Divide and Conquer - McGill...

81
1 Chapter 5 Divide and Conquer Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. CLRS 4.3

Transcript of Divide and Conquer - McGill...

Page 1: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

1

Chapter 5 Divide and Conquer

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

CLRS 4.3

Page 2: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

2

Divide-and-Conquer

Divide-and-conquer. ■ Break up problem into several parts. ■ Solve each part recursively. ■ Combine solutions to sub-problems into overall solution.

Most common usage. ■ Break up problem of size n into two equal parts of size ½n. ■ Solve two parts recursively. ■ Combine two solutions into overall solution in linear time.

Consequence. ■ Brute force: n2. ■ Divide-and-conquer: n log n. Divide et impera.

Veni, vidi, vici. - Julius Caesar

Page 3: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

5.1 Mergesort

Page 4: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Sorting. Given n elements, rearrange in ascending order.

4

Obvious sorting applications. List files in a directory. Organize an MP3 library. List names in a phone book. Display Google PageRank results.

Problems become easier once sorted. Find the median. Find the closest pair. Binary search in a database. Identify statistical outliers. Find duplicates in a mailing list.

Non-obvious sorting applications. Data compression. Computer graphics. Interval scheduling. Computational biology. Minimum spanning tree. Supply chain management. Simulate a system of particles. Book recommendations on Amazon. Load balancing on a parallel computer.. . .

Sorting

Page 5: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

5

Mergesort

Mergesort. ■ Divide array into two halves. ■ Recursively sort each half. ■ Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

Page 6: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

6

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? ■ Linear number of comparisons. ■ Use temporary array.

Challenge for the bored. In-place merge. [Kronrod, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

Page 7: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

7

auxiliary array

smallest smallest

A G L O R H I M S T

Merge. ■ Keep track of smallest element in each sorted half. ■ Insert smallest of two elements into auxiliary array. ■ Repeat until done.

A

Merging

Page 8: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

8

auxiliary array

smallest smallest

A G L O R H I M S T

A

Merge. ■ Keep track of smallest element in each sorted half. ■ Insert smallest of two elements into auxiliary array. ■ Repeat until done.

G

Merging

Page 9: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

9

auxiliary array

smallest smallest

A G L O R H I M S T

A G

Merge. ■ Keep track of smallest element in each sorted half. ■ Insert smallest of two elements into auxiliary array. ■ Repeat until done.

H

Merging

Page 10: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

10

auxiliary array

smallest smallest

A G L O R H I M S T

A G H

Merge. ■ Keep track of smallest element in each sorted half. ■ Insert smallest of two elements into auxiliary array. ■ Repeat until done.

I

Merging

Page 11: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

11

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I

Merge. ■ Keep track of smallest element in each sorted half. ■ Insert smallest of two elements into auxiliary array. ■ Repeat until done.

L

Merging

Page 12: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

12

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L

Merge. ■ Keep track of smallest element in each sorted half. ■ Insert smallest of two elements into auxiliary array. ■ Repeat until done.

M

Merging

Page 13: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

13

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M

Merge. ■ Keep track of smallest element in each sorted half. ■ Insert smallest of two elements into auxiliary array. ■ Repeat until done.

O

Merging

Page 14: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

14

auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M O

Merge. ■ Keep track of smallest element in each sorted half. ■ Insert smallest of two elements into auxiliary array. ■ Repeat until done.

R

Merging

Page 15: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

15

auxiliary array

first half exhausted smallest

A G L O R H I M S T

A G H I L M O R

Merge. ■ Keep track of smallest element in each sorted half. ■ Insert smallest of two elements into auxiliary array. ■ Repeat until done.

S

Merging

Page 16: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

16

auxiliary array

first half exhausted smallest

A G L O R H I M S T

A G H I L M O R S

Merge. ■ Keep track of smallest element in each sorted half. ■ Insert smallest of two elements into auxiliary array. ■ Repeat until done.

T

Merging

Page 17: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

17

auxiliary array

first half exhausted

second halfexhausted

A G L O R H I M S T

A G H I L M O R S T

Merge. ■ Keep track of smallest element in each sorted half. ■ Insert smallest of two elements into auxiliary array. ■ Repeat until done.

Merging

Page 18: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution. T(n) ∈ O(n log2 n).

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace ≤ with =.

