Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR...

26
doc.: IEEE 802.11-14/0335r0 Submission Yakun Sun, et. al. (Marvell) Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors: Name Affiliations Address Phone email Yakun Sun Marvell Semiconductor 5488 Marvell Ln, Santa Clara, CA 95054 1-408-222- 3847 yakunsun@marvell .com Jinjing Jiang Marvell Semiconductor Yan Zhang Marvell Semiconductor Hongyuan Zhang Marvell Semiconductor Mar. 2014

Transcript of Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR...

Page 1: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission Yakun Sun, et. al. (Marvell)Slide 1

Instantaneous SINR Calibration for System Simulation

Date: 2014-03-17

Authors:

Name Affiliations Address Phone email

Yakun Sun Marvell Semiconductor5488 Marvell Ln, Santa Clara, CA 95054

1-408-222-3847 [email protected]

Jinjing Jiang Marvell Semiconductor

Yan Zhang Marvell Semiconductor

Hongyuan Zhang Marvell Semiconductor

Mar. 2014

Page 2: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Overview

• A step-by-step calibration was proposed in [1,2] with high level descriptions.

• The first step of static radio statistics (long-term SINR) calibration has been presented in [3].

• More companies have been worked together on the step-1 calibration [4].

• We follow up on the next step of SLS calibration.

Yakun Sun, et. al. (Marvell)Slide 2

Simulation Scenario

Static Radio statistics

(S/I distribution)

PHY statistics

(Freq-domain SINR distribution)

PHY Tput calibration

MAC calibration

Mar. 2014

Page 3: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Instantaneous SINR calibration

• The objective is to align physical layer receiver characteristics in a dynamic environment.– Dynamic physical layer receiver characteristics reflect the frequency domain SINR

calculation, small-scale fading channel generation, and equalization.

• Option 1: Instantaneous receiver-output SINR per tone– Includes fading channels from both the desired transmitter and interferers– Includes the MIMO receiver algorithms such as MMSE for MIMO cases– Includes Doppler effects of channel generations– Includes antenna correlation for MIMO cases

• Option 2: Effective SINR per frame– Also include all the physical layer factors as in option 1– Essential value for later PER decision– Less number of values to save– Aligning effective SINR implies aligning PER/throughput (to some extent)

Yakun Sun, et. al. (Marvell)Slide 3

Mar. 2014

Page 4: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Instantaneous SINR calibration (2)

• Option 2a: alternative to option 2, use Ф(SNReff)– Given the convergence to an upper bound (RBIR, MMIB),

effective SNR is sensitive to mapping offsets (in different implementation) at high SNR region.

– Avoid the ambiguity at high SNR by using Ф(SNReff) as a bounded value,

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 4

-10 -5 0 5 10 15 20 25 300

1

2

3

4

5

6

7

8256QAM

SNR (dB)

Mut

ual I

nfor

mat

ion,

(S

NR

)

256QAM

64QAM

Page 5: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Comparison of Option 1 and 2

• Option 1:– Pro: to avoid using the same PHY abstraction method, easier to

agree and implement– Con: less strong physical meaning

• Option 2:– Pro: strong physical meaning (effective SNR per frames can be

easily translated to PER, and infer throughput).– Con:

• Need a unified PHY abstraction method (lack of consensus at this moment)

• Need to watch out the mapping offsets at high SNR (avoided by option2a)

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 5

Page 6: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Procedure of Statistics Collection• Detailed PHY is assumed

– Fading channel models, Doppler spectrum, and antenna correlation (if MIMO) are defined by the scenarios– Receiver algorithm is reflected (MMSE for MIMO, or MRC for single stream)– Effective SNR per frame (mapping can be done for an agreed modulation level other than the MCS of the

frame)– PER decision is not required at this step (always successfully decoding the packet)

• Some simplest MAC is assumed.– CCA-only, basic CSMA, or EDCA with the same AC for all STAs/APs.– Full buffer traffic– Each AP and STA transmits a packet of a fixed (and equal) size at a fixed MCS.

• Multiple drops of AP/STAs are simulated for a scenario• In each drop, collect the physical layer receiver characteristics observed at each STA/AP

for each packet.– Only collect the data frame (exclude beacons, etc.)

• Generate the distribution (CDF) of dynamic physical layer receiver characteristics at STAs (downlink) and APs (uplink) over multiple drops.

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 6

Page 7: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Simulation Setup

• Simulation is based on scenario 1 to 4 in [5].– Distribution of uplink instantaneous SINR are plotted as an

example.– We can select only one scenario for calibration.

