dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A,...

12
1 TT Liu, BE280A, UCSD Fall 2008 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2008 MRI Lecture 2 TT Liu, BE280A, UCSD Fall 2008 Bloch Equation dM dt = M " #B $ M x i + M y j T 2 $ M z $ M 0 ( ) k T 1 i, j, k are unit vectors in the x,y,z directions. Precession Transverse Relaxation Longitudinal Relaxation TT Liu, BE280A, UCSD Fall 2008 dM dt = M " #B = # ˆ i ˆ j ˆ k M x M y M z B x B y B z = # ˆ i B z M y $ B y M z ( ) $ ˆ j B z M x $ B x M z ( ) ˆ k B y M x $ B x M y ( ) % & ( ) * * * Free precession about static field B Μ dΜ TT Liu, BE280A, UCSD Fall 2008 dM x dt dM y dt dM z dt " # $ $ $ % & = ( B z M y ) B y M z B x M z ) B z M x B y M x ) B x M y " # $ $ $ % & = ( 0 B z )B y )B z 0 B x B y )B x 0 " # $ $ $ % & M x M y M z " # $ $ $ % & Free precession about static field

Transcript of dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A,...

Page 1: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

1

TT Liu, BE280A, UCSD Fall 2008

Bioengineering 280APrinciples of Biomedical Imaging

Fall Quarter 2008MRI Lecture 2

TT Liu, BE280A, UCSD Fall 2008

Bloch Equation

!

dM

dt=M " #B$

Mxi + My j

T2

$Mz $M0( )k

T1

i, j, k are unit vectors in the x,y,z directions.

PrecessionTransverseRelaxation

LongitudinalRelaxation

TT Liu, BE280A, UCSD Fall 2008

!

dM

dt=M " #B

= #

ˆ i ˆ j ˆ k

Mx My Mz

Bx By Bz

= #

ˆ i Bz My $ By Mz( )$ ˆ j Bz Mx $ Bx Mz( )ˆ k By Mx $ Bx My( )

%

&

' ' '

(

)

* * *

Free precession about static field

B

ΜdΜ

TT Liu, BE280A, UCSD Fall 2008

!

dMx dt

dMy dt

dMz dt

"

#

$ $ $

%

&

' ' '

= (

BzMy ) ByMz

BxMz ) BzMx

ByMx ) BxMy

"

#

$ $ $

%

&

' ' '

= (

0 Bz )By

)Bz 0 Bx

By )Bx 0

"

#

$ $ $

%

&

' ' '

Mx

My

Mz

"

#

$ $ $

%

&

' ' '

Free precession about static field

Page 2: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

2

TT Liu, BE280A, UCSD Fall 2008

Precession

!

dMx dt

dMy dt

dMz dt

"

#

$ $ $

%

&

' ' '

= (

0 B00

)B0

0 0

0 0 0

"

#

$ $ $

%

&

' ' '

Mx

My

Mz

"

#

$ $ $

%

&

' ' '

!

M " Mx + jMy

!

dM dt = d dt Mx + iMy( )= " j#B

0M

Useful to define

Mx

jMy

!

M(t) = M(0)e" j#B0t = M(0)e

" j$0t

Solution is a time-varying phasor

Question: which way does this rotate with time?TT Liu, BE280A, UCSD Fall 2008

Matrix Form with B=B0

!

dMx dt

dMy dt

dMz dt

"

#

$ $ $

%

&

' ' '

=

(1/T2

)B0

0

()B01/T

20

0 0 (1/T1

"

#

$ $ $

%

&

' ' '

Mx

My

Mz

"

#

$ $ $

%

&

' ' '

+

0

0

M0/T1

"

#

$ $ $

%

&

' ' '

TT Liu, BE280A, UCSD Fall 2008

Z-component solution

!

Mz(t) = M

0+ (M

z(0) "M

0)e

" t /T1

!

If Mz(0) = 0 then M

z(t) = M0(1" e

"t /T1 )

Saturation Recovery

Inversion Recovery

!