18

A Useful Recurrence Relation

Page 19: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

19

Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .log2n

n log2n

Page 20: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n) ■ Base case: n = 1. ■ Inductive hypothesis: T(n) = n log2 n. ■ Goal: show that T(2n) = 2n log2 (2n).

20

Proof by Induction

assumes n is a power of 2

Page 21: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Claim. If T(n) satisfies the following recurrence, then T(n) ≤ n ⎡lg n⎤.

Pf. (by induction on n) ■ Base case: n = 1. T(1) = 0 = 1⎡lg 1⎤. ■ Define n1 = ⎣n / 2⎦ , n2 = ⎡n / 2⎤. ■ Induction step: Let n≥2, assume true for 1, 2, ... , n–1.

21

Analysis of Mergesort Recurrence

log2n

Page 22: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

5.5 Integer Multiplication

Page 23: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Add. Given two n-digit integers a and b, compute a + b. ■ Θ(n) bit operations.

1

0

0

1

1

0

1

1

1

0

1

1

1

0

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

×

Multiply

Multiply. Given two n-digit integers a and b, compute a × b. ■ Straight forward solution: Θ(n2) bit operations.

10101011 0

23

Integer Arithmetic

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

Page 24: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

To multiply two n-digit integers: ■ Multiply four ½n-digit integers. ■ Add two ½n-digit integers, and shift to obtain result.

assumes n is a power of 2

24

Divide-and-Conquer Multiplication: Warmup

Page 25: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Claim.

Pf. For n > 1: T(n)/n = 4T(n/2)/n + C = 2 T(n/2)/(n/2) + C = 2 [ 2 T(n/4)/(n/4) + C ] + C = 4 T(n/4)/(n/4) + 2C + C = 4 [ 2 T(n/8)/(n/8) + C ] + 2C + C = 8 T(n/8)/(n/8) + 4C + 2C + C ... = n T(1)/(1) + n/2 C + n/4 C + ... + 4C + 2C + C = C (n/2+n/4+...+2+1) = C(n-1).

25

Proof by Telescoping

assumes n is a power of 2

Page 26: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

To multiply two n-digit integers: ■ Add two ½n digit integers. ■ Multiply three ½n-digit integers. ■ Add, subtract, and shift ½n-digit integers to obtain result.

26

Karatsuba Multiplication

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in O(n1.585) bit operations.

∈ ∈

Page 27: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

27

Karatsuba: Recursion Tree

n

3(n/2)

9(n/4)

3k (n / 2k)

3 lg n (2)

. . .

. . .

T(n)

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

. . .

. . .

n

Page 28: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

28

Generalization: O(n1+ε) for any ε > 0.

Best known: (n log n) 2O(log* n)

Conjecture: Ω(n log n) but not proven.

Karatsuba Multiplication

0 if x≤1 where log*(x)= 1+log*(log x) if x>1{

Page 29: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

CLRS 4.3 Master Theorem

Page 30: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Master Theorem from CLRS 4.3

30

a = (constant) number of sub-instances,b = (constant) size ratio of sub-instances,𝑓(n) = time used for dividing and recombining.

T(n) = aT(n/b) + f(n)

Page 31: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

T(n/b2)

. . .T(n / bk)

31

Proof by Recursion Tree

f(n)

af(n/b)

a2 f(n/b2)

ak f(n/bk)

alogb n T(2)

. . .

T(n)

T(n/b)

T(n/b2) T(n/b2)

T(2)

T(n/b2)

T(n/b)

T(n/b2) T(n/b2)T(n/b2)

T(n/b)

T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / bk)

. . .

T(n / bk) T(n / bk) T(n / bk)T(n / bk)T(n / bk)T(n / bk)T(n / bk)

logbn. . .

= T(2) nlogb a

T(n) = ∑ ak f(n/bk)

T(n) = aT(n/b) + f(n)

Page 32: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Solution: T(n) ∈ 𝛩(𝑓(n))

Solution: T(n) ∈ 𝛩(nlogb a)

32

isCase 3: 𝑓(n) ∈ 𝛺(nL) for some constant L > logb aand 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

Case 1: 𝑓(n) ∈ O(nL) for some constant L < logb a.

Solution: T(n) ∈ 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) ∈ 𝛩(nlogb a logk n), for some k ≥ 0.

T(n) = aT(n/b) + f(n)

Page 33: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

33

is

Master Theorem

Case 1: 𝑓(n) ∈ O(nL) for some constant L < logb a.

