DIMACS Pervasive Networking Workshop Sparse Networks, Obstacles

22
Challenges in Geographic Routing: Sparse Networks, Obstacles, and Traffic Provisioning Brad Karp Berkeley, CA [email protected] DIMACS Pervasive Networking Workshop 21 May, 2001

Transcript of DIMACS Pervasive Networking Workshop Sparse Networks, Obstacles

Challenges in Geographic Routing:Sparse Networks, Obstacles, and Traffic

Provisioning

Brad Karp

Berkeley, CA

[email protected]

DIMACS Pervasive Networking Workshop21 May, 2001

Motivating Examples

Vast wireless network of mobile temperature sensors, floating onthe ocean’s surface: Sensor Networks

Metropolitan-area network comprised of customer-owned and-operated radios: Rooftop Networks

Challenges in Geographic Routing Brad Karp [email protected] 1

Scalability through Geography

How should we build networks with a mix of these characteristics?

� Mobility

� Scale (number of nodes)

� Lack of static hierarchical structure

Use geography in system design to achieve scalability. Examples:

� Greedy Perimeter Stateless Routing (GPSR): scalablegeographic routing for mobile networks [Karp and Kung, 2000]

� GRID Location Service (GLS): a scalable location database formobile networks [Li et al., 2000]

� Geography-Informed Energy Conservation [Xu et al., 2001]

Challenges in Geographic Routing Brad Karp [email protected] 2

Outline

Motivation

GPSR Overview

GPSR’s Performance on Sparse Networks: Simulation Results

Planar Graphs and Radio Obstacles: Challenge and Approaches

Geographic Traffic Provisioning and Engineering

Conclusions

Challenges in Geographic Routing Brad Karp [email protected] 3

GPSR: Greedy Forwarding

Nodes learn immediate neighbors’ positions throughbeacons/piggybacking on data packets: only state required!

Locally optimal, greedy forwarding choice at a node:

Forward to the neighbor geographically closest to thedestination

y

x

D

Challenges in Geographic Routing Brad Karp [email protected] 4

Greedy Forwarding Failure: Voids

When the intersection of a node’s circular radio range and thecircle about the destination on which the node sits is empty ofnodes, greedy forwarding is impossible

Such a region is a void:

D

v z

w

x

y

void

Challenges in Geographic Routing Brad Karp [email protected] 5

Node Density and Voids

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 50 100 150 200 250 300

Fra

ctio

n o

f p

ath

s

Number of nodes

Existing and Found Paths, 1340 m x 1340 m Region

Fraction existing pathsFraction paths found by greedy

The probability that a void region occurs along a route increases asnodes become more sparse

Challenges in Geographic Routing Brad Karp [email protected] 6

GPSR: Perimeter Mode for Void Traversal

D

xTraverse face closer to D along xD by right-hand rule, until reachingthe edge that crosses xD

Repeat with the next closer face along xD, &c.

Forward greedily where possible, in perimeter mode where not

Challenges in Geographic Routing Brad Karp [email protected] 7

Challenge: Sparse Networks

Greedy forwarding approximates shortest paths closely on densenetworks

Perimeter-mode forwarding detours around planar faces; notshortest-path

Greedy forwarding clearly robust against packet looping undermobility

Perimeter-mode forwarding less robust against packet looping onmobile networks; faces change dynamically

Perimeter mode really a recovery technique for greedy forwardingfailure; greedy forwarding has more desirable properties

How does GPSR perform on sparser networks, where perimetermode is used most often?

Challenges in Geographic Routing Brad Karp [email protected] 8

Simulation Environment

ns-2 with wireless extensions [Broch et al., 1998]: full 802.11 MAC,physical propagation; allows comparison of results

Topologies and Workloads:

Nodes Region Density CBR Flows

50 1500 m � 300 m 1 node / 9000 m2 30

200 3000 m � 600 m 1 node / 9000 m2 30

50 1340 m � 1340 m 1 node / 35912 m2 30

Simulation Parameters:

Pause Time: 0, 30, 60, 120 s Motion Rate: [1, 20] m/s

GPSR Beacon Interval: 1.5 s Data Packet Size: 64 bytes

CBR Flow Rate: 2 Kbps Simulation Length: 900 s

Challenges in Geographic Routing Brad Karp [email protected] 9

Packet Delivery Success Rate (50, 200; Dense)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Fra

ctio

n d

ata

pkt

s d

eliv

ered

Pause time (s)

DSR (200 nodes)GPSR (200 nodes), B = 1.5

DSR (50 nodes)GPSR (50 nodes), B = 1.5

Challenges in Geographic Routing Brad Karp [email protected] 10

Packet Delivery Success Rate (50; Sparse)

0.7

0.75

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100 120

Fra

ctio

n d

ata

pkt

s d

eliv

ered

Pause time (s)

DSR (50 nodes)GPSR (50 nodes), B = 1.5

GPSR (50 nodes), B = 1.5, Greedy Only

Challenges in Geographic Routing Brad Karp [email protected] 11

Path Length (50; Dense)

