Doc.: IEEE 802.11-04/934r1 Submission September 2004 Jeng-Hong Chen, Pansop Kim, Winbond...

78
Septemb er 2004 Jeng- Hong Chen, Slide 1 doc.: IEEE 802.11-04/934r1 Submission A 3-Dimensional Joint Interleaver for 802.11n MIMO Systems Jeng-Hong Chen ([email protected]) Pansop Kim ([email protected]) Winbond Wireless Design Center Torrance, CA, USA September 2004

Transcript of Doc.: IEEE 802.11-04/934r1 Submission September 2004 Jeng-Hong Chen, Pansop Kim, Winbond...

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 1

doc.: IEEE 802.11-04/934r1

Submission

A 3-Dimensional Joint Interleaver for 802.11n MIMO Systems

Jeng-Hong Chen ([email protected])

Pansop Kim ([email protected])

Winbond Wireless Design Center

Torrance, CA, USA

September 2004

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 2

doc.: IEEE 802.11-04/934r1

Submission

Simulation Parameters (based on 11a)• 2X2, 2X3, 2X4, 3X2, 3X3, 3X4, 4X2, 4X3, 4X4 antennas• 11n Channel B, D, E and 11g uncorrelated exponential channel• OFDM based on 11a: 64-pt FFT (only 48 data sub-carriers)• 10% PER over 1000 simulated packets• 1000 un-coded bytes per packet• Perfect CSI, Perfect AFC, AGC, ACQ• No pulse shaping filter, no ADC/DAC• CC rates=1/3,1/2, 2/3,3/4,7/8 from ½ CC code (K=7) with

puncturing/repetition• BPSK, QPSK, 16QAM, 64QAM• Interleaver defined in 11a and joint interleaver• 6, 8, 12, 18, 24, 36, 48, 63 Mbps per transmit antenna • MMSE Receiver

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 3

doc.: IEEE 802.11-04/934r1

Submission

FEC(1/2 CC andpuncturing)

IFFT1000bytes

64 GI 80

IFFT 64 GI 80

Mapper

3D JointInterleaver

48

Mapper 48

(1)Circulationbased on

OFDMsymbol

80

80

System Models

FEC(1/2 CC andpuncturing)

IFFT

1000bytes

64 GI 80

3D JointInterleaver

48

(2)Circulationbased on

sub-carrier

IFFT 64 GI 8048

Mapper 48

Mapper 48

PART-I: Joint 3DSpace-Frequency-TimeInterleaver

PART-II: Circulation Transmittion(1) OFDM Symbol Based Circulation(2) Sub-carrier Based Circulation

PART-III:Coding Rates &MIMO Tables

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 4

doc.: IEEE 802.11-04/934r1

Submission

Challenges of MIMO Interleaver Design• L=Number of OFDM symbols from FEC outputs• NI=Number of OFDM symbols per 3D Joint Interleaver• NOFDM= Number of OFDM symbols are transmitting at the same time• M=Number of transmitter antennas (M NOFDM)• NCBPS=Number of coded bits per OFDM symbol • Nsub=Number of data sub-carriers per OFDM symbol• NBPSC=Number of coded bits per sub-carrier • Example: L=18, NI =6, NOFDM =2, M=3, and Nsub=48 (see next page)• How to choose an appropriate interleaver size, NI, for a MIMO system?• How to transmit NOFDM (M) OFDM symbols at the same time from M TX Ant.?• How to interleave total NI*NCBPS coded bits from FEC outputs and map into

– NI*Nsub sub-carriers (frequency domain) and various NBPSC for different QAM– M TX antennas (spatial domain) and– NI total OFDM symbols and NOFDM at the same time?

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 5

doc.: IEEE 802.11-04/934r1

Submission

Example: L=18, NI =6, NOFDM =2, M=3, and Nsub =48

FEC(1/2 CC andpuncturing)

MIMOInterleaver

Uncodedbits

18 OFDM 6 OFDM 6 OFDM 6 OFDM

?

Time=t9 t8 t7 t6 t5 t4 t3 t2 t1

1 OFDM

?

IFFT

IFFT

Mapper 48

Mapper 48

IFFTMapper 48

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 6

doc.: IEEE 802.11-04/934r1

Submission

PART-I:

3D Joint Interleaver

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 7

doc.: IEEE 802.11-04/934r1

Submission

Transmitting Total L OFDM Symbols from M TX Antennas

• Properties of a MIMO OFDM System:– Diversities include space (antennas),frequency (sub-carrier),and transmission in times– Adjacent coded bits from FEC are highly correlated within dfree bits– Same sub-carrier (frequency domain) from different antennas are correlated– The correlation between adjacent sub-carriers are strongly correlated especially if rms

of delay spreading is small.

• Purpose of 3D Joint interleaver (Part-II) and Circulation Transmission (Part-III)– Adjacent FEC coded bits are transmitted from nonadjacent sub-carriers and different

TX antennas

FEC(1/2 CC andpuncturing)

uncodedbits

3D JointInterleaver(NI OFDMsymbols)

Coded bitshas L OFDMsymbols

NI OFDMsymbols

NI OFDMsymbols MIMO

CirculationTo M TXAntennas

A(k) B(j)

1D input bit stream 1D output bit stream

1-to-1 mapping

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 8

doc.: IEEE 802.11-04/934r1

Submission

11a Interleaver• Two-step permutation

– First permutation• To ensure that adjacent coded bits are mapped onto nonadjacent subcarriers• Three subcarrier separations between consecutive coded bits

• Example: NBPSC=1, NCBPSC=48

0 3 6 … 45

1 4 7 … 46

2 5 8 … 47

0 1 2 … 15

16 17 18 … 31

32 33 34 … 47

– Second permutation (Only applied to 16QAM and 64QAM)

• To ensure that adjacent coded bits are mapped alternately onto less and more significant subcarriers

11aInterleaver

A(K) B(j)

Writing order (index of k)

Reading order(index of j)

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 9

doc.: IEEE 802.11-04/934r1

Submission

Parallel 11a Interleavers (A1)

• Adjacent bits (ex, A(0), A(1), A(2) and A(3)) are assigned to the same TX antenna.• Performance is worse if low correlations between Tx antennas and small delay spread.

  0 1 2 3 4 5 6 7 … 47

OFDM 0 A(0) A(16) A(32) A(1) A(17) A(33) A(2) A(18) … A(47)

OFDM 1 A(48) A(64) A(80) A(49) A(65) A(81) A(50) A(66) … A(95)

OFDM 2 A(96) A(112) A(128) A(97) A(113) A(129) A(98) A(114) … A(143)

OFDM 3 A(144) A(160) A(176) A(145) A(161) A(177) A(146) A(162) … A(191)

• Example: NI=4 ,NBPSC=1, NCBPS=48

Coded bits fromFEC outputs

Interleaver(11a)

Interleaver(11a)

Interleaver(11a)

Interleaver(11a)

OFDM 0

OFDM 1

OFDM 2

OFDM 3

S/P converter(NCBPS-based)

A(k)

4 OFDMsymbols

A(0), A(1), A(2), ...

A(48), A(49), A(50), ...

A(96), A(97), A(98), ...

A(144), A(145), A(146), ...

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 10

doc.: IEEE 802.11-04/934r1

Submission

Parallel 11a Interleavers (A2)

• Adjacent bits (ex, A(0), A(1), A(2) and A(3)) are assigned to the same subcarrier.• Performance is worse if high correlations between Tx antennas and large delay spread.

