Displacement Method of Analysis Slope Deflection...

89
Displacement Method of Analysis Slope Deflection Method Chapter 11

Transcript of Displacement Method of Analysis Slope Deflection...

Displacement Method of AnalysisSlope Deflection Method

Chapter 11

Displacement Method of Analysis

• Two main methods of analyzing indeterminate structure

– Force method • The method of consistent deformations & the equation of three

moment

• The primary unknowns are forces or moments

– Displacement method

• The slope-deflection method & the moment distribution method

• The primary unknown is displacements (rotation & deflection)

• It is particularly useful for the analysis of highly statically indeterminate structures

• Easily programmed on a computer & used to analyze a wide range of indeterminate structures

Displacement Method of Analysis

• Degree of Freedom

– The number of possible joint rotations & independent joint translations in a structure is called the degree of freedom of the structure

– In three dimensions each node on a frame can have at most three linear displacements & three rotational displacements.

– In two dimension each node can have at most two linear displacements & one rotational displacement.

DOF = n J– R

- n number of possible joint’s movements

- J number of joints

- R number of restrained movements

Displacement Method of Analysis

• Degree of Freedom

DOF = n J– R- n number of possible joint’s movements

- n = 2 for two dimensional truss structures- n = 3 for three dimensional truss structures- n= 3 for two dimensional frame structures- n= 6 for three dimensional frame structures

- J number of joints- R number of restrained movements

• Neglecting Axial deformationDOF = n J– R – m

- m number of members

Displacement Method of Analysis

Slope-Deflection Equations

•Derivation

Slope-Deflection Equations

• Angular Displacement at A, A

'

'

1 1 20 0

2 3

4

2 3

1 1 2

2&

0 02 3 2 3

AB B

AB A

AA

BA AB

A

B

A

A

B

M L M LM L L

EI EI

M L M LM L L L

E

EI EIM M

L L

I EI

Slope-Deflection Equations

• Angular Displacement at B, B

4

2

BA B

AB B

EIM

L

EIM

L

Slope-Deflection Equations• Relative Linear Displacement

1 2 10.

2 3 2 3

M L M LL L

EI EI

' 0.BM

2

6AB BA

EIM M M

L

Slope-Deflection Equations• Fixed-End Moment

1 12 0.

2 2

PL ML L

EI EI

0.yF

8

PLM

Fixed-End moment

FEM

Slope-Deflection Equations

( )

( )

AB AB

BA BA

M FEM

M FEM

Slope-Deflection EquationsFixed-End Moment

Slope-Deflection Equations

• Slope-deflection equations

– The resultant moment (adding all equations together)

• Lets represent the member stiffness as k = I/L &

• The span ration due to displacement as = /L

• Referring to one end of the span as near end (N) & the other end as the far end (F).

– Rewrite the equations

2 2 3 ( )AB A B AB

IM E FEM

L L

2 2 3 ( )BA B A BA

IM E FEM

L L

2 2 3 ( )

2 2 3 ( )

N N F N

F F N F

M EK FEM

M EK FEM

Slope-Deflection Equations

• Slope-deflection equations for pin supported End Span

– If the far end is a pin or a roller support

– Multiply the first equation by 2 and subtracting the second equation from it

2 2 3 ( ) '

0 2 2 3 0

N N F N

F N

M EK FEM

EK

3 ( ) 'N N NM EK FEM

Fixed End Moment Table

Fixed End Moment Table

Fixed End Moment Table- Continue

Summary

2 2 3 ( )

2 2 3 ( )

N N F N

F F N F

M EK FEM

M EK FEM

3 ( ) 'N N NM EK FEM

Slope-Deflection Equations

– MN, MF = the internal moment in the near & far end of the span. • Considered positive when acting in a clockwise direction

– E, k = modulus of elasticity of material & span stiffness k = I/L

– N, F = near & far end slope of the span at the supports in radians.

• Considered positive when acting in a clockwise direction

– = span ration due to a linear displacement / L.

