Discrete Dislocation Dynamics (D3Simul., 4 (2005) p. 359) Eigendefs M. Ortiz UCSD 01/08 Discrete...

30
M. Ortiz UCSD 01/08 Discrete Dislocation Dynamics (D 3 ) M. Ortiz 1 , , P. Ariza 2 2 , A. Ramasubramanian 3 3 1 1 California Institute of Technology 2 2 University of Seville 3 3 Princeton University Symposium on Multiscale Dislocation Dynamics La Jolla, January 19-20, 2008

Transcript of Discrete Dislocation Dynamics (D3Simul., 4 (2005) p. 359) Eigendefs M. Ortiz UCSD 01/08 Discrete...

  • M. OrtizUCSD 01/08

    Discrete Dislocation Dynamics(D3)

    M. Ortiz1,,P. Ariza22, A. Ramasubramanian33

    11California Institute of Technology22University of Seville33Princeton University

    Symposium on Multiscale Dislocation DynamicsLa Jolla, January 19-20, 2008

  • M. OrtizUCSD 01/08

    Strength – Multiscale modeling

    Lattice defects, EoS

    Dislocation dynamics

    Subgrainstructures

    length

    time

    mmnm µm

    µsns

    ms

    Polycrystals

    Validationtests (SCS)

  • M. OrtizUCSD 01/08

    Dislocation dynamics – Limitations• Dislocation energy/length diverges as ~log(R/r0)• Core cut-off radius r0 is extraneous parameter• No natural separation between slip planes• No dislocation core structure accounted for• Evaluation of Peach-Koehler forces ~ O(N2)• Self-interaction of segments entails difficulty• Finite bodies, general geometries, difficult• Isotropic elasticity is often used in calculations• Topological transitions (e.g., junctions, Orowan

    loops, annihilation…) are difficult to account for• Dislocation nucleation is difficult to account for• Mobility law needs to be supplied

  • M. OrtizUCSD 01/08

    Discrete Dislocation Dynamics (D3)• Discrete dislocations in discrete crystal lattice

    – No logarithmic divergence– Dislocation lines have full core structure– Gamma-surface

    • Empirical potentials (EAM, Finis-Sinclair, …)• 3D anisotropic dislocation interactions,

    reactions• Topological transitions automatically included• Computationally efficient:

    – O(N logN) complexity– Nonlinear equilibrium calculations restricted to small

    sets (cores, junctions, …)

    • Amenable to analysis (e.g., Γ-convergence)

  • M. OrtizUCSD 01/08

    Discrete calculus on crystal lattices0-cells

    1-cells2-cells

    3-cell

    BCC crystallite

    movie

    (P. Ariza and M. Ortiz, ARMA, 2005)

  • M. OrtizUCSD 01/08

    BCC lattice complex: 1-cells

  • M. OrtizUCSD 01/08

    BCC lattice complex: 2-cells

  • M. OrtizUCSD 01/08

    BCC lattice: Lattice complex

  • M. OrtizUCSD 01/08

    BCC lattice – Differential operators

  • M. OrtizUCSD 01/08

    The discrete differential complex

    (discrete Helmholtz-Hodge decomposition)

  • M. OrtizUCSD 01/08

    Continuum crystal plasticity

    Lattice-invariant deformations(no elastic

    energy cost!)

  • M. OrtizUCSD 01/08

    Discrete crystal plasticity

    force constants

    lattice-invariantshears

    dd mm

    bbee11

    integer-valued!

  • M. OrtizUCSD 01/08

    Discrete dislocations

    Elementarydislocation“loopons”and Burgers circuits

  • M. OrtizUCSD 01/08

    Discrete crystal plasticity – Stored energy

    Interaction energy

    betweenelementarydislocation

    loops

  • M. OrtizUCSD 01/08

    γ-energy – Comparison to first principles

    Shear stress-strain curves in FCC Al computedfrom EAM, OFDFT and CASTEP Kohn-Sham DFT(Fago, Hayes, Carter and Ortiz, SIAM Multiscale

    Model. Simul., 4 (2005) p. 359)

    Eigendefs

  • M. OrtizUCSD 01/08

    Discrete dislocations – Core structure

    Displacement-difference maps

    Ab initio Mo screw easy core (S. Ismail-Beigi and T. Arias,

    PRL, 84:1499, 2000)

    Discrete Mo screw core(Ramasubramanian,Ariza and Ortiz’ 05)

    b

    Bcc screwdisocation

  • M. OrtizUCSD 01/08

    Discrete dislocations – Core energy

    Energy of Mo screw core(Xu & Moriarty, Phys. Rev.