Solution: T(n) ∈ 𝛩(nlogb a)

T(n) = aT(n/b) + f(n)

Page 34: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Solution: T(n) ∈ 𝛩(nlogb a)

34

Master Theorem

Case 1: 𝑓(n) ∈ O(nL) for some constant L < logb a.

T(n) = 5T(n/2) + 𝛩(n2)

Compare nlog2 5 vs. n2.

Since 2 < log2 5 use Case 1

Solution: T(n) ∈ 𝛩(nlog2 5)

Page 35: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

35

Master Theorem

Solution: T(n) ∈ 𝛩(nlogb a log n)

Simple Case 2: 𝑓(n) ∈ 𝛩(nlogb a).

T(n) = aT(n/b) + f(n)

Page 36: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

36

Master Theorem

Solution: T(n) ∈ 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) ∈ 𝛩(nlogb a logk n), for some k ≥ 0.

T(n) = aT(n/b) + f(n)

Page 37: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

T(n) = 27T(n/3) + 𝛩(n3 log n)

Compare nlog3 27 vs. n3.

Since 3 = log3 27 use Case 2

Solution: T(n) ∈ 𝛩(n3 log2 n)37

Master Theorem

Solution: T(n) ∈ 𝛩(nlogb a logk+1 n)

Case 2: 𝑓(n) ∈ 𝛩(nlogb a logk n), for some k ≥ 0.

Page 38: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

38

Master Theorem

Solution: T(n) ∈ 𝛩(𝑓(n))

Case 3: 𝑓(n) ∈ 𝛺(nL) for some constant L > logb aand 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

T(n) = aT(n/b) + f(n)

Page 39: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Solution: T(n) ∈ 𝛩(𝑓(n))

Case 3: 𝑓(n) ∈ 𝛺(nL) for some constant L > logb aand 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

39

Master Theorem

Page 40: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

40

Master Theorem

Solution: T(n) ∈ 𝛩(𝑓(n))

Case 3: 𝑓(n) ∈ 𝛺(nL) for some constant L > logb aand 𝑓(n) satisfies the regularity condition a𝑓(n/b) ≤ c𝑓(n) for some c<1 and all large n.

T(n) = 5T(n/2) + 𝛩(n3)

Compare nlog2 5 vs. n3.

Since 3 > log2 5 use Case 3

a𝑓(n/b) = 5(n/2)3 = 5/8 n3 ≤ cn3, for c = 5/8

Solution: T(n) ∈ 𝛩(n3)

Page 41: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

41

Master Theorem

T(n) = 27T(n/3) + 𝛩(n3/log n)

Compare nlog3 27 vs. n3.

Since 3 = log3 27 use Case 2

but n3/log n ∈ not 𝛩(n3 log k n) for k ≥ 0

Cannot use Master Method.

Page 42: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Matrix Multiplication

Page 43: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

43

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

Brute force. Θ(n3) arithmetic operations.

Fundamental question. Can we improve upon brute force?

Matrix Multiplication

Page 44: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Divide-and-conquer. ■ Divide: partition A and B into ½n-by-½n blocks. ■ Conquer: multiply 8 ½n-by-½n recursively. ■ Combine: add appropriate products using 4 matrix additions.

44

Matrix Multiplication: Warmup

Page 45: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Key idea. multiply 2-by-2 block matrices with only ⑦ multiplications.

■ 7 multiplications. ■ 18 = 10 + 8 additions (or subtractions).

45

Matrix Multiplication: Key Idea

Page 46: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

log2n

46

Strassen: Recursion Tree

n2

7(n2/22)

49(n2/42)

7k (n2/ 4k)

7 lg n (n2/ 4 lg n)

=7 lg n = n lg 7

. . .

. . .

T(n)

T(n/2)

T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

. . .

. . .

T(n/2) T(n/2) T(n/2) T(n/2)

774

74

74

773

T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)

≈ .n2 n2 =n2

Page 47: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

47

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969) ■ Divide: partition A and B into ½n-by-½n blocks. ■ Compute: 14 ½n-by-½n matrices via 10 matrix additions. ■ Conquer: multiply 7 ½n-by-½n matrices recursively. ■ Combine: 7 products into 4 terms using 18 matrix additions.

Analysis. ■ Assume n is a power of 2. ■ T(n) = # arithmetic operations.

∈ ∈

Page 48: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

48

Fast Matrix Multiplication in Practice

Implementation issues. ■ Sparsity. ■ Caching effects. ■ Numerical stability. ■ Odd matrix dimensions. ■ Crossover to classical algorithm around n = 128.