• If the right end of a member sinks with respect the the left end the sign is positive

Slope-Deflection EquationsSteps to analyzing beams using this method

– Find the fixed end moments of each span (both ends left & right)

– Apply the slope deflection equation on each span & identify the unknowns

– Write down the joint equilibrium equations

– Solve the equilibrium equations to get the unknown rotation & deflections

– Determine the end moments and then treat each span as simply supported beam subjected to given load & end moments so you can workout the reactions & draw the bending moment & shear force diagram

Draw the bending moment & shear force diagram.

Fixed End Moment

2

4 42 . 2 .

8

2 66 . 6 .

12

AB BA

BC CB

FEM t m FEM t m

FEM t m FEM t m

Slope Deflection Equations

0

0

0

0

2 2 0 2 0.5 24

2 2 0 2 24

2 42 2 0 6 6

6 3

2 22 2 0 6 6

6 3

A

A

C

C

AB A B AB B

BA A B BA B

BC B C BC B

CB B C CB B

IM E M EI

IM E M EI

IM E M EI

IM E M EI

4m 6m

4t2t/m

A B C2II

Example 1

Joint Equilibrium Equations

1.70.5 2 1.15 .

1.72 3.7 .

3.7 .

2 1.76 7.1 .

3

AB

BA

BC

CB

M EI t mEI

M EI t mEI

M t m

M EI t mEI

0

4 1.72 6 0.

3

BA BC

B B B

M M

EI EIEI

Joint B

Substituting in slope deflection equations

Computing The Reactions

RA

1.15

4t

RB1

3.7

1

1.15 4 2 3.71.36

4

4 1.36 2.64

A

B

R t

R t

2

2 6 3 3.7 7.15.43

6

2 6 5.43 6.57

B

C

R t

R t

RB2

3.7

2t/m

RC

7.1

6.57

5.43

2.64

1.36

--

++

7.1

3.7

1.15

3.79

1.57+

+

---

• Determine the internal moments in the beam at the supports.

Fixed End Moment2

2

2

2

2

60 4 226.67 .

6

60 2 453.33 .

6

30 6135 .

8

AB

BA

BC

FEM kN m

FEM kN m

FEM kN m

Slope Deflection Equations

0

0

12 2 0 26.67 26.67

6 3

22 2 0 53.33 53.33

6 3

13 0 135 135

6 2

A

A

AB A B AB B

BA A B BA B

BC B BC B

IM E M EI

IM E M EI

IM E M EI

60kN

6m 6m

30kN/m

A B CII

4m

Example 2

0

2 1 753.33 135 0 81.67

3 2 6

70

BA BC

B B B

B

M M

EI EI EI

EI

Joint Equilibrium Equations

1(70) 26.67 3.33 .

3

2(70) 53.33 100 .

3

1(70) 135 100 .

2

AB

BA

BC

M kN m

M kN m

M kN m

Joint B

Substituting in slope deflection equations

Example 3

• Example 2: Determine the internal moments in the beam at the supports

– Support A; downward movement of 0.3cm & clockwise rotation of 0.001 rad. Support B; downward movement of 1.2cm. Support C downward movement of 0.6cm. EI = 5000 t.m2

6m 6m

A B C

II

Fixed End Moment

0.AB BA BC CBFEM FEM FEM FEM

Displacements:

0.001

1.2 0.30.0015

600

0.6 1.20.001

600

A

AB

BC

Slope Deflection Equations

2 50002 0.001 3 0.0015

6

2 50002 0.001 3 0.0015

6

AB B

BA B

M

M

3 5000

0.0016

BC BM

Joint Equilibrium Equations

0

7 0.004 0

0.00057

BA BC

B

B

M M

rad

Joint B

Substituting in slope deflection equations

2 50002 0.001 0.00057 3 0.0015 3.22 .

6

2 50002 0.00057 0.001 3 0.0015 3.93 .

6

3 50000.00057 0.001 3.93 .

6

AB

BA

BC

M t m

M t m

M t m

Example 1b

0.0AB BAFEM FEM

0.0A C

Slope Deflection Equations

Equilibrium Equations

Example 2b

Example 3b

Example 4

• Analysis of Frames Without Sway– The side movement of the end of a column in a frame is called SWAY.