  0 1 2 3 4 5 6 7 … 47

OFDM 0 A(0) A(64) A(128) A(4) A(68) A(132) A(8) A(72) … A(188)

OFDM 1 A(1) A(65) A(129) A(5) A(69) A(133) A(9) A(73) … A(189)

OFDM 2 A(2) A(66) A(130) A(6) A(70) A(134) A(10) A(74) … A(190)

OFDM 3 A(3) A(67) A(131) A(7) A(71) A(135) A(11) A(75) … A(191)

• Example: NI=4 ,NBPSC=1, NCBPS=48

Coded bits fromFEC outputs

Interleaver(11a)

Interleaver(11a)

Interleaver(11a)

Interleaver(11a)

OFDM 0

OFDM 1

OFDM 2

OFDM 3

S/P converter(bit-based)

A(k)

4 OFDMsymbols

A(0), A(4), A(8), ...

A(1), A(5), A(9), ...

A(2), A(6), A(10), ...

A(3), A(7), A(11), ...

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 11

doc.: IEEE 802.11-04/934r1

Submission

2D Joint 11a interleaver• Example: NI=4 ,NBPSC=1, NCBPS=48

– First Permutation (the number of rows is NI times.)

Writing order (index of k) Reading Order (index of j) 0 12 24 … 180

1 13 25 … 181

2 14 26 … 182

… … … … …

11 23 35 … 191

0 1 2 … 15

16 17 18 … 31

32 33 34 … 47

… … … … …

176 177 178 … 191

– Second Permutation

• The same as the 11 a interleaver

• Only apply to 16QAM and 64QAM

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 12

doc.: IEEE 802.11-04/934r1

Submission

2D Joint 11a Interleaver (B1)

• Adjacent bits (ex, A(0), A(4),A(8), and A(12).) are assigned to the same subcarrier,

• Performance is worse if high correlations between Tx antennas and large delay spread.

  0 1 2 3 … 12 … 24 … 47

OFDM 0 A(0) A(16) A(32) A(48) … A(1) … A(2) … A(179)

OFDM 1 A(4) A(20) A(36) A(52) … A(5) … A(6) … A(183)

OFDM 2 A(8) A(24) A(40) A(56) … A(9) … A(10) … A(187)

OFDM 3 A(12) A(28) A(44) A(60) … A(13) … A(14) … A(191)

• Example: NI=4 ,NBPSC=1, NCBPS=48

OFDM 0

OFDM 1

OFDM 2

OFDM 3

S/P converter(NCBPS-based)

2D Joint11a

Interleaver

A(k)

4 OFDMsymbols

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 13

doc.: IEEE 802.11-04/934r1

Submission

2D Joint 11a Interleaver (B2)

• Adjacent bits (ex, A(0), A(1), A(2),.. and A(15)) are assigned to the same TX ant.• Performance is worse if low correlations between Tx antennas and small delay spread.

  0 1 2 3 4 5 6 7 … 47

OFDM 0 A(0) A(64) A(128) A(1) A(65) A(129) A(2) A(66) … A(143)

OFDM 1 A(16) A(80) A(144) A(17) A(81) A(145) A(18) A(82) … A(159)

OFDM 2 A(32) A(96) A(160) A(33) A(97) A(161) A(34) A(98) … A(175)

OFDM 3 A(48) A(112) A(176) A(49) A(113) A(177) A(50) A(114) … A(191)

• Example: NI=4, NBPSC=1, NCBPS=48

OFDM 0

OFDM 1

OFDM 2

OFDM 3

S/P converter(Bit-based)

Interleaver(11a)

A(k)

4 OFDMsymbols

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 14

doc.: IEEE 802.11-04/934r1

Submission

Proposed 3D Joint Interleaver• Purposes

– Backward compatible with 11a interleaver and preserve all good properties– To separate consecutive bits by 3*NBPSC or 3 sub-carriers.– To assign consecutive bits to different OFDM symbols

• Example: NI=4, NBPSC=1, NCBPS=48

  0 1 2 3 4 5 6 7 8 9 10 11 12 … 47

OFDM 0 A(0) A(64) A(128) A(17) A(81) A(145) A(34) A(98) A(162) A(51) A(115) A(179) A(4) … A(191)

OFDM 1 A(16) A(80) A(144) A(33) A(97) A(161) A(50) A(114) A(178) A(3) A(67) A(131) A(20) … A(143)

OFDM 2 A(32) A(96) A(160) A(49) A(113) A(117) A(2) A(66) A(130) A(19) A(83) A(147) A(36) … A(159)

OFDM 3 A(48) A(112) A(176) A(1) A(65) A(129) A(18) A(82) A(146) A(35) A(99) A(163) A(52) … A(175)

OFDM 0OFDM 3 OFDM 2 OFDM 13D Interleaver

(depth=4*NCBPS)OFDM 0OFDM 3 OFDM 2 OFDM 1

A(k) B(j)

Rotating the output bits of 2D 11a Joint Interleaver (B2) to different OFDM symbol

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 15

doc.: IEEE 802.11-04/934r1

Submission

Indexing of Proposed 3D Joint Interleaverk: the index of coded bit before the first permutationi: the index after the first and before the second permutationj: the index after the second permutation, just prior to modulation mapping First permutation rule        

where

Second permutation rule        

where

This interleaver can be easily implemented with 3D block memory

I

CBPSIICBPS N16

floor)16 mod(16

NNmod16modN mod

16

kfloorN

kkki

1NN , 1, 0, andr interleaveper symbols OFDM ofnumber theis N ICBPSI k

1NN , 1, 0, and )1,2/Nmax ICBPSBPSC is

s

ii

s

is

ij

modN

Nmod16floorNNmod

Nmodfloor

NfloorN

CBPS

CBPSCBPSCBPS

CBPS

CBPSCBPS

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 16

doc.: IEEE 802.11-04/934r1

Submission

18339

87135

138186

4290

93141

18945

15915

63111

114162

1866

1473

5199

102150

654

57105

1539

048

96144

1260

108156

93141

18945

94142

19046

95143

19147

93

94

138

139

183

184

95140185

114

115

159

160

12

13

11616114

57

58

102

103

147

148

59104149

0

1

2

1

23

114 16218

66

115163

1967

116 16420

68

OFDM 0

OFDM 1

OFDM 2

OFDM 3

Input/Output Indexing (BPSK, NI=4, NCBPS=48)

0

016

3248

64

15

79

14

78

13

77

1329

4561

1430

4662

1531

4763

1531

4763

7995

111127

143159

175191

128 143142141

12

3

117

3349

6581

97113

129145

161177

1

65

129

117

3349

Input Index A(k)

Output Index B(j)

ad

jac

en

t3

su

b-c

arr

rie

rs

adjacent FEC coded bits

different OFDM symbols

different OFDM symbols

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 17

doc.: IEEE 802.11-04/934r1

Submission

Generalized 3D Joint InterleaverNI =width of 3D interleaver=number of OFDM symbols

Ncolumn=length of 3D interleaver=number of columns

Nrow=NCBPS/Ncolumn=height of 3D interleaver=number of rows

NSCPC=NCBPS/Nrow=number of subcarriers in one column

NCBPS= Nrow Ncolumn=number of bits per OFDM symbol

NSC = NSCPR Ncolumn=number of subcarriers per OFDM symbol

Guaranteed separation of consecutive coded bits is NSCPC subcarriers.Guaranteed separation of coded bits in consecutive subcarriers is (NINcolumn) bits First permutation rule

where Second permutation rule

where

Icolumncolumn

column

CBPSIcolumnI

columnCBPS NN

floor)N mod(N

NN modNmodN mod

N

kfloorN

kkki

1NN , 1, 0, ICBPS k

1NN , 1, 0, and )1,2/Nmax ICBPSBPSC is

s

ii

s

is

ij mod

N

NmodNfloorNNmod

Nmodfloor

NfloorN

CBPS

CBPScolumnCBPSCBPS

CBPS

CBPSCBPS

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 18

doc.: IEEE 802.11-04/934r1

Submission

Generalized 3D Joint Interleaver1

2

3Input Index A(k)