If Mz(0) = "M0 then M

z(t) = M0(1" 2e

" t /T1 )

TT Liu, BE280A, UCSD Fall 2008

Transverse Component

!

M " Mx + jMy

!

dM dt = d dt Mx + iMy( )= " j #

0+1/T

2( )M

!

M(t) = M(0)e" j#0te

" t /T2

Page 3: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

3

TT Liu, BE280A, UCSD Fall 2008

Summary1) Longitudinal component recovers exponentially.

2) Transverse component precesses and decaysexponentially.

Source: http://mrsrl.stanford.edu/~brian/mri-movies/ TT Liu, BE280A, UCSD Fall 2008

Summary1) Longitudinal component recovers exponentially.

2) Transverse component precesses and decaysexponentially.

Fact: Can show that T2< T1 in order for |M(t)| ≤ M0Physically, the mechanisms that give rise to T1 relaxationalso contribute to transverse T2 relaxation.

TT Liu, BE280A, UCSD Fall 2008

GradientsSpins precess at the Larmor frequency, which isproportional to the local magnetic field. In a constantmagnetic field Bz=B0, all the spins precess at the samefrequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to Bzsuch that Bz(x,y,z) = B0+Δ Bz(x,y,z) . Thus, spins atdifferent physical locations will precess at differentfrequencies.

TT Liu, BE280A, UCSD Fall 2008

Simplified Drawing of Basic Instrumentation.Body lies on table encompassed by

coils for static field Bo, gradient fields (two of three shown),

and radiofrequency field B1.

MRI System

Image, caption: copyright Nishimura, Fig. 3.15

Page 4: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

4

TT Liu, BE280A, UCSD Fall 2008

Imaging: localizing the NMR signal

Resonant Frequency:

ν(x) = γB0+γΔB(x)

RF and Gradient Coils

The local precession frequencycan be changed in a position-dependent way by applying linearfield gradients

ΔB(x)

x

Credit: R. Buxton TT Liu, BE280A, UCSD Fall 2008

Gradient Fields

!

Bz(x,y,z) = B0

+"Bz

"xx +

"Bz

"yy +

"Bz

"zz

= B0

+Gxx +Gyy +Gzzz

!

Gz

="B

z

"z> 0

!

Gy ="Bz

"y> 0

y

TT Liu, BE280A, UCSD Fall 2008

Interpretation

∆Bz(x)=Gxx

Spins Precess atat γB0+ γGxx(faster)

Spins Precess at γB0- γGxx(slower)

x

Spins Precess at γB0

TT Liu, BE280A, UCSD Fall 2008

Rotating Frame of ReferenceReference everything to the magnetic field at isocenter.

Page 5: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

5

TT Liu, BE280A, UCSD Fall 2008

Spins

There is nothing that nuclear spinswill not do for you, as long as youtreat them as human beings.Erwin Hahn

TT Liu, BE280A, UCSD Fall 2008

Phasors

!

" = 0

!

" = #$ /2

!

" = #

!

" = # /2

TT Liu, BE280A, UCSD Fall 2008

Phasor Diagram

Real

Imaginary

!

" = #2$kxx!

G(kx ) = g(x)exp " j2#kxx( )"$

$

% dx

!

" = #2$kxx

!

" = 0

!

kx

=1; x = 0

2"kxx = 0

!

" = #$ /2

!

x =1/4

2"kxx = " /2

!

" = #

!

x =1/2

2"kxx = "

!

" = # /2

!

x = 3/2

2"kxx = 3" /4

TT Liu, BE280A, UCSD Fall 2008

Interpretation

∆x 2∆x-∆x-2∆x 0

∆Bz(x)=Gxx

!

exp " j2#1

8$x

%

& '

(

) * x

%

& '

(

) *

!

exp " j2#2

8$x

%

& '

(

) * x

%

& '

(

) *

!

exp " j2#0

8$x

%

& '

(

) * x

%

& '

