSs is [1dB,31dB]

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 2410

-3

10-2

10-1

100

OFDM CSD Tx:4 Rx:4 Nss:3 L:4096 byte CH:11aj Sim:Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 3510

-4

10-3

10-2

10-1

100 OFDM CSD Tx:4 Rx:4 Nss:4 L:4096 byte CH:11aj Sim:Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

May 2015

Shiwen He (SEU)Slide 66

Page 67: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (13/14)

Beamforming mode, Nss=1 Beamforming mode, Nss=2

When PER = 10-1, the SNR coverage of 8 MCSs is [-10dB,8dB]

When PER = 10-1, the SNR coverage of 8 MCSs is [-6dB, 13dB]

-13 -11 -9 -7 -5 -3 -1 1 3 5 7 910

-4

10-3

10-2

10-1

100 OFDM BF Tx:4 Rx:4 Nss:1 L:4096 byte CH:11aj Sim:Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

-8 -6 -4 -2 0 2 4 6 8 10 12 1410-4

10-3

10-2

10-1

100

OFDM BF Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

Shiwen He (SEU)

May 2015

Slide 67

Page 68: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

1. Performance simulations under ideal conditions (14/14)

STBC mode, Nss=2

When PER = 10-1, the SNR coverage of 8 MCSs is[-4dB,16dB]

Conclusion: • When OFDM system is in CSD mode, the demand of SNR

increases gradually with the increase of Nss.• When SNR is in [-7dB, 31dB], we can select Nss and MCS

to achieve the optimal system throughput.• When Nss is 1 or 2, beamforming mode can achieve

3dB~4dB performance gain compared to CSD mode. When Nss is 2, STBC mode can achieve 1dB performance gain compared to CSD mode.

-6 -4 -2 0 2 4 6 8 10 12 14 16 1810

-4

10-3

10-2

10-1

100

OFDM STBC Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

May 2015

Shiwen He (SEU)Slide 68

Page 69: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (1/14)

2.1. Performance simulations of single carrier (SC)

2.1.1. SC 4 × 4 11aj channel

Simulation Environment

Tx=4 Rx=4 PHY=SC 11aj ChannelFrame

Length=4096byte

MMSE EqualizationChannel Estimation:

CorrelativeSynchronization:

PracticalBW=540MHz

Carrier Frequency Offset=615kHz

PA Back-off: 3dB IQ Imbalance: 1db, 2°Frame

Number=2000

MCS Index MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7

ModulationCode Rate

BPSK 1/2

QPSK1/2

QPSK3/4

16QAM1/2

16QAM3/4

64QAM5/8

64QAM3/4

64QAM13/16

Shiwen He (SEU)

May 2015

Slide 69

Page 70: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (2/14)

CSD mode, Nss=1 CSD mode, Nss=2

When PER = 10-1, the SNR coverage of 8 MCSs is [-3dB, 22dB]

When PER = 10-1, the SNR coverage of 8 MCSs is [0dB, 27dB]

-4 0 4 8 12 16 20 2410

-4

10-3

10-2

10-1

100

SC CSD Tx:4 Rx:4 Nss:1 L:4096 byte CH:11aj Sim:Non-ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

-2 2 6 10 14 18 22 26 30 3410

-4

10-3

10-2

10-1

100 SC CSD Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Non-ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

May 2015

Shiwen He (SEU)Slide 70

Page 71: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (3/14)

CSD mode, Nss=3 CSD mode, Nss=4

When PER = 10-1, the SNR coverage of 8 MCSs is [3dB, 32dB]

When PER = 10-1, the SNR coverage of 8 MCSs is [4dB, 42dB]

0 4 8 12 16 20 24 28 32 3610

-4

10-3

10-2

10-1

100 SC CSD Tx:4 Rx:4 Nss:3 L:4096 byte CH:11aj Sim:Non-ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

2 6 10 14 18 22 26 30 34 38 42 4610

-4

10-3

10-2

10-1

100

SNR

PER

SC CSD Tx:4 Rx:4 Nss:4 L:4096 byte CH:11aj Sim:Non-ideal

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

May 2015

Shiwen He (SEU)Slide 71

Page 72: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (4/14)

2.1.2. Performance comparison between ideal and non-ideal SC CSD mode, Nss=4

2 6 10 14 18 22 26 30 34 38 42 4610

-4

10-3

10-2

10-1

100

SNR

PER

SC CSD Tx:4 Rx:4 Nss:4 L:4096 byte CH:11aj Sim:Non-ideal VS ideal

2dB 2dB 3dB 3dB 4dB11dB

6dB

2dB

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

Non-ideal

ideal

-6 -2 2 6 10 14 18 22 26 3010

-4

10-3

10-2

10-1

100

SC CSD Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Non-ideal VS ideal

SNR

PER

9dB2dB

2dB

5dB

3.8dB3dB 2.5dB 3.5dB

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

Non-ideal

ideal

CSD mode, Nss=2

Conclusion: With the increase of MCS, the gap between practical and ideal performance becomes bigger. PA nonlinear compression and IQ imbalance have remarkable effect on high-order modulations. Owing to that the low-order modulations work at low SNR, timing synchronization and channel estimation errors make a certain gap between practical and ideal performance.