Output Index B(j)

1

23

OFDM 0

OFDM 1

OFDM 2

OFDM 3

NI bits

Ncolumn bits

Nrow bits

NSCPC=Nrow/NBPSC

Sub-carriers

Applicable to all numbers of TX antennas, e.g., NI=1,2,3,4,5,…Applicable to all QAM modulations, e.g., NBPSC=1(BPSK),2(QPSK),4(16QAM), 6(64QAM),8,…Applicable to both 20MHz and 40 MHz bandwidth

EX: NSC=48 (11a),54,96,108,114, or other numbers of subcarriersEX: Ncolumn=6, 16 (11a),18 or other numbers of bits per column

•Choose Ncolumnconsecutive coded bits has NSCPR=NSC/Noolumn subcarriers separationEX: BW=40MHz, NSC=108, Ncolumn=18, NSCPR=6 subcarriers separation

NSC (subcarriers)= NSCPR Ncolumn

NCBPS (bits)= Nrow Ncolumn

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 19

doc.: IEEE 802.11-04/934r1

Submission

3D Joint Interleaver vs. Parallel 11a Interleaver (A2)

• Channel D, half lambda, 2X2 SMX• 3D Joint interleaver performs better as expected.

0

63

126

5 10 15 20 25 30 35

SNR (dB) at 10% PER

Rat

e (M

bps)

3D Interleaver

Parallel 11a Interleavers (A2)

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 20

doc.: IEEE 802.11-04/934r1

Submission

3D Joint interleaver vs. 2D Joint 11a Interleaver (B1)

• Channel B, half lambda, 2(4)X2 CSMX• 3D Joint Interleaver performs better.

0

63

126

5 10 15 20 25 30 35

SNR (dB) at 10% PER

Rat

e (M

bps)

3D Interleaver

2D Interleaver

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 21

doc.: IEEE 802.11-04/934r1

Submission

Input/Output Indexing (QPSK, NI=4, NCBPS=96)

0

016

3248

64

15

79

14

78

13

77

1329

4561

1430

4662

1531

4763

128 143142141

1

2

3

1

65

129

117

3349

192

256

320

193

257

321

207

271

206

270

205

269

335334333

Input Index A(k)

Output Index B(j)

36678

174270

276372

84180

186282

37890

31830

126222

228324

36132

2946

102198

204300

12108

114210

30618

096

192288

24120

216312

186

187

276

277

366

367

188278368

228

229

318

319

24

25

23032026

114

115

204

205

294

295

116206296

0

1

2

1

23

231

232

321

322

27

28

23332329

117

118

207

208

297

298

119209299

3

4

5

189

190

279

280

369

370

191281371

228324

36132

229325

37133

230326

38134

231327

39135

232328

40136

233329

41137

186282

378 90

187283

379 91

188284

380 92

189285

381 93

190286

382 94

191287

383 95

OFDM 0

OFDM 1

OFDM 2

OFDM 3

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 22

doc.: IEEE 802.11-04/934r1

Submission

016

3248

1

2

3

117

3349

704 705 717 718 719

0

64

128

1

65

129

192

256

320

193

257

321

15

79

14

78

13

77

1329

4561

1430

4662

1531

4763

143142141

207

271

206

270

205

269

335334333

705721

737753

117

3349

6581

97113

129145

161177

193209

225241

257273

289305

321337

353369

719735

751767

1531

4763

7995

111127

143159

175191

207223

239255

271287

303319

335351

367383

Input/Output Indexing (16QAM, NI=4, NCBPS=192)

Input Index A(k)

Output Index B(j)

733157

349541

552744

168360

373565

757181

63861

253445

456648

72264

58913

205497

408600

24216

229421

61337

0192

384576

48240

432624

373

372

552

553

733

732

375554735

456

457

637

636

48

49

45863950

229

228

408

409

589

588

231410591

0

1

2

1

23

459

460

638

641

51

52

46164053

230

233

411

412

590

593

232413592

3

4

5

374

377

555

556

734

737

376557736

4676465923841959811 382563742

456648

72264

457649

73265

458650

74266

459651

75267

460652

76268

461653

77269

467659

83275

373565

757181

372564

756180

375567

759183

374566

758182

377569

761185

376568

760184

382574

766190

OFDM 0

OFDM 1

OFDM 2

OFDM 3

2nd P

erm

uta

tion

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 23

doc.: IEEE 802.11-04/934r1

Submission

016

32481

2

3

117

3349

1088 1089 1101 1102 1103

0

64

128

1

65

129

192

256

320

193

257

321

15

79

14

78

13

77

1329

4561

1430

4662

1531

4763

143142141

207

271

206

270

205

269

335334333

11031119 1135

1151

1531

4763

7995

111127

143 159175

191

207 223239

255

271287

303319

335351

367383

10891105 1121

1137

117

3349

6581

97 113

129145

161177

193209

225241

257273

289305

321337

353369

Input/Output Indexing (64 QAM, NI=4, NCBPS=288)

Input Index A(k)

Output Index B(j)

1100236

524812

8291117

253541

558846

1134270

95591

379667

684972

108396

88420

308596

613901

37325

342630

91854

0288

576864

74362

650938

558

559

829

830

560828

684

685

955

956

74

72

68695473

342

343

613

614

884

882

344612883

0

1

2

1

23

687

688

958

959

77

75

68995776

345

346

616

617

887

885

347615886

3

4

5

561

562

832

833

563831

7019698835962789817 5758431114

684972

108396

685973

109397

686974

110398

687975

111399

688976

112400

689977

113401

701989

125413

1100

1098

1099

1103

1101

1102

558846

270

559847

271

560848

272

561849

273

562850

274

563851

275

575863

287

1134

1135

1136

1137

1138

1139

1151

OFDM 0

OFDM 1

OFDM 2

OFDM 3

2nd P

erm

uta

tion

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 24

doc.: IEEE 802.11-04/934r1

Submission

TGn Sync Interleaver (IEEE 802.11-04/889r0)

• Ex. 20 MHz, NBPSC=1, NI=4, NCBPS=48, Ncolumn=16

• Note: NSS=4 in the definition of above document.

j  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 47

k, OFDM 0 0 64 128 4 68 132 8 72 136 12 76 140 16 80 144 20 … 188

k, OFDM 1 61 125 189 1 65 129 5 69 133 9 73 137 13 77 141 17 … 185

k, OFDM 2 58 122 186 62 126 190 2 66 130 6 70 134 10 74 138 14 … 182

k, OFDM 3 55 119 183 59 123 187 63 127 191 3 67 131 7 71 135 11 … 179

• Adjacent bits (ex. A(0), A(1), …, A(11)) are not evenly distributed over all subcarriers• Adjacent bits (ex. A(3),A(6),A(9),A(12)) are assigned to the same subcarrier.