• Detailed/optional simulation assumptions:– 2.4GHz Channel with 20MHz Bandwidth– No antenna gain, no cable loss– 1 Tx and 1 Rx are assumed (other than defined in [5])

– EDCA with AC2 for all STAs/APs (using default parameters)– MCS 7, each packet of 1584 bytes– STAs and APs are dropped and associated based on scenario [5]

Slide 7 Yakun Sun, et. al. (Marvell)

Mar. 2014

Page 8: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Simulation Assumptions (Scenario 1)

Parameter Value

Number of STAs 4 STAs per apartment

Channel Model TGn B (AP-AP, STA-STA, AP-STA)

Penetration Loss Wall 12dB, Floor 17dB, linear for multiple walls/floors

BW 20MHz at 2.4GHz. Each BSS randomly selects one channel out of 3.

TX Power AP: 23dBm, STA: 17dBm

Association 100% STA in an apartment associated with the AP in the room.

Yakun Sun, et. al. (Marvell)Slide 8

Mar. 2014

Page 9: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Instantaneous UL SINR Per Tone

• A large portion of STAs’ frames come with high received SINR a high probability of successful packet.

• Also a long tail of low SINR

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 10 30 50 70 90

CDF

SINR Per Tone (dB)

SINR per tone for unicast frames

Page 10: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Effective SINR Per Frame

• RBIR is used for effective SNR mapping.• We truncate the SNR vs. RBIR mapping at 27dB for 64QAM and 30dB for

256QAM.

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -5 0 5 10 15 20 25 30

CDF

Effective SINR Per Frame (dB)

Eff SINR per unicast frames (64QAM)

Eff SINR per unicast frames (256QAM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

CDF

RBIR Per Frame (bit)

64QAM RBIR

256QAM RBIR

Page 11: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Simulation Assumptions (Scenario 2)

Parameter Value

Number of STAs 4 STAs per cubicle, 4 AP per BSS

Channel Model TGn D (AP-AP, STA-STA, AP-STA)

Penetration Loss Wall 7dB, linear for multiple walls

BW 20MHz at 2.4GHz. Each AP selects one channel out of 4 in a BSS. (BSS4k+1,BSS4k+2,BSS4k+3,BSS4k+4)= (ch1,ch2,ch3,ch4)

TX Power AP: 24dBm, STA: 21dBm

Association 100% STA in a BSS associated with an AP in the BSS by RSSI, no P2P STA

Yakun Sun, et. al. (Marvell)Slide 11

Based on [2] before the document was updated at the meeting.

Mar. 2014

Page 12: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Instantaneous UL SINR Per Tone

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 0 10 20 30 40 50 60 70 80

CDF

SINR per tone for Unicast frames (dB)

SINR per tone for unicast frames

Page 13: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Effective SINR Per Frame

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -5 0 5 10 15 20 25 30

CDF

Effective SINR per Unicast frames (dB)

Eff SINR per unicast frames (64QAM)

Eff SINR per unicast frames (256QAM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

CDF

RBIR per Unicast frames (bit)

RBIR per unicast frame (64QAM)

RBIR per unicast frame (256QAM)

Page 14: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Simulation Assumptions (Scenario 3)

Parameter Value

Environment BSSs in Hexagon (figure 5), simulated BSS in 1 channel (figure 6)BSS radius: R=7m

Number of STAs 30 STAs per BSS

Channel Model TGn D (AP-AP, AP-STA), TGn B (STA-STA)

Penetration Loss None

BW 20MHz at 2.4GHz. Each simulated BSS selects the same channel.

TX Power AP: 17dBm, STA: 15dBm

Association 100% STA associated with the strongest AP

Yakun Sun, et. al. (Marvell)Slide 14

Mar. 2014

Page 15: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Instantaneous UL SINR Per Tone

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 15

0

10

20

30

40

50

60

70

80

90

100

-20 -10 0 10 20 30 40 50 60 70

CDF

(%)

SINR per Tone for unicast frames (dB)

Page 16: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Effective SINR Per Frame

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 16

0

10

20

30

40

50

60

70

80

90

100

-5 0 5 10 15 20 25 30 35

CDF

(%)

Effective SINR per unicast frames (dB)

64QAM

256QAM

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

CDF

(%)

RBIR per unicast frame (bits)

64QAM

256QAM

Page 17: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Simplification of Interference Modeling

• Explicitly modeling each interferer’s channel is costly.

• Suggest to approximate some interference as Gaussian channel.– Skip generating a large amount of the fading channels– Without introducing inaccuracy on received SINR and PHY

performance.– A common practice for complexity reduction. [6]

• Question: how to select an interference to be approximated?– Long Term SIR thresholding

• If the long term received power from an interferer relative to that of the desired transmitter is lower than a threshold, approximate its signal to be Gaussian.

– A static decision for each drop

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 17

Page 18: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Simplification of Interference Modeling (2)

• Specifically, the interference on a particular tone

– Delta = inf :• explicitly model the fading channels of all seen interferers for the frame

– Delta = 10dB:• explicitly model the fading channels of all seen interferers whose received power is within

10dB of the desire transmitter, model the rest of seen interferers as AWGN by their received power

• Step-2 calibration is a perfect stage to study the threshold – Choose a threshold that does not impact the SINR distribution.– Use scenario3 and 4 as an example.

