Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction...

23
Introduction Modelling Axial dipoles Conclusion Dipolar dynamos in stratified systems Raphaël Raynaud , Ludovic Petitdemange, Emmanuel Dormy LRA-LERMA ÉCOLE NORMALE SUPÉRIEURE Stellar and Planetary Dynamos Göttingen – May 27, 2015 1 / 21

Transcript of Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction...

Page 1: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Dipolar dynamos in stratified systems

Raphaël Raynaud, Ludovic Petitdemange, Emmanuel Dormy

LRA-LERMAÉCOLE NORMALE SUPÉRIEURE

Stellar and Planetary DynamosGöttingen – May 27, 2015

1 / 21

Page 2: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Table of contents

1 Introduction

2 ModellingGoverning equationsSet upMethods

3 Axial dipoles

4 Conclusion

2 / 21

Page 3: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Different magnetospheric configurations

Axisymmetric (m = 0) and non-axisymmetric (m = 1) configurations

Ridley, V. A., Jovimagnetic secular variation, Doctoral thesis, 2013

3 / 21

Page 4: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Table of contents

1 Introduction

2 ModellingGoverning equationsSet upMethods

3 Axial dipoles

4 Conclusion

4 / 21

Page 5: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Governing equations

How to model the fluid flow ?

The Convective Approximationsretain the essential physics with a minimum complexity

filter out sound waves

The Boussinesq Approximation

∇· (u)= 0

The Boussinesq benchmark(Christensen et al. 2001)

homogeneous mass distribution

g ∝ r

The Anelastic Approximation

∇· (ρa u)= 0

The anelastic benchmark(Jones et al. 2011)

central mass distribution

g ∝ 1/r2

5 / 21

Page 6: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Governing equations

How to model the fluid flow ?

The Convective Approximationsretain the essential physics with a minimum complexity

filter out sound waves

The Boussinesq Approximation

∇· (u)= 0

The Boussinesq benchmark(Christensen et al. 2001)

homogeneous mass distribution

g ∝ r

The Anelastic Approximation

∇· (ρa u)= 0

The anelastic benchmark(Jones et al. 2011)

central mass distribution

g ∝ 1/r2

5 / 21

Page 7: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Governing equations

The anelastic approximation

Polytropic reference state adiabatically stratified

Ta =w(r), ρa =wn, Pa =wn+1 (1)

Resulting system

∇· (ρaV)= 0 (2)

DtV=−∇(Pc

ρa

)−αSScg+Fν/ρa (3)

ρaDtSc +∇·(

Iq

Ta

)= Q

Ta+ Iq ·∇T−1

a (4)

with

Fν viscous forceQ viscous heatingIq heat flux

Braginsky, S. I. & Roberts, P. H., 1995, GAFD, 79, 1

6 / 21

Page 8: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Governing equations

Mean field approach for the heat transfer equation

Solve the equation for average quantitiesf = ⟨f ⟩+ f t (5)

Turbulent fluctuations create an entropy flux term

ISt = ρa⟨StVt ⟩∝∇⟨S⟩ (6)

Strong simplification

the usual molecular term Iq =−k∇T is then neglected in theheat transfer equation

=⇒ temperature is removed from the problem !

Drawbacksargument only valid far from the onset of convection

P2 of thermodynamics not under warranty anymore

7 / 21

Page 9: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Governing equations

MHD equations

Dimensionless system

∂v∂t

+v ·∇v = Pm[− 1

E∇ P ′

wn + PmPr

RaSr2 er − 2

Eez ×v

+Fν+ 1E wn (∇×B)×B

], (7)

∂B∂t

= ∇× (v×B)+∇2B , (8)

∂S∂t

+v ·∇S = w−n−1 PmPr

∇·(wn+1∇S

)+Di

w

[E−1w−n(∇×B)2 +Qν

], (9)

∇· (wnv) = 0 , (10)

∇·B = 0 . (11)

8 / 21

Page 10: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Set up

A simplified model

Set upA perfect gas in a rotating sphericalshell with constant? kinematic viscosity ν? turbulent entropy diffusivity κ? magnetic diffusivity η

Convection is driven by an imposedentropy difference ∆S between theinner and outer spheres

Boundary conditionsfixed entropy

stress-free b. c. for the velocity field

insulating b. c. for the magnetic field9 / 21

Page 11: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Methods

Systematic parameter study (∼ 250 models)

Seven control parameters

Rayleigh number Ra GMd∆Sνκcp

O(106)

magnetic Prandtl number Pm ν/η O(1)Prandtl number Pr ν/κ 1Ekman number E ν/(Ωd2) 10−4

aspect ratio χ ri/ro 0.35polytropic index n 1/(γ−1) 2number of density scale heights N% ln(%i/%o) ≤ 3

The anelastic version of PaRoDy reproduces the anelastic dynamobenchmark (Jones et al. 2011).