Common misperception: "Strassen is only a theoretical curiosity." ■ Advanced Computation Group at Apple Computer reports 8x speedup

on G4 Velocity Engine when n ~ 2,500. ■ Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other matrix ops.

Page 49: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Q. Two 70-by-70 matrices with only 143,640 scalar multiplications? A. Yes! [Pan, 1980]

49

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications? A. Yes! [Strassen, 1969] Θ

� (n log2 7 ) = O(n 2.81)∈

� (n log2 6) = O(n 2.59 )Θ ∈

� (n log3 21) = O(n 2.77 )Θ ∈

� (n log70 143640 ) = O(n 2.80 )Θ ∈

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications? A. Impossible. [Hopcroft and Kerr, 1971]

Q. Two 3-by-3 matrices with only 21 scalar multiplications? A. Also impossible.

Decimal wars. ■ December, 1979: O(n2.521813). ■ January, 1980: O(n2.521801).

Page 50: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

50

Fast Matrix Multiplication in Theory

Best known. O(n2.376) [Coppersmith-Winograd, 1987-2010.]

In 2010, Andrew Stothers gave an improvement to the algorithm O(n2.374). In 2011, Virginia Williams combined a mathematical short-cut from Stothers' paper with her own insights and automated optimization on computers, improving the bound O(n2.3728642). In 2014, François Le Gall simplified the methods of Williams and obtained an improved bound of O(n2.3728639).

Conjecture. O(n2+ε) for any ε > 0.

Caveat. Theoretical improvements to Strassen are progressively less practical (hidden constant gets worse).

Page 51: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

5.4 Closest Pair of Points

Page 52: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

52

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive. ■ Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control. ■ Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with Θ(n2) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

Page 53: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

53

Algorithm. ■ Divide: draw vertical line L so that roughly ½n points on each side.

L

Closest Pair of Points

Page 54: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

54

Algorithm. ■ Divide: draw vertical line L so that roughly ½n points on each side. ■ Conquer: find closest pair in each side recursively.

12

21

L

Closest Pair of Points

Page 55: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

55

Algorithm. ■ Divide: draw vertical line L so that roughly ½n points on each side. ■ Conquer: find closest pair in each side recursively. ■ Combine: find closest pair with one point in each side. ■ Return best of 3 solutions.

12

218

L

seems like Θ(n2)

Closest Pair of Points

Page 56: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

56

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L

Closest Pair of Points

Page 57: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

57

Find closest pair with one point in each side, assuming that distance < δ. ■ Observation: only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)

Closest Pair of Points

Page 58: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Find closest pair with one point in each side, assuming that distance < δ. ■ Observation: only need to consider points within δ of line L. ■ Sort points in 2δ-strip by their y coordinate.

58

12

21

1

2

3

45

6

7L

δ = min(12, 21)

δ

Closest Pair of Points

Page 59: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Find closest pair with one point in each side, assuming that distance < δ. ■ Observation: only need to consider points within δ of line L. ■ Sort points in 2δ-strip by their y coordinate. ■ Only check distances of those within 11 positions in sorted list!

59

12

21

1

2

3

45

6

7L

δ = min(12, 21)

δ

Closest Pair of Points

Page 60: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Def. Let si be the point in the 2δ-strip, withthe ith smallest y-coordinate.

Claim. If |i – j| ≥ 12, then the distance betweensi and sj is at least δ. Pf. ■ No two points lie in same ½δ-by-½δ box. ■ Two points at least 2 rows apart

have distance ≥ 2(½δ) = δ. ▪

Fact. Still true if we replace 12 with 7.

60δ

27

2930

31

28

26

25

δ

½δ

2 rows½δ

½δ

39

i

j

Scan points in y-order and compare distance between each point and next 11 neighbours. If any of these distances is less than δ, update δ.

Closest Pair of Points

Page 61: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

61

Smallest-Dist(p1, …, pn) {

if n=2 then return dist(p1,p2)

Compute separation line L such that half the points are on one side and half on the other side.

δ’ = Smallest-Dist(left half) δ’’ = Smallest-Dist(right half) δ = min(δ’,δ’’)

Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between each point and next 11 neighbours. If any of these distances is less than δ, update δ.

return δ. }

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Closest Pair of Points

Page 62: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

62

Closest-Pair(p1, …, pn) {

if n=2 then return dist(p1,p2),p1,p2

Compute separation line L such that half the points are on one side and half on the other side.