• Winbond proposed 3D Joint Interleaver, NBPSC=1, NI=4, NCBPS=48, Ncolumn=16

j  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

k, OFDM 0 0 64 128 17 81 145 34 98 162 51 115 179 4 68 132 21 …

k, OFDM 1 16 80 144 33 97 161 50 114 178 3 67 131 20 84 148 37 …

k, OFDM 2 32 96 160 49 113 117 2 66 130 19 83 147 36 100 164 53 …

k, OFDM 3 48 112 176 1 65 129 18 82 146 35 99 163 52 116 180 5 …

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 25

doc.: IEEE 802.11-04/934r1

Submission

WWiSE Interleaver (IEEE 11-04-0886-00-000n)

• Ex. 20 MHz, NBPSC=1, NI=4, NCBPS=54• Note: NCBPS=216, NSS=NI, IDEPTH=Ncolumn in the definition of above document.

 j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 …

k, OFDM 0 0 24 48 72 96 120 144 168 192 4 28 52 76 100 124 148 172 196 8 …

k, OFDM 1 121 145 169 193 5 29 53 77 101 125 149 173 197 9 33 57 81 105 129 …

k, OFDM 2 30 54 78 102 126 150 174 198 10 34 58 82 106 130 154 178 202 14 38 …

k, OFDM 3 151 175 199 11 35 59 83 107 131 155 179 203 15 39 63 87 111 135 159 …

 j … 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

k, OFDM 0 … 64 88 112 136 160 184 208 20 44 68 92 116 140 164 188 212

k, OFDM 1 … 185 209 21 45 69 93 117 141 165 189 213 1 25 49 73 97

k, OFDM 2 … 94 118 142 166 190 214 2 26 50 74 98 122 146 170 194 6

k, OFDM 3 … 215 3 27 51 75 99 123 147 171 195 7 31 55 79 103 127

• Adjacent bits (ex. A(0), A(1), …, A(11)) are not evenly distributed over subcarriers.• Some adjacent bits (ex. A(21), A(27)) are on the same subcarrier.

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 26

doc.: IEEE 802.11-04/934r1

Submission

WWiSE Interleaver (IEEE 11-04-0886-00-000n)

• Note: Equation (14) in the above doc. has been changed from

to

to shift Dn subcarriers for NBPSC=1,2,4 and 6.

• Winbond proposed 3D Joint Interleaver, NBPSC=1, NI=4, NCBPS=54, Ncolumn=18

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 …

k, OFDM 0 0 72 144 19 91 163 38 110 182 57 129 201 4 76 148 23 95 167 6 …

k, OFDM 1 18 90 162 37 109 181 56 128 200 3 75 147 22 94 166 41 113 185 24 …

k, OFDM 2 36 108 180 55 127 199 2 74 146 21 93 165 40 112 184 59 131 203 41 …

k, OFDM 3 54 126 198 1 73 145 20 92 164 39 111 183 58 130 202 5 75 149 59 …

)/NN( mod )sD2/NN( SSCBPSnSSCBPS jjn

)/NN( mod )DN/NN( SSCBPSnBPSCSSCBPS jjn

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 27

doc.: IEEE 802.11-04/934r1

Submission

PART-II: Circulation Transmission

Transmission Options:(A) Circular Spatial Multiplexing (CSMX)(B) Circular Space-Time Alamouti (CALA)

Circulation Options: (C) OFDM Symbol Based Circulation (S_BC)(D) Sub-carrier Based Circulation (Sub_BC)

NOTE: The same proposed 3D Joint Interleaver is applied for all above options.

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 28

doc.: IEEE 802.11-04/934r1

Submission

Why Circulation? Circulation is one simple way to achieve all

available diversities including space, frequency, and time.

When Circulation? Always. Especially when transmitting NOFDM (M)

at the same time from M TX antennas.

How Circulation?• Together with proposed 3D Joint Interleaver to

explore all available diversities

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 29

doc.: IEEE 802.11-04/934r1

Submission

(A) Circular Spatial Multiplexing (CSMX)

Transmitting NOFDM (M) OFDM Symbols from M TX Antennas

High throughputs if high SNR

(B) Circular of Space-Time Alamouti Code (CALA)

Simple to encode and decode

Can be easily modified to be compatible with 11a/g

Circular Alamouti is applied if more than two transmit antennas

Circulation bases on two OFDM symbols to preserve orthogonality

Definition: NOFDM (M) denotes a MIMO system transmits NOFDM OFDM symbols at the same time from M TX antennas

Transmission Options

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 30

doc.: IEEE 802.11-04/934r1

Submission

Circulation Options for CSMX Systems

(C) OFDM symbol-based circulation (S_BC) Only NOFDM IFFTs are required

Only NOFDM TX Ant. are transmitting at the same time

(D) Subcarrier-based circulation (Sub_BC) M IFFTs are required All M TX Ant. are transmitting at the same time Smaller size of interleaver than S_BC Smaller processing delay than S_BC

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 31

doc.: IEEE 802.11-04/934r1

Submission

Circulation Options for CALA Systems (NOFDM=2)

(C) OFDM symbol-based circulation (S_BC) Only 2 IFFTs are required Only 2 TX Ant. are transmitting at the same time

(D) Subcarrier-based circulation (Sub_BC) M IFFTs are required All M TX Ant. are transmitting at the same time Smaller size of interleaver than S_BC Smaller processing delay than S_BC

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 32

doc.: IEEE 802.11-04/934r1

Submission

Example of a 2 (3) CSMX System

FEC(1/2 CC andpuncturing)

IFFT

1000bytes

64 GI 80

Interleaver2*NCBPS

48

(D)Circulationbased on

sub-carrier

IFFT 64 GI 8048

IFFT 64 GI 8048

Mapper 48

Mapper 48

FEC(1/2 CC andpuncturing)

IFFT1000bytes

64 GI 80

IFFT 64 GI 80

Mapper

Interleaver6*NCBPS

48

Mapper 48

(C)Circulationbased on

OFDMsymbol

80

80

80

Only twoof themare active.

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 33

doc.: IEEE 802.11-04/934r1

Submission

Example of a 2 (3) CALA System

FEC(1/2 CC andpuncturing)

Interleaver6*NCBPS

Mapper

IFFT1000bytes

64 GI 80

Alamouti

Alamouti

IFFT 64 GI 80

48

48

(C)Circulationbased on

OFDMsymbol

FEC(1/2 CC andpuncturing)

Interleaver2*NCBPS

Mapper

IFFT1000bytes

64 GI 80

Alamouti

Alamouti

48

48

(D)Circulationbased on

sub-carrier

IFFT 64 GI 80

IFFT 64 GI 80

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 34

doc.: IEEE 802.11-04/934r1

Submission

Interleaver Outputs Before Circulation Transmission

• S-BC (Ex. NI=6, NOFDM=2, M=3)

• Sub-BC (Ex. NI=2, NOFDM=2, M=3)

OFDM0 S/P Conv.

based onNpattren ODFM

symbol

OFDM5

...OFDM

13D Interleaver

(NI)

OFDM0

OFDM2

OFDM1

OFDM3

OFDM5

OFDM4

NOFDM

NPattern

OFDM0 S/P Conv.

based onODFM symbol

OFDM1

3D Interleaver(NI)

OFDM0

OFDM1

NOFDM

(D) Sub_BC

(C) S_BC

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 35

doc.: IEEE 802.11-04/934r1

Submission

Circulation Patterns for CSMXPattern #

Systems0 1 2 3 4 5

1(1) 0 N/A N/A N/A N/A N/A

1(2) 0 1 N/A N/A N/A N/A

1(3) 0 1 2 N/A N/A N/A

1(4) 0 1 2 3 N/A N/A

2(2) (0,1) N/A N/A N/A N/A N/A

2(3) (0,1) (2,1) (2,0) N/A N/A N/A

2(4) (0,1) (3,2) (0,2) (1,3) (1,2) (0,3)