– Determine the moment at each joint of the frame. EI is constant

25 24 880 .

96BCFEM kN m

Fixed End Moment0.AB BAFEM FEM

25 24 880 .

96CBFEM kN m

0.CD DCFEM FEM

A= 0. 2 0. 0. 0

12AB B

IM E

0.1667AB BM EI

Slope Deflection Equations

A= 0. 2 2 0 0. 0

12BA B

IM E

0.333BA BM EI

Example 5

0.333 0.5 0.25 80 0.C C BEI EI EI

2 2 0 808

BC B C

IM E

0.5 0.25 80BC B CM EI EI

2 2 0 808

CB C B

IM E

0.5 0.25 80CB C BM EI EI

D= 0. 2 2 0 0. 0

12CD C

IM E

0.333CD CM EI

D= 0. 2 0 0. 0

12DC C

IM E

0.1667DC CM EI

Joint Equilibrium Equations

0BA BCM M

Joint B

0.333 0.5 0.25 80 0.B B CEI EI EI 0.833 0.25 80B CEI EI

0CB CDM M

Joint C

0.833 0.25 80C BEI EI

22.9 .

45.7 .

45.7 .

45.7 .

45.7 .

22.9 .

AB

BA

BC

CB

CD

DC

M kN m

M kN m

M kN m

M kN m

M kN m

M kN m

Substituting in slope deflection equations

Two equation & two unknown 137.1

B CEI

45.7 45.7

22.9

82.3

22.9

Example 6

2I

2I

II

I

A

B

E

C

F

D

– Draw the bending moment diagram

30kN20kN48kN/m

2

2

20 1 28.89 .

3BAFEM kN m

Fixed End Moment2

2

20 2 14.44 .

3ABFEM kN m

248 464 .

12BCFEM kN m

64 .CBFEM kN m

0BE EB CF FCFEM FEM FEM FEM

30 2 60 .CDM kN m

A= 0.Slope Deflection Equations

2 2 0 4.443

AB A B

IM E

24.44

3AB BM EI

4m3m

4m 2m3m

1m

Example 6b

A= 0. 2 2 0 8.89

3BA A B

IM E

48.89

3BA BM EI

2

2 2 0 644

BC B C

IM E

2 64BC B CM EI EI

2

2 2 0 644

CB B C

IM E

2 64CB B CM EI EI

2 2 0 03

BE B E

IM E

4

3BE BM EI

E= 0.

2 2 0 03

EB E B

IM E

2

3EB BM EI

E= 0.

2

2 2 0 04

CF C F

IM E

2CF CM EI

F= 0.

2

2 2 0 04

FC F C

IM E

FC CM EI

F= 0.

Equilibrium Equations

0BA BC BEM M M

4.67 55.11B CEI EI

Joint B

4 48.89 2 64 0

3 3B B C BEI EI EI EI

0CB CF CDM M M

4 4B CEI EI

Joint C

2 64 2 60 0B C CEI EI EI

Two equation & two unknown

4.18CEI 12.70BEI

Substituting in slope deflection equations

212.7 4.44 4.03 .

3ABM kN m

412.70 8.89 25.83

3BAM kNm

2 12.7 4.18 64 42.77 .BCM kN m

12.7 2 ( 4.18) 64 68.34 .CBM kN m

4.18

8.35

60

68.35

42.77

25.83

16.94

4.03

8.47

412.70 16.94 .

3BEM kN m

212.70 8.47 .

3EBM kN m

2 ( 4.18) 8.35 .CFM EI kN m

4.18 .FCM kN m

Slope Deflection (Frame with Sway) • Analysis of Frames with Sway

Fixed End Moment

2 0. 3 012 12

AB B

IM E

Slope Deflection Equations

1 1

6 24BEI EI

As there is no span loading in any

of the member FEM for all the

members is zero

2 2 0. 3 012 12

BA B

IM E

1 1

3 24BEI EI

– Draw the bending moment diagram. EI constant

Example 7

0. 4 22 2 3 0

15 15 15 15BC B C B C

IM E EI EI

2 4

2 2 0 015 15 15

CB C B B C

IM E EI EI

2 12 2 0 3 0.