δ’,p’,q’ = Closest-Pair(left half) δ’’,p’’,q’’ = Closest-Pair(right half) δ, p, q = min(δ’, δ’’)(p’,q’,p’’,q’’)

Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between each point and next 11 neighbours. If any of these distances is less than δ, update δ,p,q.

return δ,p,q. }

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Closest Pair of Points

Page 63: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

63

Closest Pair of Points: Analysis

Running time.

Q. Can we achieve O(n log n)?

A. Yes. First sort all points according to x coordinate before algo. Don’t sort points in strip from scratch each time. ■ Each recursion returns a list: all points sorted by y coordinate. ■ Sort by merging two pre-sorted lists.

Page 64: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Beyond the Master Theorem

Page 65: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Median Finding

Page 66: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

66

Median Finding. Given n distinct numbers a1, …, an, find i such that

|{ j : aj<ai }| =⎣n-1 / 2⎦ and |{ j : aj>ai }| =⎡n-1 / 2⎤.

Median Finding

22 31 44 7 12 19 20 35 3 40 27

3 7 12 19 20 22 27 31 35 40 44

9 4 5 6 7 1 11 2 8 10 3

Page 67: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

67

Selection. Given n distinct numbers a1, …, an, and index k, find i such that

|{ j : aj<ai }| = k-1 and |{ j : aj>ai }| = n-k.

k=4

Selection

22 31 44 7 12 19 20 35 3 40 27

3 7 12 19 20 22 27 31 35 40 44

9 4 5 6 7 1 11 2 8 10 3

Median( a1, …, an ) = Selection( a1, …, an,⎣n+1 / 2⎦)

Page 68: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Algorithm partition(A, start, stop)

Input: An array A, indices start and stop.

Output: Returns an index j and rearranges the elements of Asuch that for all i<j, A[i] ! A[j] andfor all k>i, A[k] " A[j].

pivot # A[stop]

left # start

right # stop - 1

while left ! right do

while left ! right and A[left] ! pivot) do left # left + 1

while (left ! right and A[right] " pivot) do right # right -1

if (left < right ) then exchange A[left] $ A[right]

exchange A[stop] $ A[left]

return left

Partition (from QuickSort)

j<

<(

Page 69: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Example of execution of partition

A = [ 6 3 7 3 2 5 7 5 ] pivot = 5

A = [ 6 3 7 3 2 5 7 5 ] swap 6, 2

A = [ 2 3 7 3 6 5 7 5 ]

A = [ 2 3 7 3 6 5 7 5 ] swap 7,3

A = [ 2 3 3 7 6 5 7 5 ]

A = [ 2 3 3 7 6 5 7 5 ] swap 7,pivot

A = [ 2 3 3 5 6 5 7 7 ]!5 "5

Partition

<

Page 70: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Partition

70

Selection. Given n distinct numbers a1, …, an, and index k, find i such that |{ j : aj<ai }| = k-1 and |{ j : aj>ai }| = n-k.

aj<ai m i aj>ai

k<m k>m

Selection from Median

ai

Median*

Selection( A,start,m-1,k )Selection( A,m+1,stop,k)

if k = m return m

Selection( A,start,stop,k ) (where start ≤ k ≤ stop)

*Median( A,start,stop ) = Selection( A,start,stop,⎡stop-start / 2⎤ )

Page 71: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Partition

71

Selection. Given n distinct numbers a1, …, an, and index k, find i such that |{ j : aj<ai }| = k-1 and |{ j : aj>ai }| = n-k.

aj<ai m i aj>ai

k<m k>m

Selection from Median

ai

Selection( A,start,m-1,k )Selection( A,m+1,stop,k)

if k = m return m

Selection( A,start,stop,k ) (where start ≤ k ≤ stop)

*Median( A,start,stop ) = Selection( A,start,stop,⎡stop-start / 2⎤ )

Median*

Page 72: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Selection. Given n distinct numbers a1, …, an, and index k, find i such that |{ j : aj<ai }| = k-1 and |{ j : aj>ai }| = n-k.

i m aj>ai

k<m k>m

72

Selection from Median

ai

Selection( A,m+1,stop,k)

if k = m return m

Selection( A,start,stop,k ) (where start ≤ k ≤ stop)

*Median( A,start,stop ) = Selection( A,start,stop,⎡stop-start / 2⎤ )

Partition

Selection( A,start,m-1,k )