3(3) (0,1,2) N/A N/A N/A N/A N/A

3(4) (0,1,2) (3,1,2) (3,0,2) (3,0,1) N/A N/A

4(4) (0,1,2,3) N/A N/A N/A N/A N/A

SystemsNI

S_BC Sub_BC

1(1) 1 1

1(2) 2 1

1(3) 3 1

1(4) 4 1

2(2) 2 2

2(3) 6 2

2(4) 12 2

3(3) 3 3

3(4) 12 3

4(4) 4 4

NPattern= =Number of circulation patterns for both S_BC and Sub_BC NI=NOFDMX NPattern for CSMX systems with S_BC

NI=NOFDM for CSMX systems with Sub_BC

NOTE: Bigger NI implies bigger HW size and longer decoding delay

OFDMN

M

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 36

doc.: IEEE 802.11-04/934r1

Submission

Circulation Patterns for CALA

Pattern #Systems

0 1 2 3 4 5

2(2) (0,1) N/A N/A N/A N/A N/A

2(3) (0,1) (2,1) (2,0) N/A N/A N/A

2(4) (0,1) (3,2) (0,2) (1,3) (1,2) (0,3)

SystemsNI

S_BC Sub_BC

2(2) 2 2

2(3) 6 2

2(4) 12 2

NPattern= = Number of circulation patterns for both S_BC and Sub_BC

NI=NOFDM x NPattern for CALA systems with S_BC

NI=NOFDM for CALA systems with Sub_BC

NOTE: Bigger NI implies bigger HW size and longer decoding delay

OFDMN

M

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 37

doc.: IEEE 802.11-04/934r1

Submission

Sub-carrier mapping for Sub-BC

System MIMO (M)N afor N

MN

470,1,2,...,sindex carrier -subfor

Nmod )]3 mod ()3/(floor[)(Pattern

OFDMOFDM

Pattern

Pattern

sss

Coded bits fromFEC outputs Circulation

48

48

3DInteaver(NSPI=2)

96Mapper(BPSK)

48

48

A(k)

D0(s)

D1(s)

D2(s)

IFFT

IFFT

IFFT

C0(s)

C1(s)

OFDM 0

OFDM 1

Example: 2(3) MIMO System CSMX with Sub_BC

11a/g sub-carrier intrerleavingwith 3-sub-carrier separation

Circulation subcarriersInto all TX antennas

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 38

doc.: IEEE 802.11-04/934r1

Submission

Example: 2(3) MIMO System CSMX with Sub_BC

s 0 1 2 3 4 5 6 7 8 9 10 … 45 46 47

Pattern(s) 0 1 2 1 2 0 2 0 1 0 1 … 0 1 2

D0(s) A(0) 0 A(80) 0 A(33) A(81) A(18) A(34) 0 A(19) 0 … A(31) 0 A(79)

D1(s) A(16) A(48) 0 A(1) 0 A(65) 0 A(50) A(82) A(3) A(35) … A(15) A(47) 0

D2(s) 0 A(32) A(64) A(17) A(49) X A(2) 0 A(66) 0 A(51) … 0 A(63) A(95)

s 0 1 2 3 4 5 6 7 8 9 10 … 45 46 47

Pattern(s) 0 1 2 1 2 0 2 0 1 0 1 … 0 1 2

D0(s) C0(0) X C1(2) X C1(4) C0(5) C1(6) C0(7) X C0(9) X … C0(45) X C1(47)

D1(s) C1(0) C1(1) X C1(3) X C1(5) X C1(7) C1(8) C1(9) C1(10) … C1(45) C1(46) X

D2(s) X C0(1) C0(2) C0(3) C0(4) X C0(6) X C0(8) X C0(10) … X C0(46) C0(47)

Subcarrier 0 1 2 3 4 5 6 7 8 9 10 … 45 46 47

OFDM 0,C0(s) A(0) A(32) A(64) A(17) A(49) A(81) A(2) A(34) A(66) A(19) A(51) … A(31) A(63) A(95)

OFDM 1, C1(s) A(16) A(48) A(80) A(1) A(33) A(65) A(18) A(50) A(82) A(3) A(35) … A(15) A(47) A(79)

PatternN mod )]3 mod ()3/(floor[)(Pattern sss

Coded bits fromFEC outputs Circulation

48

48

3DInteaver(NSPI=2)

96Mapper(BPSK)

48

48

A(k)

D0(s)

D1(s)

D2(s)

IFFT

IFFT

IFFT

C0(s)

C1(s)

OFDM 0

OFDM 1

Adjacent bits have 3-subcarrier separations and circulate into M TX antennas.

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 39

doc.: IEEE 802.11-04/934r1

Submission

Example: 2(3) MIMO CSMX System with S_BC

  pattern 0 1 2

TX # 0 OFDM 0 X OFDM 5

  1 OFDM 3 OFDM 4 X

  2 X OFDM 1 ODFM 2

Circulationbased on

OFDMsymbols

3 OFDM symbols

3 OFDM symbols

3DInterleaaver

(NI=6)

OFDM 2 OFDM 1 OFDM 0

OFDM 3OFDM 1

OFDM 4OFDM 2

OFDM 0OFDM 5

Mapper

IFFT

IFFT

OFDM 5 OFDM 4 OFDM 3

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 40

doc.: IEEE 802.11-04/934r1

Submission

Sub-BC and S-BC in 11n Channel B

Two schemes have similar performances.

Channel B, Half lambda

0

63

126

189

-5 5 15 25 35

SNR (dB) at 10% PER

Ra

te (

Mb

ps)

2(4)X4 CALA (S_BC)

2(4)X4 CALA (Sub_BC)

1(4)X4 CSMX (S_BC)

1(4)X4 CSMX (Sub_BC)

2(4)X4 CSMX (S_BC)

2(4)X4 CSMX (Sub_BC)

3(4)X4 CSMX (S_BC)

3(4)X4 CSMX (Sub_BC)

SystemsNI

S_BC Sub_BC

1(4) 4 1

2(4) 12 2

3(4) 12 3

The interleaver sizeand decoding delayfor Sub_BC is muchsmaller than S_BC.

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 41

doc.: IEEE 802.11-04/934r1

Submission

Sub-BC and S-BC in 11n Channel D

Two schemes have similar performances.

SystemsNI

S_BC Sub_BC

1(4) 4 1

2(4) 12 2

3(4) 12 3

The interleaver sizeand decoding delayfor Sub_BC is muchsmaller than S_BC.

Channel D, Half lambda

0

63

126

189

-5 5 15 25 35

SNR (dB) at 10% PER

Rat

e (M

bps)

2(4)X4 CALA (S_BC)

2(4)X4 CALA (Sub_BC)

1(4)X4 CSMX (S_BC)

1(4)X4 CSMX (Sub_BC)

2(4)X4 CSMX (S_BC)

2(4)X4 CSMX (Sub_BC)

3(4)X4 CSMX (S_BC)

3(4)X4 CSMX (Sub_BC)

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 42

doc.: IEEE 802.11-04/934r1

Submission

RF and BB Related Issues RF Total TX Power for 2(3) MIMO Systems

Assuming max power of each subcarrier is p, Total power of OFDM symbol based circulation = 48 * p * 2 = P Total power of modulated symbol based circulation= 32 * p * 3 = P Power per antenna is P/2 for S_BC and P/3 for (Sub_BC)

Baseband (BB) hardware requires Two IFFT/FFT for S_BC and Three for Sub_BC NOTE: Bigger NI implies bigger HW size and longer decoding delay

Example: 2(4) CSMX requires NI=12 for S_BC and NI=2 for Sub_BC

If the power consumption of more active TX antennas at RF and more active IFFT/FFT at BB are acceptable, Sub_BC is recommended with minimal decoding delay and interleaver size.