    B 54, 1996)

    Energy of Ta screw core(Yang et al. Phil.Mag.

    A 81, 2001)

    Energy per unit length of screw dislocationin concentric cylinder of radius R

    Mo Ta

  • M. OrtizUCSD 01/08

    Discrete dislocation dynamics – D3

    mobility law

    storedenergy

    applied forcing

  • M. OrtizUCSD 01/08

    D3 – Solution procedure

    Yes

    No

  • M. OrtizUCSD 01/08

    D3 – Solution procedure

    • Unconstrained problem local in Fourier space

    • FFT algorithm FFTW (Johnson & Frigo)

    • Force update: tabulate stress field of spin

    • Easy decomposition over processors

    • Minimal inter-processor communication

    • Nonlinear equilibration restricted to dislocation cores and junctions: small set!

    Point of dilatation

    unbalanced1-cells

    unconstrainedsolution

  • M. OrtizUCSD 01/08

    D3 – Dilatation point – BCC vanadium

    1 million atomsin unit cell

    27 million atomsin unit cell

    64 million atomsin unit cell

    Periodic array of dilatation points in vanadium

    (Ramasubramanian, Ariza and Ortiz ’05)

  • M. OrtizUCSD 01/08

    D3 – Dilatation point – BCC vanadium

    xD6Slip system D6:

    plane (1 1 0)direction [1 1 1]

    Slip system C3:plane (1 0 1)direction [1 1 1]

    xA6

  • M. OrtizUCSD 01/08

    Crystal plasticity – Hardening

    Uniaxialtension test

    Copper tensile test(Franciosi and Zaoui ’82)

    Irreversible accommodation of shear by crystallographic slip

  • M. OrtizUCSD 01/08

    100 axis

    110 axis

    Uniaxial tension test - Vanadium

  • M. OrtizUCSD 01/08

    100 axis

    110 axis

    Uniaxial tension test - Vanadium

  • M. OrtizUCSD 01/08

    Molybdenum

    Systems C5 & A6

    Uniaxial tension test - Vanadium

    Junction formation

    initial deformed

  • M. OrtizUCSD 01/08

    Stored energy - Dilute limit

  • M. OrtizUCSD 01/08

    Stored energy – Continuum limit

  • M. OrtizUCSD 01/08

    Stored energy – Dilute limit

    pinningpoints

  • M. OrtizUCSD 01/08

    D3 – Outlook

    • D3 combines realism of discrete models:– Discrete dislocations on crystal lattices– Dislocation cores, reactions, topological transitions…

    with convenience of continuum models– Analytical interaction law– Dimensional reduction (dislocation lines, junctions…)– Analytical tractability (continuum limit, dilute limit…)

    • Extensions in progress:– Implementation of dilute limit (discrete line tension)– Application to forest hardening…

    • Future extensions:– Fully anharmonic treatment (Gallego R and Ortiz M,

    “A Harmonic-Anharmonic Energy Partition Method for Lattice Statics Computations” Model. Simul. Mater. Sci. Engr., 1 (4): 417-436, 1993)

    Discrete Dislocation Dynamics�(D3)�Strength – Multiscale modelingDislocation dynamics – LimitationsDiscrete Dislocation Dynamics (D3)Discrete calculus on crystal latticesBCC lattice complex: 1-cellsBCC lattice complex: 2-cellsBCC lattice: Lattice complexBCC lattice – Differential operatorsThe discrete differential complexContinuum crystal plasticityDiscrete crystal plasticityDiscrete dislocationsDiscrete crystal plasticity – Stored energyγ-energy – Comparison to first principles Discrete dislocations – Core structureDiscrete dislocations – Core energyDiscrete dislocation dynamics – D3 D3 – Solution procedureD3 – Solution procedureD3 – Dilatation point – BCC vanadiumD3 – Dilatation point – BCC vanadiumCrystal plasticity – HardeningUniaxial tension test - VanadiumUniaxial tension test - VanadiumUniaxial tension test - VanadiumStored energy - Dilute limitStored energy – Continuum limitStored energy – Dilute limitD3 – Outlook