10 / 21

Page 12: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Table of contents

1 Introduction

2 ModellingGoverning equationsSet upMethods

3 Axial dipoles

4 Conclusion

11 / 21

Page 13: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Stability domain of the dipolar branch N% = 0.1

0 5 10 15 20 25 30 35

Ra/Rac

0

1

2

3

4

5

6

7

Pm

Dipolar dynamos as a function of Ra/Rac and Pm12 / 21

Page 14: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Stability domain of the dipolar branch N% = 0.5

0 5 10 15 20 25 30 35

Ra/Rac

0

1

2

3

4

5

6

7

Pm

Dipolar dynamos as a function of Ra/Rac and Pm13 / 21

Page 15: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Stability domain of the dipolar branch N% = 1.5

0 5 10 15 20 25 30 35

Ra/Rac

0

1

2

3

4

5

6

7

Pm

Dipolar dynamos as a function of Ra/Rac and Pm14 / 21

Page 16: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Stability domain of the dipolar branch N% = 2.0

0 5 10 15 20 25 30 35

Ra/Rac

0

1

2

3

4

5

6

7

Pm

Dipolar dynamos as a function of Ra/Rac and Pm15 / 21

Page 17: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Stability domain of the dipolar branch N% = 2.5

0 5 10 15 20 25 30 35

Ra/Rac

0

1

2

3

4

5

6

7

Pm

Dipolar dynamos as a function of Ra/Rac and Pm16 / 21

Page 18: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Critical magnetic Reynolds number

∀N% , Rmc ∼ 102

0.0 0.5 1.0 1.5 2.0 2.5N%

101

102

103

Rm

0 5 10 15 20 25 30

Ra/Rac

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N%

17 / 21

Page 19: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Role of inertia: local Rossby number

N% = 0.5 N% = 1.5 N% = 2.0

0.02 0.04 0.06 0.08 0.10 0.12 0.14Ro`

0.0

0.2

0.4

0.6

0.8

1.0

f dipax

0.02 0.04 0.06 0.08 0.10 0.12 0.14Ro`

0.0

0.2

0.4

0.6

0.8

1.0

f dipax

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16Ro`

0.0

0.2

0.4

0.6

0.8

1.0

f dipax

Ro` =Roc `c/π

as a function of radius for

dipolar (solid lines) and

multipolar (dashed lines)

dynamos at (N% = 2.5,Pm = 2)

(thin lines) and (N% = 3,Pm = 4)

(thick lines).

0.4 0.6 0.8 1.0 1.2 1.4 1.6

r

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Ro? l

Ra = 5.4× 106;N% = 2.5

Ra = 6.4× 106;N% = 2.5

Ra = 7.4× 106;N% = 2.5

Ra = 9.0× 106;N% = 2.5

Ra = 8.0× 106;N% = 3.0

Ra = 9.0× 106;N% = 3.0

18 / 21

Page 20: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Role of inertia: local Rossby number

N% = 0.5 N% = 1.5 N% = 2.0

0.02 0.04 0.06 0.08 0.10 0.12 0.14Ro`

0.0

0.2

0.4

0.6

0.8

1.0

f dipax

0.02 0.04 0.06 0.08 0.10 0.12 0.14Ro`

0.0

0.2

0.4

0.6

0.8

1.0

f dipax

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16Ro`

0.0

0.2

0.4

0.6

0.8

1.0

f dipax

Ro` =Roc `c/π

as a function of radius for

dipolar (solid lines) and

multipolar (dashed lines)

dynamos at (N% = 2.5,Pm = 2)

(thin lines) and (N% = 3,Pm = 4)

(thick lines).

0.4 0.6 0.8 1.0 1.2 1.4 1.6

r

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Ro? l

Ra = 5.4× 106;N% = 2.5

Ra = 6.4× 106;N% = 2.5

Ra = 7.4× 106;N% = 2.5

Ra = 9.0× 106;N% = 2.5

Ra = 8.0× 106;N% = 3.0

Ra = 9.0× 106;N% = 3.0

18 / 21

Page 21: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Snapshots

N% = 1.5,Pm = 0.75,Ra/Rac = 5 N% = 2.5,Pm = 2,Ra/Rac = 3.4B

r(r=

r o)

Vr

19 / 21

Page 22: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

Table of contents

1 Introduction

2 ModellingGoverning equationsSet upMethods

3 Axial dipoles

4 Conclusion

20 / 21

Page 23: Dipolar dynamos in stratified systemspresentations.dynamos2015.de/raynaud_r.pdf · Introduction ModellingAxial dipolesConclusion Dipolar dynamos in stratified systems Raphaël Raynaud,

Introduction Modelling Axial dipoles Conclusion

ResultsDipolar solutions can be observed at high N%, provided high enoughPm are considered.The critical Rm of the dipolar branch seems scarcely affected by theincrease of N%.The higher N%, the faster is reached the critical Ro` above whichinertia causes the collapse of the dipole. This explains why dipolardynamos become confined in the parameter space.The scarcity of dipolar solutions for substantial N% would thus rathercome from the restriction of the parameter space being currentlyexplored (because of computational limitations), rather than anintrinsic modification of the dynamo mechanisms.

References

Schrinner, Petitdemange, Raynaud & Dormy, 2014, A&A, 564, A78Raynaud, Petitdemange & Dormy, 2014, A&A, 567, A107Raynaud, Petitdemange & Dormy, 2015, MNRAS, 448:2055–2065

21 / 21