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 18

0 1

2

0

0

1

: all interference to the current frame

: all interference to the current frame

TX n TX n TX mRX RX RX

n m

TX n TX desireRX RX

TX m TX desireRX RX

I f P h f P N

n P P

m P P

Page 19: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Simulation Assumptions (Scenario 3)

Parameter Value

Environment BSSs in Hexagon (figure 5), simulated BSS in 1 channel (figure 6)BSS radius: R=7m

Number of STAs 30 STAs per BSS

Channel Model TGn D (AP-AP, AP-STA), TGn B (STA-STA)

Penetration Loss None

BW 20MHz at 2.4GHz. Each simulated BSS selects the same channel.

TX Power AP: 17dBm, STA: 15dBm

Association 100% STA associated with the strongest AP

Yakun Sun, et. al. (Marvell)Slide 19

Mar. 2014

Page 20: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Instantaneous UL SINR Per Tone

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 20

• Reasonably small deviation between complete interference modeling and SIR thresholding of 30 and 10dB .– Using 10dB threshold put 96% channels into AWGN– Using 30dB threshold put 65% channels into AWGN

0

10

20

30

40

50

60

70

80

90

100

-20 -10 0 10 20 30 40 50 60 70 80

CDF

(%)

SINR per tone for unicast frame (dB)

Threshold = inf (complete modeling)

Threshold = 10dB

Threshold = 30dB

Page 21: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Effective SINR Per Frame

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 21

0

10

20

30

40

50

60

70

80

90

100

-10 -5 0 5 10 15 20 25 30

CDF

(%)

Effective SINR Per Unicast Frame (dB)

Threshold = inf (64QAM)

Threshold = 10dB (64QAM)

Threshold = 30dB (64QAM)

Threshold = inf (256QAM)

Threshold = 10dB (256QAM)

Threshold = 30dB (256QAM)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8CD

F (%

)RBIR Per Unicast Frame (bit)

Threshold = inf (64QAM)

Threshold = 10dB (64QAM)

Threshold = 30dB (64QAM)

Threshold = inf (256QAM)

Threshold = 10dB (256QAM)

Threshold = 30dB (256QAM)

Page 22: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Simulation Assumptions (Scenario 4)

Parameter Value

Environment BSSs in Hexagon (figure 8), ICD = 130m

Number of STAs 30 STAs per BSS (50% outdoor, 50% indoor)

Channel Model UMi (AP-AP, AP-STA, STA-STA)

Penetration Loss 20dB (outdoor-indoor)

BW 20MHz at 2.4GHz. Each simulated BSS selects the same channel.

TX Power AP: 30dBm, STA: 15dBm

Association 100% STA associated with the strongest AP

Yakun Sun, et. al. (Marvell)Slide 22

Mar. 2014

Page 23: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Instantaneous UL SINR Per Tone

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 23

0

10

20

30

40

50

60

70

80

90

100

-80 -60 -40 -20 0 20 40 60 80

CDF

(%)

SINR Per Tone (dB)

Threshold = 10dB

Threshold = 30dB

Page 24: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Effective SINR Per Frame

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 24

0

10

20

30

40

50

60

70

80

90

100

-5 0 5 10 15 20 25 30

CDF

(%)

Effective SNR Per Unicast Frame (dB)

Threshold = 10dB, 64QAM

Threshold = 30dB, 64QAM

Threshold = 10dB, 256QAM

Threshold = 30dB, 256QAM

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8CD

F (%

)

RBIR Per Unicast Frame (bit)

Threshold = 10dB, 64QAM

Threshold = 30dB, 64QAM

Threshold = 10dB, 256QAM

Threshold = 30dB, 256QAM

Page 25: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

Summary

• Two options of instantaneous SINRs calibration are proposed.

• Suggestion1:– Use Option 1 (SINR per tone) given its convenience and

readiness.– Option 2/2a can be revisited in the latter steps of calibrations.

• Suggestion2:– Using SIR-thresholding to approximate some interference as

AWGN– Exact threshold can be also chosen through calibration.

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 25

Page 26: Doc.: IEEE 802.11-14/0335r0 SubmissionYakun Sun, et. al. (Marvell)Slide 1 Instantaneous SINR Calibration for System Simulation Date: 2014-03-17 Authors:

doc.: IEEE 802.11-14/0335r0

Submission

References

[1] 11-13-1392-00-0hew-methodology-of-calibrating-system-simulation-results

[2] 11-14-0053-00-0further-considerations-on-calibration-of-system-level-simulation

[3] 11-14-0116-01-0Long-Term-SINR-Calibration-for-System-Simulation

[4] 11-14-0336-00-0Calibration-of-Long-Term-SINR-for-System-Simulation

[5] 11-13-1001-06-0hew-HEW-evaluation-simulation-scenarios-document-template

[6] 11-13-0043-02-0PHY-abstraction-in-system-level-simulation-for-HEW-study

Mar. 2014

Yakun Sun, et. al. (Marvell)Slide 26