18 18 9 54CD C C

IM E EI EI

1 12 0 3 0

18 18 9 54DC C C

IM E EI EI

Equilibrium Equations

0BA BCM M Joint B MB = 0

1 1 4 20.

3 24 15 15B B CEI EI EI EI

14.4 3.2 0B CEI EI EI 1

0CB CDM M

Joint C MC = 0

Three unknown & just two equations so we need

another equilibrium equation. Let take Fx = 0.

2 4 2 10.

15 15 9 54B C CEI EI EI EI

7.2 26.4 0B CEI EI EI 2

40 0.A DH H

12

BA ABA

M MH

18

CD DCD

M MH

40 18 1.5 0.BA AB CD DCM M M M

1 1 1 1720 1.5

3 24 6 24B BEI EI EI EI

2 1 1 10.

9 54 9 54C CEI EI EI EI

0.162 0.75 0.333 720B CEI EI EI 3

Now solve the three equation

1 14.4 3.2 0

1 7.2 26.4 0

0.162 0.75 0.333 720

B

C

EI

EI

EI

136.2CEI

438.9BEI

6756.6EI

Substituting in slope deflection equations

208 .ABM kN m

135 .BAM kN m

135 .BCM kN m

95 .CBM kN m

95 .CDM kN m

110 .DCM kN m

-

-+

-

+

+

110

135

135

208

95

95

220 15375 .

12BCFEM kN m

Fixed End Moment

0.AB BAFEM FEM

220 15375 .

12CBFEM kN m

0.CD DCFEM FEM

2 0. 3 012 12

AB B

IM E

Slope Deflection Equations

1 1

6 24BEI EI

– Draw the bending moment diagram. EI constant

Example 7

2 2 0. 3 012 12

BA B

IM E

1 1

3 24BEI EI

0.2 2 3 375

15 15BC B C

IM E

4 2375

15 15B CEI EI

2 2 0 37515

CB C B

IM E

2 4375

15 15B CEI EI

2 2 0 3 0.18 18

CD C

IM E

2 0 3 018 18

DC C

IM E

Equilibrium Equations

0BA BCM M Joint B MB = 0

1 1 4 2375 0.

3 24 15 15B B CEI EI EI EI

14.4 3.2 9000B CEI EI EI 1

2 1

9 54CEI EI

1 1

9 54CEI EI

Three unknown & just two equations so we need

another equilibrium equation. Let take Fx = 0.

0CB CDM M Joint C MC = 0

2 4 2 1375 0.

15 15 9 54B C CEI EI EI EI

7.2 26.4 20250B CEI EI EI 2

40 0.A DH H

12

BA ABA

M MH

18

CD DCD

M MH

40 18 1.5 0.BA AB CD DCM M M M

1 1 1 1720 1.5

3 24 6 24B BEI EI EI EI

2 1 1 10.

9 54 9 54C CEI EI EI EI

0.162 0.75 0.333 720B CEI EI EI 3

1 14.4 3.2 9000

0 7.2 23.2 29250

0 1.58 0.185 2178

B

C

EI

EI

EI

Now solve the three equation

1 14.4 3.2 9000

1 7.2 26.4 20250

0.162 0.75 0.333 720

B

C

EI

EI

EI

1 14.4 3.2 9000

0. 7.2 23.2 29250

0. 0. 5.29 4257

B

C

EI

EI

EI

R1-R2

0.162R1-R3

0.22R2-R3

4257804.7

5.29CEI

1469.6BEI

9587.2EI Substituting in slope deflection equations

1 11467.2 9587.2 155 .

6 24ABM kN m

1 11469.6 9587.2 90 .

3 24BAM kN m

4 21469.6 ( 804.7) 375 90 .

15 15BCM kN m

2 41469.6 ( 804.7) 375 356 .

15 15CBM kN m

2 1( 804.7) 9587.2 356 .