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 43

doc.: IEEE 802.11-04/934r1

Submission

Backward Compatibility with 11a/g• The proposed 3D Joint Intereleaver is backward

compatible to the standardized 11g/11a 2D interleaver– If NI=1, the 3D joint interleaver becomes a 2D 11a/g interleaver

– The 3D joint based on 3-subcarrier separation is backward compatible to 11a/g interleaver for all 8 11a data rates

– Same 2nd permutation as 11a

• Both proposed circulation options (C) S_BC and (D) Sub_BC are backward compatible with 11a interleaver– No circulation (Npattern=1) for option (C) S_B Circulation

– The 3-subcarrier separation of consecutive mapped data of option (D) Sub_BC is the same as the 11a interleaver

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 44

doc.: IEEE 802.11-04/934r1

Submission

High Throughput Requirement for 11n

• The proposed 3D Joint Intereleaver can be implemented into a general MIMO systems with M TX antenna

• The proposed 3D Joint interleaver supports all 8 data rates in 11a

• Tables up to 4x4 MIMO systems are shown in this proposal.

For a NOFDM (M) MIMO system with MNOFDM=1,2,…,6,…

Size of proposed 3D Joint Interleaver=NI= NOFDM x

Example: M=4, data rate of a 4(4) CSMX system is Mx54=216 Mbps

The proposed interleaver is a 4x16x18 3D interleaver (NI=4)

• For a general NOFDM (M) MIMO system, the proposed 3D Joint interleaver can support data rates up to Mx54 Mbps in 20MHz bandwidth, M is any integer

OFDMN

M

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 45

doc.: IEEE 802.11-04/934r1

Submission

Conclusions

• Proposed 3D Joint Interleaver which intereleaves adjacent FEC coded bits into all available diversities in space, frequency, and time is recommended.

• Proposed 3D Joint Interleaver is backward compatible with 11a/g standard interleaver.

• Proposed OFDM symbol based circulation and sub-carrier based circulation can be applied in all MIMO mode with arbitrary TX antennas, and transmission schemes (CSMX,CALA).

• Proposed S_BC and Sub_BC is backward compatible to 11a/g.

• Proposed Sub_BC with minimal decoding delay is recommended

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 46

doc.: IEEE 802.11-04/934r1

Submission

PART-III:

Coding Rates Selection and MIMO Tables

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 47

doc.: IEEE 802.11-04/934r1

Submission

Code rate selection

• 11a selection– 6, 9, 12, 18, 24, 36, 48, 54 Mbps– Two problems

• 9 Mbps (BPSK, 3/4) performs bad.• 48 and 54 Mbps is only 6 Mbps difference.

• Suggestion– Introducing new low code rate

• Rate 1/3 is generated by repetition of the rate 1/2 coded bits (next page)• 9 Mbps (BPSK, 3/4) 8Mbps (QPSK, 1/3)

– Introducing new puncturing to increase the max. rate.• 7/8 by puncturing pattern (1111010, 1000101)• 54 Mbps 63 Mbps

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 48

doc.: IEEE 802.11-04/934r1

Submission

Convolutionalcode

(1/2, K=7)

Repetition(2/3)

A(0) A(1) A(2) A(3) ... A(0)A(0) A(1) A(2)A(2) A(3) ...

NDBPS=32 (8Mbps) NCBPS=96

QPSK

NBPSC=2

Generate Rate 1/3 from Rate 1/2

• To decrease the coding rate from 1/2 to 1/3

• Two possible ways– New optimal code: (133, 145, 175) dfree=15

• New Viterbi decoder is required Not recommended

– By repetition every other coded bit: dfree=15

• Same Viterbi decoder (mother code rate=½) can be used

• Repetition method is used for simulations

Rate=1/3Rate=1/2

64 coded bits

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 49

doc.: IEEE 802.11-04/934r1

Submission

Code rate selection

• Consistent decrease the rates (24% - 33%) by introducing 7/8 rate

• 9 Mbps is replaced by 8 Mbps.

15

12

12

6

6

2

4

Rate (Mbps) 64QAM 16QAM QPSK BPSK

63 7/8      54 3/4      48 2/3      42   7/8    36 1/2 3/4    32   2/3    24 1/3 1/2    21     7/8  18   3/4  16   1/3 2/3  12   1/2  10.5       7/8

9       3/4

8     1/3 2/3

6     1/2

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 50

doc.: IEEE 802.11-04/934r1

Submission

Code rate selection

• Channel D, half lambda

• New selection of rates provides more smooth curves, higher data rate

11a selection

0

63

126

0 10 20 30

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X2 CALA

1(2)X2 CSMX

2(2)X2 CSMX

54 Mbps

9 Mbps

New selection

0

63

126

0 10 20 30

SNR (dB) at 10% PERR

ate

(Mbp

s)

2(2)X2 CALA

1(2)X2 CSMX

2(2)X2 CSMX

63 Mbps

8 Mbps

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 51

doc.: IEEE 802.11-04/934r1

Submission

2(M) CALA vs. 1(M) CSMX

• Channel D, half lambda• CALA performs slightly better than 1(M)CSMX.

0

10

20

30

40

50

60

-5 0 5 10 15 20 25

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X2 CALA

2(3)X2 CALA

2(4)X2 CALA

2(2)X3 CALA

2(3)X3 CALA

2(4)X3 CALA

2(2)X4 CALA

2(3)X4 CALA

2(4)X4 CALA

1(2)X2 CSMX

1(3)X2 CSMX

1(4)X2 CSMX

1(2)X3 CSMX

1(3)X3 CSMX

1(4)X3 CSMX

1(2)X4 CSMX

1(3)X4 CSMX

1(4)X4 CSMX

CALA

CSMX

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 52

doc.: IEEE 802.11-04/934r1

Submission

Conclusions• Proposed new rate, 63 Mbps with new puncturing

– Shown to be good for increasing max. rate and consistent rate decreases.

– Easily implemented with small hardware addition for new puncturing

• Proposed new rate, 8 Mbps with repetition– Shown to be better performance than 9 Mbps

– Compatible to 11a/g Viterbi decoder

• 2(M) CALA vs. 1(M) CSMX– 2(M) CALA always performs better than 1(M) CSMX

– Average performance improvement is less than 0.5 dB

– 1(M) CSMX is still a candidate since• Simpler at both TX and RX

• Less decoding delay at RX – For 2(M) CALA, at least two OFDM symbol decoding delay is required

– For 1(M) CSMX, only one OFDM symbol decoding delay is required

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 53

doc.: IEEE 802.11-04/934r1

Submission

MIMO Mode Table• MIMO mode table has been developed in DCN 802.11-04/553r0 based on

– Uncorrelated exponential MIMO channels with rms delay spread 50 nsec– CALA and CSMX only– ZFE

• We develop our MIMO mode table based on– Uncorrelated exp. and channel models given in IEEE P802.11-03/940r3

• Channel B, D and E with half lamda antenna separation• Exponential Channels with 15, 50 and 100 nsec

– CALA, CSMX– MMSE decoding at receiver

• Some results– Alamouti vs. Circular Alamouti: only small gain for all cases– SMX vs. Circular SMX: large gain especially for small delay spread and non-

zero correlation

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 54

doc.: IEEE 802.11-04/934r1

Submission

MIMO Mode Table (M=2,3 or 4, N=2)

Rate (Mbps)