May 2015

Shiwen He (SEU)Slide 72

Page 73: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (5/14)

2.1.3. SC-PAPR

0 1 2 3 4 5 6 7 810

-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 SC-PAPR

PAPR/dB

Prob

abili

ty

SC-BPSK-pi/2

SC-QPSK-pi/2

SC-16QAM-pi/2

SC-64QAM-pi/2

SC-16QAM-pi/2-non-shapping filter

SC-64QAM-pi/2-non-shapping filter

When p=10-5, with the increase of modulation order, PAPR increases gradually.PAPR(BPSK) = 4.7dBPAPR(QPSK) = 4.7dBPAPR(16QAM) = 6.5dBPAPR(64QAM) = 7dB

 Without the shapping filter:PAPR(BPSK)=0dBPAPR(QPSK)=0dBPAPR(16QAM) = 2.7dBPAPR(64QAM) = 3.8dB

May 2015

Shiwen He (SEU)Slide 73

Page 74: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (6/14)

2.2. Performance simulations of OFDM

2.2.1. OFDM 4 × 4 11aj channel

Simulation Environment

Tx=4 Rx=4Frame

Length=4096byteSynchronization:

PracticalIQ Imbalance: 1db, 2°

PHY=OFDM Frame Number=2000 PA back-off: 8dB

11aj ChannelChannel Estimation:

CorrelativeSampling Offset

13.675PPM

BW=540MHz MMSE EqualizationCarrier Frequency Offset=615375Hz

MCS Index MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7

ModulationCode Rate

BPSK 1/2

QPSK1/2

QPSK3/4

16QAM1/2

16QAM3/4

64QAM5/8

64QAM3/4

64QAM13/16

May 2015

Shiwen He (SEU)Slide 74

Page 75: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (7/14)

CSD mode, Nss=1 CSD mode, Nss=2

When PER = 10-1, the SNR coverage of 8 MCSs is [-1dB, 18dB]

When PER = 10-1, the SNR coverage of 8 MCSs is [1dB, 22dB]

-4 0 4 8 12 16 2010

-4

10-3

10-2

10-1

100

OFDM CSD Tx:4 Rx:4 Nss:1 L:4096 byte CH:11aj Sim:Non-ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

-2 2 6 10 14 18 22 2410

-4

10-3

10-2

10-1

100

OFDM CSD Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Non-ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

May 2015

Shiwen He (SEU)Slide 75

Page 76: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (8/14)

When PER = 10-1, the SNR coverage of 8 MCSs is [3dB, 26dB]

When PER = 10-1, the SNR coverage of 8 MCSs is [5dB,35dB]

0 4 8 12 16 20 24 2810

-4

10-3

10-2

10-1

100

OFDM CSD Tx:4 Rx:4 Nss:3 L:4096 byte CH:11aj Sim:Non-ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

0 4 8 12 16 20 24 28 32 36 4010

-4

10-3

10-2

10-1

100

SNR

PE

R

OFDM CSD Tx:4 Rx:4 Nss:4 L:4096 byte CH:11aj Sim:Non-ideal

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

CSD mode, Nss=3 CSD mode, Nss=4

May 2015

Shiwen He (SEU)Slide 76

Page 77: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (9/14)

Beamforming mode, Nss=1 Beamforming mode, Nss= 2

When PER = 10-1, the SNR coverage of 8 MCSs is [-3.5dB, 13dB]

When PER = 10-1, the SNR coverage of 8 MCSs is [-0.7dB, 18dB]

-8 -4 0 4 8 12 1610

-4

10-3

10-2

10-1

100

OFDM BF Tx:4 Rx:4 Nss:1 L:4096 byte CH:11aj Sim:Non-Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

-4 0 4 8 12 16 2010

-4

10-3

10-2

10-1

100

OFDM BF Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Non-Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

量化: [5 3]

分组: 1Beamforming

May 2015

Shiwen He (SEU)Slide 77

Page 78: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (10/14)

STBC mode, Nss=2

When PER = 10-1, the SNR coverage of 8 MCSs is [-3.5dB, 13dB]

-2 2 6 10 14 18 2210

-4

10-3

10-2

10-1

100

OFDM STBC Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Non-Ideal

SNR

PER

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

May 2015

Shiwen He (SEU)Slide 78

Page 79: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (11/14)