9 54CDM kN m

1 1( 804.7) 9587.2 267 .

9 54DCM kN m

267

356

90

90

155

356

--

-

Example 8

– Draw the bending moment diagram. EI constant

Fixed End Moment

As there is no span loading in any of the

member FEM for all the members is zero

12 0. 3 05 5

AB B

IM E

Slope Deflection Equations

1

2 6

5 25BEI EI

12 2 0 3 05 5

BA B

IM E

1

4 6

5 25BEI EI

Example 9

02 2 3 0

7 7BE B E

IM E

4 2

7 7B EEI EI

02 2 3 0

7 7EB E B

IM E

2 4

7 7B EEI EI

12 0. 3 05 5

FE E

IM E

1

2 6

5 25EEI EI

12 2 0 3 05 5

EF E

IM E

1

4 6

5 25EEI EI

22 2 3 05 5

BC B C

IM E

2

4 2 6

5 5 25B CEI EI EI

22 2 3 05 5

CB C B

IM E

2

2 4 6

5 5 25B CEI EI EI

02 2 3 0

7 7CD C D

IM E

4 2

7 7C DEI EI

02 2 3 0

7 7DC D C

IM E

2 4

7 7C DEI EI

22 2 3 05 5

DE D E

IM E

2

4 2 6

5 5 25D EEI EI EI

22 2 3 05 5

ED E D

IM E

2

2 4 6

5 5 25D EEI EI EI

Equilibrium Equations

0BA BC BEM M M

Joint B MB = 0

1 2

4 6 4 2 6 4 20

5 25 5 5 25 7 7B B C B EEI EI EI EI EI EI EI

1 2380 70 50 42 42 0B C EEI EI EI EI EI 1

0EB ED EFM M M

Joint E ME = 0

2 1

2 4 2 4 6 4 60

7 7 5 5 25 5 25B E D E EEI EI EI EI EI EI EI

1 250 70 380 42 42 0B D EEI EI EI EI EI 2

0CB CDM M

Joint C MC= 0

2

2 4 6 4 20

5 5 25 7 7B C C DEI EI EI EI EI

270 240 50 42 0B C DEI EI EI EI 3

0DC DEM M

Joint D MD = 0

2

2 4 4 2 60

7 7 5 5 25C D D EEI EI EI EI EI

250 240 70 42 0C D EEI EI EI EI 4

40 0B EH H

Top story FX = 0

5

CB BCB

M MH

5

DE EDE

M MH

HB HE

40 80 0A FH H

Bottom story FX = 0

5

BA ABA

M MH

5

EF FEF

M MH

HA HF

2 2

2 4 6 4 2 6200

5 5 25 5 5 25B C B CEI EI EI EI EI EI

26 6 6 6 4.8 1000B C D EEI EI EI EI EI

2 2

4 2 6 2 4 60

5 5 25 5 5 25D E D EEI EI EI EI EI EI

5

1 1

4 6 2 6600

5 25 5 25B BEI EI EI EI

1 1

4 6 2 60

5 25 5 25E EEI EI EI EI

130 30 24 15000B EEI EI EI 6

6 unknown and 6 equation

1

2

380 70 0 50 42 42 0

50 0 70 380 42 42 0

70 240 50 0 0 42 0

0 50 240 70 0 42 0

6 6 6 6 0 4.8 1000

30 0 0 30 24 0 15000

B

C

D

E

EI

EI

EI

EI

EI

EI

171.79BEI

79.80CEI

79.80DEI

171.79EEI

1 1054.46EI

2 837.29EI

Substituting in slope deflection equations

184.4 .ABM kN m

115.6 .BAM kN m

147.2 .BEM kN m

147.2 .EBM kN m

184.4 .FEM kN m

115.6 .EFM kN m

31.6 .BCM kN m

68.4 .CBM kN m

68.4 .CDM kN m

68.4 .DCM kN m

68.4 .DEM kN m

31.6 .EDM kN m

-

-

-

-

++

- ++

++

-

147.2

31.6

68.4

31.6

184.4

115.6

147.2

115.6

184.4

68.4

68.4

68.4

Before we start let us discus the relative

displacement () of each span

Degree of freedom

DOF = 3x4-6-3 = 3

That means we got three unknown &

we need three equations

– Draw the bending moment diagram. EI constant

Example 10

AB

The relative displacement () for span AB

is equal AB – 0. = AB (clockwise)