MIMO SchemeModulati

onCoding

RateRate decrease Condition

126(63X2) CSMX 64QAM 7/8 (new) N/A

96(48X2) CSMX 64QAM 2/3 24%

63 CSMX or CALA 64QAM 7/8 (new) 34%

48 CSMX or CALA 64QAM 2/3 24%

36 CSMX or CALA 16QAM 3/4 25%

24 CSMX or CALA 16QAM 1/2 33%

18 CSMX or CALA QPSK 3/4 25%

12 CSMX or CALA QPSK 1/2 33%

8 CSMX or CALA QPSK 1/3 (new) 33%

6 CSMX or CALA BPSK 1/2 25%

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 55

doc.: IEEE 802.11-04/934r1

Submission

MIMO Mode Table (M=2,3 or 4, N=3)

Rate (Mbps) MIMO SchemeModula

tionCoding

RateRate

DecreaseCondition

189(63X3) CSMX 64QAM 7/8 (new) N/A M=3 only

126(63X2) CSMX 64QAM 7/8 (new) 33%

96(48X2) CSMX 64QAM 2/3 24%

72(36X2)or 63

CSMXCSMX or CALA

16QAM64QAM

3/47/8

25%34%

48(24X2)or 48

CSMXCSMX or CALA

64QAM 2/333%

(24%)

36 CSMX or CALA 16QAM 3/4 25%

24 CSMX or CALA 16QAM 1/2 33%

18 CSMX or CALA QPSK 3/4 25%

12 CSMX or CALA QPSK 1/2 33%

8 CSMX or CALA QPSK 1/3 (new) 33%

6 CSMX or CALA BPSK 1/2 25%

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 56

doc.: IEEE 802.11-04/934r1

Submission

MIMO Mode Table (M=2, N=4)

Rate (Mbps)MIMOScheme

Modulation

Coding RateRate

IncreaseCondition

126(63X2) CSMX 64QAM 7/8 (new) N/A

96(48X2) CSMX 64QAM 2/3 24%

72(36X2) CSMX 16QMA 3/4 25%

48(24X2)or 48

CSMXCSMX or CALA

16QAM64QAM

1/22/3

33%

36(18X2)or 36

CSMXCSMX or CALA

QPSK16QAM

3/43/4

25%

24(12X2)or 24

CSMXCSMX or CALA

QPSK16QAM

1/21/2

33%

18 CSMX or CALA QPSK 3/4 25%

12 CSMX or CALA QPSK 1/2 33%

8 CSMX or CALA QPSK 1/3 (new) 33%

6 CSMX or CALA BPSK 1/2 25%

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 57

doc.: IEEE 802.11-04/934r1

Submission

MIMO Mode Table (M=3 or 4, N=4)Rate (Mbps)

MIMOScheme

Modulation

Coding Rate

Rate Decrease

Condition

252(63X4) CSMX 64QAM 7/8 (new) N/A M=4 only

189(63X3) CSMX 64QAM 7/8 (new) 25%

144(48X3) CSMX 64QAM 2/3 24%

108(36X3) CSMX 16QAM 3/4 25%

72(24X3) or 72(36X2)

CSMXQPSK

16QMA1/23/4

33%

48(24X2)or 48

CSMXCSMX or CALA

16QAM64QAM

1/2 33%

36(18X2)or 36

CSMXCSMX or CALA

QPSK16QAM

3/43/4

25%

24(12X2)or 24

CSMXCSMX or CALA

QPSK16QAM

1/21/2

33%

18 CSMX or CALA QPSK 3/4 25%

12 CSMX or CALA QPSK 1/2 33%

8 CSMX or CALA QPSK 1/3 (new) 33%

6 CSMX or CALA BPSK 1/2 25%

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 58

doc.: IEEE 802.11-04/934r1

Submission

PART-IV: Simulation Results

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 59

doc.: IEEE 802.11-04/934r1

Submission

Simulation Results

• 11n Channel B (rms delay spread=15ns), D (50ns), and E (100ns)

• 11a/g uncorrelated exponential channels with rms delay spread=15ns, 50ns, and 100ns

• Number of receiver antennas, N=2,3,4 are simulated

• CSMX and CALA are simulated

• TX/RX antennas from 2x2 up to 4x4 are simulated

• Proposed Joint Interelaver is applied to all cases

• Antenna spacing is ½ • MMSE decoding at receiver

• Details of simulation parameters are listed on page 1.

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 60

doc.: IEEE 802.11-04/934r1

Submission

11n Channel B (rms=15ns), N=2

Channel B, Half lambda

0

63

126

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X2 CALA

2(3)X2 CALA

2(4)X2 CALA

1(2)X2 CSMX

1(3)X2 CSMX

1(4)X2 CSMX

2(2)X2 CSMX

2(3)X2 CSMX

2(4)X2 CSMX

SMXv.s.CSMX

Improvements found when compared CSMX v.s. SMX and CALA v.s. ALA

2x63Mbps

2x48 Mbps

2x36 Mbps

2x24 Mbps

2x18 Mbps

2x12 Mbps

2x8 Mbps2x6 Mbps

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 61

doc.: IEEE 802.11-04/934r1

Submission

11n Channel B (rms=15ns), N=3Channel B, Half lambda

0

63

126

189

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X3 CALA

2(3)X3 CALA

2(4)X3 CALA

1(2)X3 CSMX

1(3)X3 CSMX

1(4)X3 CSMX

2(2)X3 CSMX

2(3)X3 CSMX

2(4)X3 CSMX

3(3)X3 CSMX

3(4)X3 CSMX

SMXv.s.CSMXSMX

v.s.CSMX

CSMXv.s.CALA

2(M) 1(M) 2(M)CSMX v.s. CSMX vs CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 62

doc.: IEEE 802.11-04/934r1

Submission

11n Channel B (rms=15ns), N=4

Channel B, Half lambda

0

63

126

189

252

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X4 CALA

2(3)X4 CALA

2(4)X4 CALA

1(2)X4 CSMX

1(3)X4 CSMX

1(4)X4 CSMX

2(2)X4 CSMX

2(3)X4 CSMX

2(4)X4 CSMX

3(3)X4 CSMX

3(4)X4 CSMX

4(4)X4 CSMX

SMXv.s.CSMX

SMXv.s.CSMX

CSMXv.s.CALA

2(M) 1(M) 2(M)CSMX v.s. CSMX vs CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 63