(

) *

FasterSlower

Page 6: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

6

TT Liu, BE280A, UCSD Fall 2008Fig 3.12 from Nishimura

kx=0; ky=0 kx=0; ky≠0

TT Liu, BE280A, UCSD Fall 2008

Phase with time-varying gradient

TT Liu, BE280A, UCSD Fall 2008

K-space trajectoryGx(t)

tt1 t2

ky

!

kx(t1)

!

kx(t2)

Gy(t)

t3 t4kx

!

ky (t4 )

!

ky (t3)

TT Liu, BE280A, UCSD Fall 2008 Nishimura 1996

Page 7: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

7

TT Liu, BE280A, UCSD Fall 2008

K-space trajectoryGx(t)

tt1 t2

ky

Gy(t)

kx

TT Liu, BE280A, UCSD Fall 2008

Spin-WarpGx(t)

t1

ky

Gy(t)

kx

TT Liu, BE280A, UCSD Fall 2008

k-spaceImage space k-space

x

y

kx

ky

Fourier TransformTT Liu, BE280A, UCSD Fall 2008

Page 8: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

8

TT Liu, BE280A, UCSD Fall 2008

k-space

kx

ky

TT Liu, BE280A, UCSD Fall 2008

Spin-Warp Pulse Sequence

Gx(t)

Gy(t)

RF

kyGy(t)

TT Liu, BE280A, UCSD Fall 2008

Spin-WarpGx(t)

t1 ky

Gy(t)

kx

TT Liu, BE280A, UCSD Fall 2008

Gradient Fields

!

Gx x + Gy y + Gzz =r G "

r r

!

r G "Gx

ˆ i + Gyˆ j + Gz

ˆ k

!

Bz(r r ,t) = B

0+

r G (t) "

r r

Define

!

r r " xˆ i + yˆ j + z ˆ k

So that

Also, let the gradient fields be a function of time. Thenthe z-directed magnetic field at each point in thevolume is given by :

Page 9: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

9

TT Liu, BE280A, UCSD Fall 2008

Static Gradient Fields

!

M(t) = M(0)e" j#0te

" t /T2

In a uniform magnetic field, the transverse magnetizationis given by:

In the presence of non time-varying gradients we have

!

M (r r ) = M (

r r ,0)e

" j#Bz (r r )t

e" t /T2 (

r r )

= M (r r ,0)e

" j# (B0+r

G $r r )t

e" t /T2 (

r r )

= M (r r ,0)e

" j%0te" j#

r G $

r r te" t /T2 (

r r )

TT Liu, BE280A, UCSD Fall 2008

Time-Varying Gradient FieldsIn the presence of time-varying gradients the frequencyas a function of space and time is:

!

"r r ,t( ) = #B

z(r r ,t)

= #B0

+ #r G (t) $

r r

="0

+ %"(r r ,t)

TT Liu, BE280A, UCSD Fall 2008

PhasePhase = angle of the magnetization phasorFrequency = rate of change of angle (e.g. radians/sec)Phase = time integral of frequency

!

"#r r ,t( ) = $ "%(

r r ,& )

0

t

' d&

= $ (v

G (r r ,& ) )

r r

0

t

' d&

!

"r r ,t( ) = # $(

r r ,% )

0

t

& d%

= #$0t + '"

r r ,t( )

Where the incremental phase due to the gradients is

TT Liu, BE280A, UCSD Fall 2008

Phase with constant gradient

!

"#r r ,t

3( ) = $ "%(r r ,& )

0

t3

' d&

!

"#r r ,t2( ) = $ "%(

r r ,& )

0

t2

' d&

= $"%(r r )t2

if "% is non - time varying.

!

"#r r ,t

1( ) = $ "%(r r ,& )

0

t1

' d&

Page 10: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

10

TT Liu, BE280A, UCSD Fall 2008

Time-Varying Gradient FieldsThe transverse magnetization is then given by

!