The relative displacement () for span BC is

equal 0. – BC = –BC (counterclockwise)

The relative displacement () for span CD

is equal 0. – (–CD)= CD (clockwise)

BC

CD

A

B

D

C

60o

take AB =

BC = AB sin30 = 0.5

CD = AB cos30 = 0.866

Let us build a relationship between AB, BC & CD

So in the slope deflection equations we will use;

as the relative displacement of span AB.

–0.5 as the relative displacement of span BC.

0.866as the relative displacement of span CD.

AB

BC

CD60o

60o

B =30o

22 42.667 .

12BCFEM t m

Fixed End Moment

0.AB BAFEM FEM

2.667.CBFEM m

0.CD DCFEM FEM

2 0. 3 03 3

AB B

IM E

Slope Deflection Equations

2 2

3 3BEI EI

2 2 0 3 03 3

BA B

IM E

4 2

3 3BEI EI

0.52 2 3 2.667

4 4BC B C

IM E

1 32.667

2 16B CEI EI EI

0.52 2 3 2.667

4 4CB B C

IM E

1 32.667

2 16B CEI EI EI

0.8662 2 0 3 0

6 6CD C

IM E

2 0.866

3 6CEI EI

0.8662 0 3 0

6 6DC C

IM E

1 0.866

3 6CEI EI

Equilibrium Equations

0BA BCM M

Joint B MB = 0

4 2 1 32.667 0

3 3 2 16B B CEI EI EI EI EI

112 24 23 128B CEI EI EI 1

0CB CDM M

Joint C MC = 0

1 3 2 0.8662.667 0

2 16 3 6B C CEI EI EI EI EI

24 80 2.072 128B CEI EI EI 2

34.5 3.1 38.375 144B CEI EI EI 3

Third Equilibrium Equations (Method 1)

21 22 12.92 11.92 96 0AB BA CD DCM M M M

6.92m

6.0m

8.0

3.0 2.0 2.0

6.0

3.0

8 t

11 12.923 6

8 2 0.0

DC CDAB BAAB DC

M MM MM M

0A DH H

Third equation FX = 0

From the free body diagram for column CD

6

CD DCD

M MH

Free body diagram for column AB

D

C

HD

CDM

DCM

A

B

HA

ABM

BAM

1.5m

2.6

m

VA

2.6 1.5 0A BA AB AH M M V

Free body diagram for Beam BC

VB

C

CBMB

BCM 2t/m

4 2 4 2 0B BC CBV M M

1.54

2.6 2.6 4

BC CBBA AB

A

M MM MH

1.54 0.

2.6 2.6 4 6

BC CBBA AB CD DCM MM M M M

4

4

BC CB

A B

M MV V

Third Equilibrium Equations (Method 2)

24 9 10.4 144BA AB BC CB CD DCM M M M M M

4 2 2 2 124 9

3 3 3 3 2B B B CEI EI EI EI EI EI

2 0.866 1 0.86610.4 144

3 6 3 6C CEI EI EI EI

3 1 32.667 2.667

16 2 16B CEI EI EI EI

34.5 3.1 38.375 144B CEI EI EI 3

Solving the three equation

112 24 23 128

24 80 2.072 128

34.5 3.1 38.375 144

B

C

EI

EI

EI

3.11BEI

2.71CEI

6.77EI

Solving the three equation

112 24 23 128

24 80 2.072 128

34.5 3.1 38.375 144

B

C

EI

EI

EI

3.11BEI

2.71CEI

6.77EI

Substituting in slope deflection equations

2.44 .ABM t m

0.36 .BAM t m

0.36 .BCM t m

2.78 .CBM t m

2.78 .CDM t m

1.88 .DCM t m A

B

D

C

_

_

+

+

2.78

1.88

2.78

0.360.36

2.442.8

Before we start let us discus the relative

displacement () of each span

– Draw the bending moment diagram. EI constant

Example

The relative displacement () for span AB

is equal AB – 0. = AB (clockwise)