2.2.2. OFDM CSD BF STBC performance comparisonBF VS CSD, Nss=1 BF VS CSD Nss=2

-4 0 4 8 12 16 2010

-4

10-3

10-2

10-1

100

OFDM Tx:4 Rx:4 Nss:1 L:4096 byte CH:11aj Sim:Non-ideal BF VS CSD

SNR

PER

5dB3.5dB4.5dB

4dB

3dB

2.5dB

2dB2dB

-8

CSDBF

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

-4 0 4 8 12 16 20 2410

-4

10-3

10-2

10-1

100

OFDM Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Non-ideal BF VS CSD

SNR

PER

1.8dB 2dB 2.5dB3.2dB

3.8dB3.6dB

4.2dB4.2dB

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

CSDBF

May 2015

Shiwen He (SEU)Slide 79

Page 80: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (12/14)

STBC VS CSD, Nss=2

-2 2 6 10 14 18 22 2410

-4

10-3

10-2

10-1

100

OFDM Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Non-Ideal STBC VS CSD

SNR

PER

0.1dB 0.2dB 0.6dB0.5dB0.5dB 0.6dB 0.9dB0.9dB

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

CSDSTBC

Conclusion:

• Under non-ideal conditions, when Nss is 1 or 2, beamforming mode has about 2dB performance gain compared to CSD mode with low-order MSC. With the increase of MCS, the performance gain approaches 4~5dB.

• When Nss=2, the performance gain of STBC is not remarkable compared to CSD and approaches 0.9dB with the increase of MCS.

May 2015

Shiwen He (SEU)Slide 80

Page 81: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

2. Performance simulations under non-ideal conditions (13/14)

2.2.3. Performance comparison between ideal and non-ideal OFDM CSD mode, Nss=4 CSD mode, Nss=2

-2 2 6 10 14 18 22 26 30 34 3810

-4

10-3

10-2

10-1

100

SNR

PER

OFDM CSD Tx:4 Rx:4 Nss:4 L:4096 byte CH:11aj Sim:Non-ideal VS ideal

4.5dB 4.5dB4dB

4.2dB4.2dB4.5dB

4.2dB

4.5dB

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

Non-ideal

ideal

-6 -2 2 6 10 14 18 2210

-4

10-3

10-2

10-1

100

OFDM CSD Tx:4 Rx:4 Nss:2 L:4096 byte CH:11aj Sim:Non-ideal VS ideal

SNRPE

R

3.7dB

3.7dB3.8dB

4.3dB

4.3dB

4.3dB

4.5dB5dB

MCS0MCS1MCS2MCS3MCS4MCS5MCS6MCS7

Non-ideal

ideal

Conclusion: With the increase of MCS, the gap between practical and ideal performance becomes bigger. PA nonlinear compression and IQ imbalance have remarkable effect on high-order modulations. Owing to that the low-order modulations work at low SNR, timing synchronization and channel estimation errors make a certain gap between practical and ideal performance.

May 2015

Shiwen He (SEU)Slide 81

Page 82: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Conclusions

May 2015

Slide 82 Shiwen He (SEU)

Page 83: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Conclusions

• This complete proposal meets all the requirements of the TGaj PAR and FRD:– Supports data transmission rate up to 15 Gbps– Supplements and extends the 802.11 MAC and is backward

compatible with the IEEE 802.11 standard – Enables both the low power and the high performance devices,

guaranteeing interoperability and communication at Gbps data rate – Supports beamforming and MIMO, enabling robust

communication– Supports power management– Supports fast session transfer among 2.4 GHz, 5 GHz, 45 GHz and

60 GHz

May 2015

Shiwen He (SEU)Slide 83

Page 84: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Strawpoll

• Do you support adopting the complete proposal as the first draft specification D0.01 of the TGaj (45 GHz) amendment?– Y:– N:– A:

May 2015

Shiwen He (SEU)Slide 84

Page 85: Doc.: IEEE 802.11-15/0707r1 Submission May 2015 Slide 1 Complete Proposal for IEEE 802.11aj (45 GHz) Date: 2015-05-19 Author(s)/Supporter(s): NameCompanyAddressPhoneEmail.

doc.: IEEE 802.11-15/0707r1

Submission

Reference

1. 11-15/0558r0 - 45GHz channel access and BSS operation

2. 11-15/0701r1 - Physical Channel Encoding for 45Ghz

3. 11-14/0716r4 - PHY-SIG-frame-structure-for-ieee-802.11aj (45GHz)

4. 11-14/1082r3 - PPDU-format-for-ieee-802.11aj (45GHz)

5. 11-15/0705r0 - Control PHY Design for 40-50GHz Millimeter Wave Communication Systems

6. 11-16/0706r0 - Bandwidth and Packet Type Detection Schemes for 40-50GHz Millimeter Wave Communication Systems

7. ….

May 2015

Slide 85 Shiwen He (SEU)