M(r r ,t) = M(

r r ,0)e

" t /T2 (r r )

e# (

r r ,t )

= M(r r ,0)e

" t /T2 (r r )

e" j$0t exp " j %$

r r ,t( )d&

o

t

'( )= M(

r r ,0)e

" t /T2 (r r )

e" j$0t exp " j(

r G (&) )

r r d&

o

t

'( )

TT Liu, BE280A, UCSD Fall 2008

Signal EquationSignal from a volume

!

sr(t) = M(r r ,t)

V" dV

= M(x,y,z,0)e# t /T2 (

r r )

e# j$0t exp # j%

r G (&) '

r r d&

o

t

"( )z"

y"

x" dxdydz

For now, consider signal from a slice along z and dropthe T2 term. Define

!

m(x,y) " M(r r ,t)

z0#$z / 2

z0 +$z / 2

% dz

!

sr(t) = m(x,y)e" j#0t exp " j$

r G (%) &

r r d%

o

t

'( )y'

x' dxdy

To obtain

TT Liu, BE280A, UCSD Fall 2008

Signal EquationDemodulate the signal to obtain

!

s(t) = ej" 0t sr(t)

= m(x,y)exp # j$r G (% ) &

r r d%

o

t

'( )y'

x' dxdy

= m(x,y)exp # j$ Gx (%)x + Gy (%)y[ ]d%o

t

'( )y'

x' dxdy

= m(x,y)exp # j2( kx (t)x + ky (t)y( )( )y'

x' dxdy

!

kx (t) ="

2#Gx ($ )d$0

t

%

ky (t) ="

2#Gy ($ )d$0

t

%

Where

TT Liu, BE280A, UCSD Fall 2008

MR signal is Fourier Transform

!

s(t) = m(x,y)exp " j2# kx (t)x + ky (t)y( )( )y$

x$ dxdy

= M kx (t),ky (t)( )= F m(x,y)[ ]

kx (t ),ky (t )

Page 11: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

11

TT Liu, BE280A, UCSD Fall 2008

Recap• Frequency = rate of change of phase.• Higher magnetic field -> higher Larmor frequency ->

phase changes more rapidly with time.• With a constant gradient Gx, spins at different x locations

precess at different frequencies -> spins at greater x-valueschange phase more rapidly.

• With a constant gradient, distribution of phases across xlocations changes with time. (phase modulation)

• More rapid change of phase with x -> higher spatialfrequency kx

TT Liu, BE280A, UCSD Fall 2008

K-space

!

s(t) = M kx (t),ky (t)( ) = F m(x,y)[ ]kx ( t ),ky ( t )

!

kx (t) ="

2#Gx ($ )d$0

t

%

ky (t) ="

2#Gy ($ )d$0

t

%

At each point in time, the received signal is the Fouriertransform of the object

evaluated at the spatial frequencies:

Thus, the gradients control our position in k-space. Thedesign of an MRI pulse sequence requires us toefficiently cover enough of k-space to form our image.

TT Liu, BE280A, UCSD Fall 2008

K-space trajectoryGx(t)

t

!

kx(t) =

"

2#G

x($ )d$

0

t

%

t1 t2

kx

ky

!

kx(t1)

!

kx(t2)

TT Liu, BE280A, UCSD Fall 2008

UnitsSpatial frequencies (kx, ky) have units of 1/distance.Most commonly, 1/cm

Gradient strengths have units of (magneticfield)/distance. Most commonly G/cm or mT/m

γ/(2π) has units of Hz/G or Hz/Tesla.

!

kx(t) =

"

2#G

x($ )d$

0

t

%

= [Hz /Gauss][Gauss /cm][sec]= [1/cm]

Page 12: dM i M j M k M#B dt Tfmriserver.ucsd.edu/ttliu/be280a_08/BE280A08_mri2.pdf · 9 TT Liu, BE280A, UCSD Fall 2008 Static Gradient Fields! M(t)=M(0)e"j# 0te"t/T 2 In a uniform magnetic

12

TT Liu, BE280A, UCSD Fall 2008

ExampleGx(t) = 1 Gauss/cm

t

!

kx(t

2) =

"

2#G

x($ )d$

0

t

%= 4257Hz /G &1G /cm &0.235'10

(3s

=1 cm(1

kx

ky

!

kx(t1)

!

kx(t2)

t2 = 0.235ms

1 cm