The relative displacement () for span BC is equal

(– 2) – 1 = – (1+ 2) = – BC (counterclockwise)

The relative displacement () for span CD

is equal 0. – (–CD)= CD (clockwise)

BC = 1+ 2

take AB =

BC = 2(AB cos) = 2 5/8.6 = 1.163

CD = AB =

Let us build a relationship between AB, BC & CD

So in the slope deflection equations we will use;

as the relative displacement of span AB.

–1.163 as the relative displacement of span BC.

as the relative displacement of span CD.

A

B

D

C

CD

AB

1

2

AB

BC

CD

B

1

2

1 = 2 & CD = AB because of

the symmetry in the geometry

24 716.33 .

12BCFEM kN m

Fixed End Moment

0.AB BAFEM FEM

16.33 .CBFEM kN m

0.CD DCFEM FEM

2 0. 3 08.6 8.6

AB B

IM E

Slope Deflection Equations

2 6

8.6 73.96BEI EI

2 2 0 3 08.6 8.6

BA B

IM E

4 6

8.6 73.96BEI EI

1.1632 2 3 16.33

7 7BC B C

IM E

4 2 6.97816.33

7 7 49B CEI EI EI

1.1632 2 3 16.33

7 7CB C B

IM E

2 4 6.97816.33

7 7 49B CEI EI EI

2 2 0 3 08.6 8.6

CD C

IM E

4 6

8.6 73.96CEI EI

2 0 3 08.6 8.6

DC C

IM E

2 6

8.6 73.96CEI EI

Equilibrium Equations

0BA BCM M

Joint B MB = 0

4 6 4 2 6.97816.33 0

8.6 73.96 7 7 49B B CEI EI EI EI EI

103.65 28.57 6.13 1633B CEI EI EI 1

0CB CDM M

Joint C MC = 0

2 4 6.978 4 616.33 0

7 7 49 8.6 73.96B C CEI EI EI EI EI

28.57 103.65 6.13 1633B CEI EI EI 2

6 0A DH H

Third equation FX = 0

From the free body diagram for column CD

Free body diagram for column AB

A

B

HA

ABM

BAM

5m

7m

VA

7 5 0A BA AB AH M M V

Free body diagram for Beam BC

7 4 7 3.5 0B BC CBV M M

514

7 7 7

BC CBBA AB

A

M MM MH

14

7

BC CB

A B

M MV V

VB

C

CBMB

BCM 4kN/m

VC

C

HD

CDM

DCM

5m

7m

D

VD

7 5 0D CD DC DH M M V

7 4 7 3.5 0C BC CBV M M

14

7

BC CB

D C

M MV V

6 49 7 5 7 5 0BA AB BC CB CD DC BC CBM M M M M M M M

3.688 3.688 5.12 294B CEI EI EI 3

Solving the three equation

103.65 28.57 6.13 1633

28.57 103.65 6.13 1633

3.688 3.688 5.12 294

B

C

EI

EI

EI

18.897BEI

24.603CEI

61.532EI

514

7 7 7

CD DC BC CB

D

M M M MH

6 0A DH H

7 7 10 294BA AB CD DC BC CBM M M M M M

2 6 4 6 2 67 7

8.6 73.96 8.6 73.96 8.6 73.96B B CEI EI EI EI EI EI

4 6 4 2 6.978

10 16.338.6 73.96 7 7 49

C B CEI EI EI EI EI

2 4 6.97816.33 294

7 7 49B CEI EI EI

Substituting in slope deflection equations

0.6 .ABM kN m

3.8 .BAM kN m

3.8 .BCM kN m

16.43 .CBM kN m

16.43 .CDM kN m

10.71 .DCM kN m

_

+

10.71

3.8

16.43

16.43

0.6

3.8

14.4

A

B

D

C