doc.: IEEE 802.11-04/934r1

Submission

11n Channel D (rms=50ns), N=2Channel D, Half lambda

0

63

126

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X2 CALA

2(3)X2 CALA

2(4)X2 CALA

1(2)X2 CSMX

1(3)X2 CSMX

1(4)X2 CSMX

2(2)X2 CSMX

2(3)X2 CSMX

2(4)X2 CSMX

SMXv.s.CSMX

CSMXv.s.CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 64

doc.: IEEE 802.11-04/934r1

Submission

11n Channel D (rms=50ns), N=3Channel D, Half lambda

0

63

126

189

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X3 CALA

2(3)X3 CALA

2(4)X3 CALA

1(2)X3 CSMX

1(3)X3 CSMX

1(4)X3 CSMX

2(2)X3 CSMX

2(3)X3 CSMX

2(4)X3 CSMX

3(3)X3 CSMX

3(4)X3 CSMX

SMXv.s.CSMX

SMXv.s.CSMX

CSMXv.s.CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 65

doc.: IEEE 802.11-04/934r1

Submission

11n Channel D (rms=50ns), N=4

Channel D, Half lambda

0

63

126

189

252

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X4 CALA

2(3)X4 CALA

2(4)X4 CALA

1(2)X4 CSMX

1(3)X4 CSMX

1(4)X4 CSMX

2(2)X4 CSMX

2(3)X4 CSMX

2(4)X4 CSMX

3(3)X4 CSMX

3(4)X4 CSMX

4(4)X4 CSMX

SMXv.s.CSMX

SMXv.s.CSMX

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 66

doc.: IEEE 802.11-04/934r1

Submission

11n Channel E (rms=100ns), N=2Channel E, Half lambda

0

63

126

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X2 CALA

2(3)X2 CALA

2(4)X2 CALA

1(2)X2 CSMX

1(3)X2 CSMX

1(4)X2 CSMX

2(2)X2 CSMX

2(3)X2 CSMX

2(4)X2 CSMX

SMXv.s.CSMX

CSMXv.s.CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 67

doc.: IEEE 802.11-04/934r1

Submission

11n Channel E (rms=100ns), N=3Channel E, Half lambda

0

63

126

189

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X3 CALA

2(3)X3 CALA

2(4)X3 CALA

1(2)X3 CSMX

1(3)X3 CSMX

1(4)X3 CSMX

2(2)X3 CSMX

2(3)X3 CSMX

2(4)X3 CSMX

3(3)X3 CSMX

3(4)X3 CSMX

SMXv.s.CSMX

SMXv.s.CSMX

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 68

doc.: IEEE 802.11-04/934r1

Submission

11n Channel E (rms=100ns), N=4Channel E, Half lambda

0

63

126

189

252

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X4 CALA

2(3)X4 CALA

2(4)X4 CALA

1(2)X4 CSMX

1(3)X4 CSMX

1(4)X4 CSMX

2(2)X4 CSMX

2(3)X4 CSMX

2(4)X4 CSMX

3(3)X4 CSMX

3(4)X4 CSMX

4(4)X4 CSMX

SMXv.s.CSMX

SMXv.s.CSMX

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 69

doc.: IEEE 802.11-04/934r1

Submission

Exponential Channel, rms=15ns, N=2Exp. Channel (rms=15 nsec)

0

63

126

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X2 CALA

2(3)X2 CALA

2(4)X2 CALA

1(2)X2 CSMX

1(3)X2 CSMX

1(4)X2 CSMX

2(2)X2 CSMX

2(3)X2 CSMX

2(4)X2 CSMX

SMXv.s.CSMX

CSMXv.s.CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 70

doc.: IEEE 802.11-04/934r1

Submission

Exponential Channel, rms=15ns, N=3Exp. Channel (rms=15 nsec)

0

63

126

189

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X3 CALA

2(3)X3 CALA

2(4)X3 CALA

1(2)X3 CSMX

1(3)X3 CSMX

1(4)X3 CSMX

2(2)X3 CSMX

2(3)X3 CSMX

2(4)X3 CSMX

3(3)X3 CSMX

3(4)X3 CSMX

SMXv.s.CSMX

SMXv.s.CSMX

CSMXv.s.CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 71

doc.: IEEE 802.11-04/934r1

Submission

Exponential Channel, rms=15ns, N=4

Exp. Channel (rms=15 nsec)

0

63

126

189

252

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X4 CALA

2(3)X4 CALA

2(4)X4 CALA

1(2)X4 CSMX

1(3)X4 CSMX

1(4)X4 CSMX

2(2)X4 CSMX

2(3)X4 CSMX

2(4)X4 CSMX

3(3)X4 CSMX

3(4)X4 CSMX

4(4)X4 CSMX

SMXv.s.CSMX

SMXv.s.CSMX

CSMXv.s.CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 72

doc.: IEEE 802.11-04/934r1

Submission

Exponential Channel, rms=50ns, N=2

Exp. Channel (rms=50 nsec)

0

63

126

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X2 CALA

2(3)X2 CALA

2(4)X2 CALA

1(2)X2 CSMX

1(3)X2 CSMX

1(4)X2 CSMX

2(2)X2 CSMX

2(3)X2 CSMX

2(4)X2 CSMX

SMXv.s.CSMX

CSMXv.s.CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 73

doc.: IEEE 802.11-04/934r1

Submission

Exponential Channel, rms=50ns, N=3Exp. Channel (rms=50 nsec)

0

63

126

189

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X3 CALA

2(3)X3 CALA

2(4)X3 CALA

1(2)X3 CSMX

1(3)X3 CSMX

1(4)X3 CSMX

2(2)X3 CSMX

2(3)X3 CSMX

2(4)X3 CSMX

3(3)X3 CSMX

3(4)X3 CSMX

SMXv.s.CSMXSMX

v.s.CSMX

CSMXv.s.CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 74

doc.: IEEE 802.11-04/934r1

Submission

Exponential Channel, rms=50ns, N=4

Exp. Channel (rms=50 nsec)

0

63

126

189

252

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X4 CALA

2(3)X4 CALA

2(4)X4 CALA

1(2)X4 CSMX

1(3)X4 CSMX

1(4)X4 CSMX

2(2)X4 CSMX

2(3)X4 CSMX

2(4)X4 CSMX

3(3)X4 CSMX

3(4)X4 CSMX

4(4)X4 CSMX

SMXv.s.CSMX

SMXv.s.CSMX

CSMXv.s.CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 75

doc.: IEEE 802.11-04/934r1

Submission

Exponential Channel, rms=100ns, N=2Exp. Channel (rms=100 nsec)

0

63

126

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X2 CALA

2(3)X2 CALA

2(4)X2 CALA

1(2)X2 CSMX

1(3)X2 CSMX

1(4)X2 CSMX

2(2)X2 CSMX

2(3)X2 CSMX

2(4)X2 CSMX

SMXv.s.CSMX

CSMXv.s.CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 76

doc.: IEEE 802.11-04/934r1

Submission

Exponential Channel, rms=100ns, N=3Exp. Channel (rms=100 nsec)

0

63

126

189

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X3 CALA

2(3)X3 CALA

2(4)X3 CALA

1(2)X3 CSMX

1(3)X3 CSMX

1(4)X3 CSMX

2(2)X3 CSMX

2(3)X3 CSMX

2(4)X3 CSMX

3(3)X3 CSMX

3(4)X3 CSMX

SMXv.s.CSMX

SMXv.s.CSMX

CSMXv.s.CALA

2(M) 1(M) 2(M)CSMX v.s. CSMX vs CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 77

doc.: IEEE 802.11-04/934r1

Submission

Exponential Channel, rms=100ns, N=4

Exp. Channel (rms=100 nsec)

0

63

126

189

252

-5 5 15 25 35 45

SNR (dB) at 10% PER

Rat

e (M

bps)

2(2)X4 CALA

2(3)X4 CALA

2(4)X4 CALA

1(2)X4 CSMX

1(3)X4 CSMX

1(4)X4 CSMX

2(2)X4 CSMX

2(3)X4 CSMX

2(4)X4 CSMX

3(3)X4 CSMX

3(4)X4 CSMX

4(4)X4 CSMX

SMXv.s.CSMX

SMXv.s.CSMX

CSMXv.s.CALA

2(M) 1(M) 2(M)CSMX v.s. CSMX vs CALA

September 2004

Jeng-Hong Chen, Pansop Kim, Winbond Electronics

Slide 78

doc.: IEEE 802.11-04/934r1

Submission

Conclusions

• Proposed 3D interleaver distributes FEC coded bits to all available diversities in space, time, and frequency

• Proposed 3D interleaver is backward compatible to 802.11a systems

• Proposed 3D interleaver is applicable to both 20MHz and 40MHz bandwidths with total 64 or 128 I/FFT subcarriers

• Proposed TX circulations outperform TX schemes without TX circulations (CSMX v.s. SMX, CALA v.s. ALA)

• Proposed sub-carrier based TX circulations which has smaller interelaver size and decoding delay is highly recommended.