Median*

Page 73: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

73

Select(a1, …, an,k) {

copy a1, …, an into A[1]…A[n] return SelectREC(A,1,n,k)

}

SelectREC(A,start,stop,k) {

if start=stop then return stop

i = Median(A,start,stop) {* = Selection(A,start,stop,⎡stop-start / 2⎤)*} exchange A[i] with A[stop] m = partition(A,start,stop)

if k=m then return m if k<m then return SelectREC(A,start,m-1,k)

else return SelectREC(A,m+1,stop,k). }

Selection from Median

Page 74: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Selection. Given n distinct numbers a1, …, an, and index k, find i such that |{ j : aj<ai }| = k-1 and |{ j : aj>ai }| = n-k.

aj<ai m i aj>ai

ai

74

Selection

Pseudo- Median

k < m Selection( A,start,m-1,k ) k > m

Selection( A,m+1,stop,k )

Partition

if k = m return m

Selection( A,start,stop,k ) (where start ≤ k ≤ stop)

Page 75: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

75

Select(a1, …, an,k) {

copy a1, …, an into A[1]…A[n] return SelectREC(A,1,n,k)

}

SelectREC(A,start,stop,k) {

if start=stop then return stop

i = PseudoMedian(A,start,stop) exchange A[i] with A[stop] m = partition(A,start,stop)

if k=m then return m if k<m then return SelectREC(A,start,m-1,k)

else return SelectREC(A,m+1,stop,k). }

Selection from Pseudo-Median

Page 76: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

76

PseudoMedian(A,start,stop) {

for i=0 to ⎡stop-start / 5⎤-1 B[i+1] = A[AdHcMed5(A[start+5*i],

A[start+5*i+1], A[start+5*i+2], A[start+5*i+3], A[start+5*i+4]) ]

m = SelectREC(B,1, ⎡stop-start / 5⎤,⎡stop-start / 10⎤) find j such that A[j]=B[m] return j

}

Selection from Pseudo-Median

Page 77: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

77 3n/10——————————7n/10

SelectionSelection. Given n distinct numbers a1, …, an, and index k, find i such that |{ j : aj<ai }| = k-1 and |{ j : aj>ai }| = n-k.

SORT

Page 78: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Selection. Given n distinct numbers a1, …, an, and index k, find i such that

|{ j : aj<ai }| = k-1 and |{ j : aj>ai }| = n-k.

T(n) ≤ T(⎡n/5⎤) + Max{ T(⎣3n/10⎦… T(⎡7n/10⎤) } + 𝛩(n)

Solution: T(n) ∈ 𝛩(n)

78

Selection

Page 79: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Selection. Given n distinct numbers a1, …, an, and index k, find i such that

|{ j : aj<ai }| = k-1 and |{ j : aj>ai }| = n-k.

Assuming T(i) ≤ d i for 1 ≤ i ≤ n, 𝛩(n) ≤ cn T(n+1) ≤ T(n+1 /5) + T(7(n+1)/10) + c(n+1) ≤ d(n+1)/5 + 7d(n+1)/10 + c(n+1) = (2d+7d+10c)/10 (n+1) = (9d+10c)/10 (n+1) ≤ d (n+1) as long as (9d+10c)/10 ≤ d, or equivalently 10c ≤ d.

T(n) ≤ T( n/5 ) + T( 7n/10 ) + 𝛩(n) Solution: T(n) ∈ 𝛩(n)

79

Selection

Page 80: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

Selection. Given n distinct numbers a1, …, an, and index k, find i such that

|{ j : aj<ai }| = k-1 and |{ j : aj>ai }| = n-k.

example: d=10c, Assuming T(i) ≤ 10c i for 1 ≤ i ≤ n, 𝛩(n) ≤ cn T(n+1) ≤ T(n+1 /5) + T(7/10 (n+1)) + c(n+1) ≤ 10c/5 (n+1) + 7•10c/10 (n+1) + c(n+1) = (2c+7c+c)(n+1) = 10c (n+1)

80

Selection

T(n) ≤ T( n/5 ) + T( 7n/10 ) + 𝛩(n) Solution: T(n) ∈ 𝛩(n)

Page 81: Divide and Conquer - McGill Universitycrypto.cs.mcgill.ca/~crepeau/COMP610/05divide-and-conquer.pdf · Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. - Julius Caesar.

81

Chapter 5 Divide and Conquer

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

CLRS 4.3