0.0 0.2 0.4 0.6 0.8 1.0Fraction of delivered pkts

GPSR

DSR

GPSR

DSR

GPSR

DSR

GPSR

DSR

0.0 0.2 0.4 0.6 0.8 1.0Fraction of delivered pkts

0

30

60

120

Pau

se Tim

e

0.0 0.2 0.4 0.6 0.8 1.0Fraction of delivered pkts

Ro

uti

ng

Alg

ori

thm

Hops Longer than Optimal

Ro

uti

ng

Alg

ori

thm

0 1 2 3 4 >= 5

Challenges in Geographic Routing Brad Karp [email protected] 12

Path Length (50 nodes, Sparse)

0.0 0.2 0.4 0.6 0.8 1.0Fraction of delivered pkts

GPSR

DSR

GPSR

DSR

GPSR

DSR

GPSR

DSR

0.0 0.2 0.4 0.6 0.8 1.0Fraction of delivered pkts

0

30

60

120

Pau

se Tim

e

0.0 0.2 0.4 0.6 0.8 1.0Fraction of delivered pkts

Ro

uti

ng

Alg

ori

thm

Hops Longer than Optimal

Ro

uti

ng

Alg

ori

thm

0 1 2 3 4 >= 5

Challenges in Geographic Routing Brad Karp [email protected] 13

Outline

Motivation

GPSR Overview

GPSR’s Performance on Sparse Networks: Simulation Results

Planar Graphs and Radio Obstacles: Challenge and Approaches

Geographic Traffic Provisioning and Engineering

Conclusions

Challenges in Geographic Routing Brad Karp [email protected] 14

Network Graph Planarization

Relative Neighborhood Graph (RNG) [Toussaint, ’80] and GabrielGraph (GG) [Gabriel, ’69] are long-known planar graphs

Assume an edge exists between any pair of nodes separated byless than a threshold distance (i.e., the nominal radio range)

RNG and GG can be constructed using only neighbors’ positions,and both contain the Euclidean MST!

u v

w

RNG

u v

w

GG

Challenges in Geographic Routing Brad Karp [email protected] 15

Planarized Graphs: Example

200 nodes, placed uniformly at random on a 2000-by-2000-meterregion; radio range 250 meters

Full Network GG Subgraph RNG Subgraph

Challenges in Geographic Routing Brad Karp [email protected] 16

Challenge: Radio-Opaque Obstacles andPlanarization

Obstacles violate assumption that neighbors determined purely bydistance:

Full Network GG and RNG Subgraph

In presence of obstacles, planarization can disconnectdestinations!

Challenges in Geographic Routing Brad Karp [email protected] 17

Coping with Obstacles

Eliminate edges only in presence of mutual witnesses; edgeendpoints must agree

Full Graph Mutual GG Mutual RNG

Prevents disconnection, but doesn’t planarize completely

Forward through a randomly chosen partner node (location)

Compensate for variable path loss with variable transmit power

Challenges in Geographic Routing Brad Karp [email protected] 18

Traffic Concentration Demands Provisioning

������

������

��������

����

������������

��������

����

������������

��������

����

���

���

������

������

��������

����

������������

������

������

���

���

���

���

������

������

������

������

���

���

���

���

������

������

������

������

���

���

������������

������

������

���

���

������������

������

������

���

���

���

���

������

������

������

������

���

���

���

���

���

���

���

���

���

���

����

����

���

���

���

���

���

���

������

������

��������

����

������������

��������

����

����

����

����

����

���

���

���

���

����

����

���

���

If we assume uniform traffic distribution, flows tend to cross thecenter of the network

All link capacities symmetric!

Challenges in Geographic Routing Brad Karp [email protected] 19

Geographic Network Provisioning

������

������

��������

����

������������

��������

����

������������

��������

����

���

���

������

������

��������

����

������������

������

������

���

���

���

���

������

������

������

������

���

���

���

���

������

������

������

������

���

���

������������

������

������

���

���

������������

������

������

���

���

���

���

������

������

������

������

���

���

���

���

���

���

���

���

���

���

����

����

���

���

���

���

���

���

������

������

��������

����

������������

��������

����

����

����

����

����

���

���

���

���

����

����

���

���

In a dense wireless network, position is correlated with capacity

Symmetric link capacity and dense connectivity

Route congested flows’ packets through a randomly chosen point

Challenges in Geographic Routing Brad Karp [email protected] 20

Conclusions

On sparse networks, GPSR delivers packets robustly, most ofwhich take paths of near-shortest length

Non-uniform radio ranges complicate planarization; variable-powerradios and random-partner proxying may help

Geographically routed wireless networks support a new,geographic family of traffic engineering strategies, that leveragespatial reuse to alleviate congestion

Use of geographic information offers diverse scaling benefits inpervasive network systems

Challenges in Geographic Routing Brad Karp [email protected] 21